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Preface

An important parameter to describe rarefied gases is the Knudsen number Kn,
defined as the ratio between the mean free path of the gas, i.e. the average
distance traveled by a gas particle between two subsequent collisions, and a
macroscopic length describing the flow, e.g. a channel width or the diameter
of an object exposed to the flow.

The well known laws of Navier-Stokes and Fourier are applicable only for
flows at sufficiently small Knudsen numbers, and fail in the description of flows
at Knudsen numbers Kn 2 0.05. These Knudsen numbers are easily reached
nowadays, e.g. in microscopic flows or in high altitude flight, and a reliable set
of equations that can be solved at low computational cost for the description
of these flows is highly desirable.

The basic equation for the description of rarefied gases is the Boltzmann
equation which describes the microscopic behavior of the gas from a statis-
tical viewpoint. The Boltzmann equation is valid for all Knudsen numbers,
but—due to the detailed microscopic description—its numerical solution is
expensive.

This text discusses classical and newer methods to derive macroscopic
transport equations for rarefied gases from the Boltzmann equation, for small
and moderate Knudsen numbers, i.e. at and above the Navier-Stokes-Fourier
level. The resulting equations are compared and tested for a variety of stan-
dard problems. The classical methods, due to Chapman and Enskog, and
to Grad, yield unsatisfactory equations, which are unstable in case of the
Chapman-Enskog expansion (Burnett and super-Burnett equations), and de-
scribe unphysical discontinuous shocks in case of the Grad method. Only re-
cently, the author was involved in developing alternative methods, which yield
the regularized 13 moment equations (R13 equations) that avoid the short-
comings of the classical equations, but retain their benefits. Naturally, the
methods for deriving the R13 equations, and the discussion of the equations
are central points in the text.

This book is intended to be accessible not only to experts, but also the
novice in kinetic theory, and thus develops the topic starting from the basic
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description of an ideal gas, and the derivation of the Boltzmann equation,
followed by various methods for deriving macroscopic transport equations,
and test problems, including shock waves and Couette flow. About forty end-
of-chapter problems provide opportunity to deepen the understanding, and
numerous references provide directions for further study.

My understanding of the topic benefitted immensely from discussions with
many scientists and students, and I wish to thank in particular the following
people and institutions: Marcello Anile, Jérg Au, Elvira Barbera, Maurice
Bond, Wolfgang Dreyer, Gilberto Kremer, David Levermore, Luc Mieussens,
Ingo Miiller, Institute for Integrated Energy Systems (Victoria, BC), Institute
for Mathematics and its Applications (Minneapolis), Natural Sciences and
Engineering Research Council of Canada, Daniel Reitebuch, Tommaso Rug-
geri, Adam Schuetze, TMR Project “Asymptotic Methods in Kinetic Theory”,
Toby Thatcher, University of Victoria, Wolf Weiss, and Yingsong Zheng.

The R13 equations originate from a collaboration with my friend Manuel
Torrilhon, to whom I extend special thanks for the successful and exciting
cooperation, and also for carefully proof-reading the manuscript.

Special thanks are also due to Marshall Slemrod, for many stimulating
discussions over the last years, and for carefully reading and correcting the
manuscript on behalf of the editors.

Finally, I thank my lovely wife, Martina Wanders-Struchtrup, and our
sweet daughter, Nora, for their continuous understanding, patience, and love.

Victoria, BC Henning Struchtrup
March 2005
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Introduction

1.1 Contents and scope

A gas at standard conditions (1bar, 25°C) contains ca. 2.43 x 10%¢ particles
per cubic millimeter. Despite this huge number of individual particles, a wide
variety of flow and heat transfer problems can be described by a rather low
number of partial differential equations, namely the well-known equations of
Navier-Stokes and Fourier. Due to the many collisions between particles which
effectively distribute disturbances between the particles, the particles behave
not as individuals, but as a continuum.

Under standard conditions a particle collides with the others very often,
about 10° times per second, and travels only very short distances between
collisions, about 5 x 10~8m. Both numbers, known as collision frequency v and
mean free path )\, depend on the number density of the gas. Flow problems in
which the typical length scales L are much larger than the mean free path A, or
in which the typical frequencies w are much smaller than v, are well described
through the laws of Navier-Stokes and Fourier. The Knudsen number Kn =
A/L = w/v is the relevant dimensionless measure to describe these conditions,
and the Navier-Stokes-Fourier equations are valid as long as Kn < 1.

This condition fails to hold when the relevant length scale L becomes com-
parable to the mean free path . This can happen either when the mean free
path becomes large, or when the length I becomes small. A typical example of
a gas with large mean free path is high altitude flight in the outer atmosphere,
where the mean free path must be measured in meters, not nanometers, and
the Knudsen number becomes large for, e.g., a spacecraft. Miniaturization,
on the other hand, produces smaller and smaller devices, e.g. micro-electro-
mechanical systems (MEMS), where the length L approaches the mean free
path.

Moreover, the Navier-Stokes-Fourier equations will fail in the description
of rapidly changing processes, when the process frequency w approaches, or
exceeds, the collision frequency v.

