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ABSTRACT

Grad’s 13-moment equations describe transport in mildly rarefied gases well, but are not properly embedded into nonequilibrium thermody-
namics since they are not accompanied by a formulation of the second law. In this work, the Grad-13 equations are embedded into the
framework of GENERIC (general equation for the nonequilibrium reversible–irreversible coupling), which demands additional contributions
in the equations to guarantee thermodynamic structure. As GENERIC building blocks, we use a Poisson matrix for the basic convection
behavior and antisymmetric friction matrices to correct for additional convective transport terms. The ensuing GENERIC-13 equations
completely match the Grad-13 equations up to second-order terms in the Knudsen number and fulfill all thermodynamic requirements.

VC 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0078780

I. INTRODUCTION

Closure is an important issue in developing simplified physical
theories from more fundamental levels of description. Closure is often
perceived as a problem but, more positively, it can also be seen as the
crucial first step toward describing and understanding the essence of
certain phenomena of interest by identifying appropriate variables.1

Closure is expected to be possible whenever a set of variables allows
for an autonomous description of a problem of interest.

In the context of fluid dynamics, the densities of the locally con-
served mass, momentum, and energy provide an extremely successful
level of description (the five fields of hydrodynamics). However, when
we are interested in time and length scales comparable to molecular
scales, for example in rarefied gas dynamics, then we need more
detailed levels of description.2 The Boltzmann equation for the single-
particle velocity distribution provides an excellent, very detailed level
of description for rarefied gas dynamics. However, for many applica-
tions, the Boltzmann equation is unnecessarily detailed and too com-
plicated to solve. As standard hydrodynamics can be recovered from
the five moments of the single-particle velocity distribution that corre-
spond to the mass, momentum, and energy densities, it is tempting to
use larger sets of moments to construct theories of fluid dynamics
going beyond standard hydrodynamics.3 Then, the issue of moment
closure arises from the fact that the Boltzmann equation is equivalent
to an infinite hierarchy of coupled moment equations.2,3

How can we recognize suitable sets of moments and valid clo-
sure procedures? An obvious criterion, which we refer to as empiri-
cal adequacy, requires that all relevant experimental results are
reproduced by autonomous moment equations. Instead of experi-
mental data, one might use the well-established Boltzmann equation
or computer simulations of rarefied gases as a reference for empiri-
cal adequacy. However, there are further requirements from funda-
mental principles, such as the validity of a suitable version of
the second law of thermodynamics for nonequilibrium systems. We
refer to this type of criteria as thermodynamic admissibility,
where we here rely on general equation for the nonequilibrium
reversible–irreversible coupling (GENERIC)4–6 as a thermodynamic
framework.

We consider both empirical adequacy and thermodynamic
admissibility as necessary conditions for successful closure. Whereas
none of these criteria by itself provides a sufficient condition, the com-
bination of these two criteria offers a promising indicator for identify-
ing successful closures. Of course, thermodynamic admissibility as a
further constraint restricts the options for fitting experimental data.
Yet, empirical adequacy should never be inferred from a perfect fit of a
particular set of experimental data; it should be recognized in the over-
all performance of a model for all kinds of possible experiments and,
in particular, in a complete coverage of all relevant qualitative
phenomena.
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In producing simplified theories of rarefied gas dynamics
from the Boltzmann equation, it is natural to supplement the five
hydrodynamic fields associated with the local conservation laws by
five-second moments characterizing the momentum flux, and three
third moments characterizing the energy flux. Whereas a lot is known
about the empirical adequacy of the resulting 13-moment equations,
starting with the work of Grad,2,7,8 very little is known about their
thermodynamic admissibility. The construction of 13-moment equa-
tions that are consistent with the GENERIC framework of nonequilib-
rium thermodynamics is the topic of the present paper.

