IMM coverHenning Struchtrup
Macroscopic Transport Equations for Rarefied Gas Flows
Approximation Methods in Kinetic Theory

Interaction of Mechanics and Mathematics Series
Springer, Heidelberg 2005
258 pages, ISBN: 3-540-24542-1

The Interaction in Mechanics and Mathematics (IMM) series publishes advanced textbooks and introductory scientific monographs devoted to modern research in the wide area of mechanics. The authors are distinguished specialists with international reputation in their field of expertise. The books are intended to serve as modern guides in their fields and anticipated to be accessible to advanced graduate students. IMM books are planned to be comprehensive reviews developed to the cutting edge of their respective field and to list the major references.

Contents and Introduction (pdf)

The well known transport laws of Navier-Stokes and Fourier fail for the simulation of processes on lengthscales in the order of the mean free path of a particle that is when the Knudsen number is not small enough. Thus, the proper simulation of flows in rarefied gases requires a more detailed description.

This book discusses classical and modern methods to derive macroscopic transport equations for rarefied gases from the Boltzmann equation, for small and moderate Knudsen numbers, i.e. at and above the Navier-Stokes-Fourier level. The main methods discussed are the classical Chapman-Enskog and Grad approaches, as well as the new order of magnitude method, which avoids the short-comings of the classical methods, but retains their benefits. The relations between the various methods are carefully examined, and the resulting equations are compared and tested for a variety of standard problems.

The book develops the topic starting from the basic description of an ideal gas, over the derivation of the Boltzmann equation, towards the various methods for deriving macroscopic transport equations, and the test problems which include stability of the equations, shock waves, and Couette flow.
Order from Springer or amazon.com

Errata