The Knudsen number is used to classify flow regimes as follows:
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e Kn < 0.01: The hydrodynamic regime, which is very well described by the
Navier-Stokes-Fourier equations.

e 0.01 £ Kn < 0.1: The slip flow regime, where the Navier-Stokes-Fourier
equations can describe the flow well, but must be supplied with boundary
conditions that describe velocity slip and temperature jumps at gas-wall
interfaces.

e 0.1 £ Kn < 10: The transition regime, where the Navier-Stokes-Fourier
equations fail, and the gas must be described in greater detail, e.g. by the
Boltzmann equation, or by extended macroscopic models.

e Kn 2> 10: Free molecular flow, where collisions between the particles do
not play an important role, and the flow is dominated by wall/particle
interactions.

Rarefied gases are gases outside the hydrodynamic regime, i.e. with Kn >
0.01. For Knudsen numbers in 0.01 < Kn < 1, the gas still behaves as a
continuum, but the Navier-Stokes-Fourier equations loose their validity, and
must be replaced by more refined sets of continuum equations which describe
the behavior of the gas.

Approximation methods to derive equations that allow to describe processes
in rarefied gases, and the evaluation of the resulting equations, are the main
topic of this text. Particular emphasis is put on understanding the relations
between the different methods, and between the various sets of equations that
result from these. Most methods rely on expansions in the Knudsen number
Kn, and therefore yield equations that cannot cover the full transition regime,
but are restricted to 0.01 < Kn < 1.

A rarefied gas is well described by the Boltzmann equation which describes
the gas on the microscopic level by accounting for the translation and collisions
of the particles. The solution of the Boltzmann equation is the phase density
f which is a measure for the likelihood to find atoms at a location x with
microscopic velocities c¢. The Boltzmann equation is the central equation in
the kinetic theory of gases.

Macroscopic quantities such as mass density p, mean velocity v, tempera-
ture T, pressure tensor' p, and heat flux vector q are weighted averages of the
phase density, obtained by integration over the microscopic velocity. One way
to compute the macroscopic quantities is to first solve the Boltzmann equa-
tion, and then integrate over its solution, f. Alternatively, rational methods
can be used to deduce macroscopic transport equations from the Boltzmann
equation, that is transport equations for the macroscopic quantities p, v, T,
etc. This is particularly suitable for processes at small and moderate Knud-
sen numbers, which, as it turns out, can be described by a small number of
equations.

The phase density and its moments—the macroscopic quantities—are in-
troduced in Chapter 2.

! The pressure tensor has a different sign than the stress tensor t of fluid dynamics,
p=—t.
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The Boltzmann equation and its properties, such as its equilibrium states,
the conservation of mass, momentum and energy, and the second law of ther-
modynamics, are presented and discussed in Chapter 3.

The classical method for the derivation of macroscopic equations for rar-
efied gases is the Chapman-Enskog (CE) method, which relies on an expan-
sion of the phase density around equilibrium in terms of the Knudsen number,
f=fu+EKnf® +Kn?f@ +... where fy is the equilibrium phase density,
known as Maxwellian distribution. The CE method gives the Euler equations
at zeroth order, and the Navier-Stokes-Fourier equations at first order, with
explicit expressions for viscosity and heat conductivity. Both sets of equations
are cornerstones of gas dynamics in engineering applications.

Unfortunately, the success of the Chapman-Enskog method at zeroth and
first order is not continued towards higher order expansions, which yield the
Burnett and super-Burnett equations at second and third order, respectively.
Both sets of equations suffer from instabilities in transient processes (at high
frequencies or small wavelengths) and from unphysical oscillations in steady
state processes.

The Chapman-Enskog method is discussed in Chapter 4, where it is
applied first to the ES-BGK equation, which shares the main features with the
Boltzmann equation, but allows an easier, and more transparent, application
of the method. Subsequently, the application of the CE method for the full
Boltzmann equation is sketched, and the resulting macroscopic equations up
to third order are listed.

The Boltzmann equation can be replaced by an infinite set of coupled mo-
ment equations, which follows from averaging the Boltzmann equation over
a complete set of functions in the microscopic velocity c. The infinite set,
presented and discussed in Chapter 5, is equivalent to the Boltzmann equa-
tion and can be used alternatively as a base for finding macroscopic transport
equations.

A well-established approach to moment equations is Grad’s method, which
truncates the infinite system to a finite number of equations and then uses
an approximation for the phase density—the Grad distribution fjg—to close
the system. Best-known is Grad’s system of 13 equations with the variables
p, v, T, p, q, but the method can be applied to arbitrary sets of moments.
The method is introduced and performed in Chapter 6. There, the relation
between the Grad equations and the equations derived from the Chapman-
Enskog expansion is extensively discussed. Indeed, the latter can be derived
from the Grad equations by a CE expansion of the moments, which implies
that the Grad method yields equations at higher orders in the Knudsen num-
ber (in a rather unspecific sense).