One key issue for thermodynamic admissibility is the existence of
an entropy function. In systematic expansion techniques for the
Boltzmann equation, such as Grad’s moment method,7,8 one typically
loses the positivity of the probability density for the velocity distribution
and hence also Boltzmann’s entropy involving the logarithm of that
probability density. By using anisotropic Gaussian trial functions, this
problem can be solved for 10-moment equations.9 Also for the linear-
ized 13-moment equations an entropy has been found.10 While the
framework of Rational Extended Thermodynamics3 aims at a thermo-
dynamic structure for transport equations, approximations are used that
are akin to the Grad method, so that the second law is met only approxi-
mately. The successful construction of an entropy for the nonlinear
13-moment equations requires not only suitable trial functions but also
proper treatment of the general tensor structure of all the moments (see
Ref. 11, refined through the discussion in Refs. 12 and 13).

Another, more subtle key issue is the Hamiltonian structure of
the convection mechanism. Assuming the existence of a Poisson
bracket for the 10-moment case, its necessary form has been derived
on p. 309 of Ref. 6. However, the Jacobi identity for the resulting
Poisson bracket had not been tested at the time. Later tests showed
that, contrary to what was expected in Ref. 6, one actually does not
arrive at a valid Poisson bracket. For the 10-moment case, this prob-
lem has recently been solved in Ref. 14 by introducing an irreversible
contribution with Casimir symmetry to correct for velocity slip. In the
present paper, the same strategy is applied to the 13-moment equa-
tions. The structure of the resulting thermodynamically consistent 13-
moment equations is then compared to that of previous empirically
adequate 13-moment equations lacking thermodynamic admissibility.
Specifically, the GENERIC building blocks are designed such that they
reproduce most elements of Grad’s 13-moment equations within
second-order accuracy, but contain additional higher order terms that
give thermodynamic structure, which the Grad equations do not
possess.

The structure of this paper is as follows: In Sec. II, we review
Grad’s original 13-moment equations, including a brief discussion
of entropy and Knudsen scaling. Section III begins with a summary
of the essentials of the GENERIC framework and then provides all
the building blocks for a new, thermodynamically admissible ver-
sion of the 13-moment equations. A detailed discussion of the
resulting equations is offered in Sec. IV, including the entropy bal-
ance, the proper hydrodynamic limit, and second-order matching
in the Knudsen scaling with Grad’s original equations, which
appears to not be completely possible. A short discussion and out-
look concludes the paper. A class of positive-semidefinite matrices
that is useful for the modeling of relaxation is introduced in
Appendix A. Finally, Appendix B offers a brief discussion of
Onsager–Casimir symmetry.

II. GRAD’S 13-MOMENT EQUATIONS
A. Variables

We shall not describe the derivation of the Grad 13-moment
equations, but give only a summary of their features. Detailed accounts
of derivation and properties of the equations are available in the litera-
ture.2,3,7,8 We will use tensor index notation with the Einstein summa-
tion throughout the paper. The 13 variables are moments of the
distribution function f ðr; t; cÞ, where r and t are the space and time
variables, respectively, and c denotes the microscopic velocities of par-
ticles. Specifically, we consider mass density q, momentum density
Mi ¼ qvi, where vi is center of mass velocity of the gas, and specific
internal energy e, which are given as

q ¼ m
ð
fdc; Mi ¼ qvi ¼ m

ð
cifdc; qe ¼ 3

2
qh ¼ m

2

ð
C2fdc:

(1)

Here,m is the mass of a gas particle, h ¼ kB
m T is the temperature in spe-

cific energy units with the Boltzmann constant kB and the thermody-
namic temperature T, vk is center of mass velocity, and Ck ¼ ck � vk is
the so-called peculiar velocity that is the particle velocity in the co-
moving frame. The trace-free and symmetric part of the second moment
(indicated by angular brackets) defines the kinetic stress tensor as

rij ¼ m
ð

CiCj �
1
3
C2dij

� �
fdc ¼ m

ð
ChiCjifdc; (2)

and the heat flux is the trace of the third moment

qi ¼
m
2

ð
C2Cifdc: (3)

