Henning Struchtrup Macroscopic Transport
Equations for Rarefied Gas Flows Approximation Methods in Kinetic
Theory Interaction of Mechanics and Mathematics Series Springer,
Heidelberg 2005 258 pages,
ISBN: 3-540-24542-1 The
Interaction in Mechanics and Mathematics (IMM) series
publishes advanced textbooks and
introductory scientific monographs devoted to modern
research in the wide area of mechanics. The authors are
distinguished specialists with
international reputation in their field of expertise. The
books are intended to serve as modern guides in their fields
and anticipated to be accessible
to advanced graduate students. IMM books are
planned to be comprehensive reviews developed to the cutting
edge of their respective field
and to list the major references.
The well known transport laws of
Navier-Stokes and Fourier fail for the simulation of processes on
lengthscales in the order of the mean free path of a particle that
is when the Knudsen number is not small enough. Thus, the proper
simulation of flows in rarefied gases requires a more detailed
description.
This book
discusses classical and modern methods to derive macroscopic
transport equations for rarefied gases from the Boltzmann
equation, for small and moderate Knudsen numbers, i.e. at and
above the Navier-Stokes-Fourier level. The main methods discussed
are the classical Chapman-Enskog and Grad approaches, as well as
the new order of magnitude method, which avoids the short-comings
of the classical methods, but retains their benefits. The
relations between the various methods are carefully examined, and
the resulting equations are compared and tested for a variety of
standard problems.
The book
develops the topic starting from the basic description of an ideal
gas, over the derivation of the Boltzmann equation, towards the
various methods for deriving macroscopic transport equations, and
the test problems which include stability of the equations, shock
waves, and Couette flow. Order from Springer or amazon.com