Other than the higher order equations from the Chapman-Enskog method,
i.e. the Burnett and super-Burnett equations, Grad-type equations are stable
in transient processes, and thus offer an alternative to higher order equations.
However, they form hyperbolic equations, which implies finite transport veloc-
ities, and thus discontinuous shocks for velocities that exceed the maximum
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characteristic velocity of the equations. Chapter 7 presents a method to regu-
larize Grad-type moment equations by means of a Chapman-Enskog expansion
around the Grad distribution f|q instead of expanding around the equilibrium
distribution fj;. The method, pioneered by Grad and developed further by
M. Torrilhon and the author, is performed on Grad’s 13 moment set, and
yields the regularized 13 moment, or R13, equations. These are stable, yield
smooth shock structures at all velocities, and the Navier-Stokes, Burnett, and
super-Burnett equations can be extracted by means of a Chapman-Enskog
expansion.

The R13 equations have desirable properties, but a closer look shows that
they have two drawbacks: (a) Their derivation takes Grad’s moment method
for granted, and it would be preferable to have a derivation that is inde-
pendent of Grad’s method, while relating the equations directly to orders in
the Knudsen numbers. (b) The R13 equations are derived for a particular
model for molecular collisions—interaction with an inverse fifth power po-
tential (Maxwell molecules)—and their generalization to arbitrary collision
potentials would be desirable.

Chapter 8 presents an alternative method for deriving macroscopic trans-
port equations that can be performed for any type of molecular interaction,
and is based on accounting for the order of magnitude of moments and terms
in moment equations through powers in the Knudsen number. For Maxwell
molecules, the Euler and NSF equations are obtained in zeroth and first order,
Grad’s 13 moment equations in second order, and (a variation of) the R13
equations in third order. For non-Maxwellian molecules, the method is devel-
oped to second order, where it gives a generalization to Grad’s 13 moment
equations. The application to third order is discussed, but not performed.

The different sets of transport equations that are derived in Chapters
4-8 are collected in Chapter 9, which presents the full non-linear three-
dimensional equations along with their one-dimensional form, as well as the
linearized dimensionless equations in three space dimensions. Two tables are
used to clarify the relations between the different models.

Chapters 10 and 11 present the application of the various equations to
standard test problems, namely stability, dispersion and damping (Chapter
10), and one-dimensional shock waves (Chapter 11). Here, the aforementioned
strengths and weaknesses of the various equations are proven, e.g. the insta-
bility of the Burnett and super-Burnett equations, the occurrence of disconti-
nuities in shock calculations for Grad’s equations, and that the R13 equations
are stable and yield smooth shock structures.

Boundary value problems are discussed in Chapter 12, which begins
with the derivation of the standard jump and slip boundary conditions for
the Navier-Stokes-Fourier equations. Then the ability of the various sets of
macroscopic equations to describe boundary value problems in the transition
regime is examined. Particular emphasis is put on linear Knudsen boundary
layers, and on non-linear rarefaction effects, e.g. a heat flux not driven by
a temperature gradient in Couette flow. Complete boundary conditions are
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not available for equations above the Navier-Stokes-Fourier equations, and
comparisons with solutions of the Boltzmann equation must rely on fitting
constants of integration. These comparisons show that higher order models,
in particular the R13 equations, can describe boundary value problems in
the transition regime very well. The development of boundary conditions for
macroscopic models is discussed, but no definitive answers are given.

The equations in the book consider only single-constituent monatomic
ideal gases, the standard material in kinetic theory. Of course, kinetic theory
is not restricted to monatomic gases, and is applied successfully to a host
of materials such as diatomic and polyatomic gases, mixtures, electrons in
semiconductors, thermal radiation, phonons, etc. The methods studied here
can be used for these materials as well. However, the monatomic ideal gas,
and in particular the gas of Maxwell molecules, allows to study the methods
most easily. Other applications are not included due to lack of space.

The methods are nontrivial, even for a monatomic ideal gas, and require
some knowledge in vector algebra and calculus. The Appendix provides some
necessary background on tensor index notation and the formalism of trace-
free tensors, and on the computation of integrals that appear frequently in
the development.

The new methods and ideas presented here are still under development,
and there are many presently open problems that must be addressed in the
future. These include

e Reliable boundary conditions for all models above the Navier-Stokes-
Fourier equations
Equations at third order for non-Maxwellian molecules.

Applications to mixtures, diatomic and polyatomic gases.
Applications to non-classical gases, including photons (thermal radiation),
electrons in semiconductors, and phonons.

e Hybrid models, which combine solutions of the Boltzmann equation in
regions of large Knudsen numbers, to macroscopic models in regions with
lower Knudsen numbers.

e Proper entropy inequalities (H-theorem) for higher order models.

The reminder of this chapter discusses monatomic ideal gases, mean free
path, Knudsen number, and rarefaction effects in a rather elementary way.
With the inclusion of this and the elementary chapters on phase density
(Chapter 2) and Boltzmann equation (Chapter 3), the book should be ac-
cessible to the novice in kinetic theory. About forty end-of-chapter problems
are intended to help the reader in deepening her understanding of the con-
cepts. Moreover, the reader is encouraged to follow the derivations with his
pencil in hand—while the main steps are described, many details had to be
left out, and these should be considered as implicit problems, in addition to
the explicitly stated end-of-chapter problems.