The 13 variables of the original Grad-13 theory are

Grad-13 variables : �uA ¼ q; vi; h;rij; qi
� �

A
: (4)

Within GENERIC, we shall use the equivalent set of variables

GENERIC variables : uA ¼ q;Mi;Hij;wi
� �

A
; (5)

where the vector wi will be related to the heat flux qi, and the tempera-
ture tensor Hij is defined through the pressure tensor Pij as

Pij ¼ qHij ¼ pdij þ rij ¼ m
ð
CiCjfdc; (6)

which is conveniently split into its trace and trace-free parts. Here,
p ¼ qh is the ideal gas pressure; we note that temperature is the trace
of the temperature tensor

h ¼ 1
3
Hkk; (7)

and that Hij and Pij are positive definite by definition.
The total energy density is the sum of internal and kinetic

contributions,

� ¼ qeþ q
2

v2 ¼ 3
2
qhþM2

2q
¼ m

2

ð
c2fdc: (8)

The closure of the moment equations relies on an approximation
of the distribution function that is entirely specified through the
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chosen variables (�uA or uA). Grad constructed his approximation such
that it reproduces the 13 variables �uA, as the product of the equilib-
rium phase density—the Maxwellian—and a polynomial in Ci that
accounts for deviation from equilibrium

fj13¼
q
m

1ffiffiffiffiffiffiffiffi
2ph
p 3 exp �

C2

2h

� �
1þrik

2p

ChiCki
h
þ2
5
qk
ph

Ck
C2

2h
�5
2

� �" #
: (9)

With this, all other moments become constitutive functions of the
chosen variables.

By definition, a distribution function is positive. Due to its polyno-
mial structure, the Grad approximation is not strictly positive, since the
bracket in (9) becomes negative for large values of Ci. This behavior is
compensated somewhat by the Maxwellian, which suppresses the poly-
nomial for large Ci. With this, the Grad approximation remains mean-
ingful as long as stress rik and heat flux qi remain sufficiently low.3

B. Grad-13 transport equations

The Grad-13 moment equations arise by multiplying the
Boltzmann equation with the appropriate velocity polynomials and
subsequent integration, using the Grad-13 moment distribution to
determine all moments that appear.2,3,7,8,14 This yields the conserva-
tion laws for mass and momentum, and the balance law for internal
energy (which together with momentum conservation yields conserva-
tion of total energy), in their well-known forms22

@q
@t
þ @qvk
@xk
¼ 0 ;

q
@vi
@t
þ vk

@vi
@xk

� �
þ @p
@xi
þ @rik

@xk
¼ 0;

3
2
q
@h
@t
þ vk

@h
@xk

� �
þ p

@vk
@xk
þ @qk
@xk
¼ �rik

@vi
@xk

;

(10)

and full balance laws for stress and heat flux, as

@rij

@t
þ vk

@rij

@xk
þrij

@vk
@xk
þ4
5

@qhi
@xji
þ2p

@vhi
@xji
þ2rkhi

@vji
@xk
¼�p

l
rij; (11)

@qi
@t
þ vk

@qi
@xk
þ 5
2
p
@h
@xi
þ 5
2
rik

@h
@xk
þ h

@rik

@xk

� hrik
@ ln q
@xk

þ 7
5
qk
@vi
@xk
þ 2
5
qk
@vk
@xi

þ 7
5
qi
@vk
@xk
�

rij

q

@rjk

@xk
¼ � 2

3
p
l
qi: (12)

The production terms on the right-hand side are for Maxwell mole-
cules, and l is the shear viscosity of the gas.

C. Entropy and H-theorem

Within kinetic gas theory, the Boltzmann entropy density, the
non-convective entropy flux of the gas, and the entropy production
rate are given by2,15,16

g ¼ �kB
ð
f ln

f
y
dc; /k ¼ �kB

ð
Ckf ln

f
y
dc;

R ¼ �kB
ð
S f ; fð Þ ln f

y
dc � 0;

(13)

with a scaling factor y ¼ eðmhÞ
3, where e and h are Euler’s and Planck’s

constants, respectively, and the Boltzmann collision term Sðf ; f Þ. The
corresponding balance of entropy, also known as H-theorem, reads

@g
@t
þ @

@xk
qgvk þ /kð Þ ¼ R � 0: (14)

Evaluation with the Maxwellian gives the well-known equilib-
rium entropy density of the ideal gas

gE ¼ q
kB
m

ln
h3=2

q
þ g0

 !
; (15)

with the constant g0 ¼ ½52þ ln ð
ffiffiffiffi
2p
p 3

m4

h3 Þ�, while flux and production
vanish (strictly speaking, the logarithmic terms should be combined
because the argument of the ln-function must be dimensionless).

The entropy (13) is defined for arbitrary nonequilibrium states,
which have positive distribution functions. With its loss of positivity,
the logarithm of the Grad distribution fj13 in (9) does not exist for all
Ci and the entropy density can only be determined by approximation
for small stress and heat flux through Taylor expansion of ln fj13. To
second order, entropy, entropy flux, and entropy production are found
as3

gGrad ¼ q
kB
m

ln
h3=2

q
� 1
4
rklrkl

p2
� 1
5
qiqi
ph
þ g0

 !
; (16)

/Grad
k ¼ kB

m
1
h

qk �
2
5
rklql
p

� �
; (17)

RGrad ¼ 1
lh

kB
m

1
2
rklrkl þ

4
15

qiqi
h

� �
: (18)

Due to the approximations, insertion of these expressions into the
entropy balance (14) does not produce a proper second law for the
Grad-13 equations. Indeed, the above quadratic approximations in the
nonequilibrium variables (rkl, qk) yield a suitable second law for the
linearized Grad-13 moment equations,10,17 but not for the full nonlin-
ear Grad-13 system (10)–(12).

We are not aware of a successful attempt to find a complete
entropy inequality to accompany the Grad-13 equations (or any other
Grad-type system). The loss of positivity of the distribution function,
and the corresponding loss of entropy, removes proper physics when
the equations are overstretched. Indeed, while close to equilibrium the
Grad-13 equations are symmetric hyperbolic, far from equilibrium,
that is, for large stresses and heat fluxes, they lose hyperbolicity and
instead have complex eigenvalues,3 which leads to unphysical solu-
tions. This implies that the Grad equations do not exclude solutions,
which might violate the H-theorem. This does not render the equa-
tions meaningless from the perspective of empirical adequacy: The
Grad system aims at approximating the Boltzmann equation through
moment equations, and with this, also the H-theorem is only approxi-
mated. The equations describe gas rarefaction effects such as thermal
stresses, or non-gradient heat fluxes, within limits of sufficiently small
stress rkl and heat flux qk.

For meaningful solutions, the Grad equations should remain
hyperbolic. M€uller and Ruggeri3 demonstrate that hyperbolicity is lost
for large (rkl, qk) and determine a hyperbolicity radius that estimates
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limits on (rkl, qk). Proper thermodynamic structure—a valid
H-theorem—and mathematical structure—hyperbolicity—are related;
hence, the breakdown of hyperbolicity gives a strong hint that far from
equilibrium Grad-13 will violate the second law.

D. Knudsen scaling

Scaling arguments are helpful for a deeper understanding of the
limitations of Grad-13. Indeed, considering scaling with the Knudsen
number Kn (the ratio of mean free path and desired length scale of
resolution) as smallness parameter, it can be shown that Grad-13 is
the proper model when one is interested in second-order accuracy
OðKn2Þ, while higher order accuracy must account for additional
moments and their equations.2,18,19 We here present elements of the
arguments as required to proceed.

The Grad-13 equations describe transport in mildly rarefied
gases. They reduce to the classical Navier–Stokes equations by means
of the Chapman–Enskog (CE) expansion, which relies on small mean
free path of the gas molecules. Since the mean free path is proportional
to the viscosity l, we can rescale the production terms for stress and
heat flux as � 1

-
p
l rij;� 2

3
1
-
p
l qi, with a formal smallness parameter -

that plays the role of the Knudsen number; the parameter can be set to
unity after the expansion. For the CE expansion, stress and heat flux
are written as a series

rij ¼ r 0ð Þ
ij þ -r 1ð Þ

ij þ -2r 2ð Þ
ij þ � � � ;

qi ¼ q 0ð Þ
i þ -q 1ð Þ

i þ -2q 2ð Þ
i þ � � � :

(19)

Next, the expansions are inserted into the respective transport equa-
tions, and matching of powers of - yields the leading contributions
for stress and heat flux as

r 0ð Þ
ij ¼ q 0ð Þ

i ¼ 0; r 1ð Þ
ij ¼ �2l

@vhi
@xji

; q 1ð Þ
i ¼ �

15
4

l
@h
@xi

: (20)

When considering stress and heat flux only to first order, we obtain the
well-known equations of Navier–Stokes and Fourier with shear viscosity l
and heat conductivity 15

4 l. Note that both transport coefficients have the
same dimension due to our use of h ¼ kB

m T as measure for temperature.
For the following, it will be important to note that both, rij and

qi, have no zeroth order—that is, equilibrium—contributions, but
non-vanishing first-order contributions. Hence, we can say, both are
of first order in the Knudsen number, that is,Oð-Þ. This understand-
ing will now be employed to discuss the full Grad’s 13-moment equa-
tions (11) and (12) for stress and heat flux.

We recognize the first-order characteristics formally by writing
rij ¼ -�r ij; qi ¼ -�qi; and l ¼ -�l; where �r ij; �qi; �l are considered
to be of order Oð1Þ, and the factor - explicitly accounts for the actual
order. Inserting this into (11) and (12), we obtain scaled transport
equations for (�r ij; �qk) as

-2 @�rij

@t
þ vk

@�r ij

@xk
þ �r ij

@vk
@xk
þ 2�rkhi

@vji
@xk
þ 4
5

@�qhi
@xji

 !

¼ �-
p
�l

�rij þ 2�l
@vhi
@xji

" #
; (21)

-2 @�qi
@t
þ vk

@�qi
@xk
þ 5
2

�rik
@h
@xk
þ h

@�rik

@xk
� h�r ik

@ ln q
@xk

�

þ 7
5

�qk
@vi
@xk
þ 2
5

�qk
@vk
@xi
þ 7
5

�qi
@vk
@xk

�
� -3 �r ij

q

@�r jk

@xk

� �

¼ �-
2
3
p
�l

qi þ
15
4

�l
@h
@xi

� �
: (22)

The Navier–Stokes and Fourier laws result from keeping only the
first-order terms with factor -1 on the rhs, that is, from ignoring the
terms with factors -2 and -3 on the lhs. The terms with power -2 on
the lhs account for the second-order corrections to ðrij; qkÞ. These are
complete in the sense that consideration of additional moments will
not add any terms at this order.

The underlined term in the heat flux balance is the only third-order
term appearing in Grad-13. However, additional third-order terms appear
in the equations when higher moments are added to the theory.18,19 With
this, adding more moments to the list of variables results in higher order
accuracy for stress and heat flux, and the predictions. We note that the
conservation laws remain unchanged in their structure, and their accuracy
is directly related to accuracy of stress and heat flux.

In the present contribution, we focus on the Grad-13 equa-
tions, which from the viewpoint of accuracy in terms of Knudsen
number powers are limited to second order. Taking this at face
value, the (underlined) third-order term should not play a role, so
that it can be removed. On the other hand, second-order accuracy is
maintained when third-order terms are added to the equations. This
opens a strategy for reconfiguration of the Grad-13 equations by
adding higher order terms such that the revised equations are
accompanied by a properly formulated second law. Specifically, we
shall aim to add terms that embed the revised Grad-13 equations
into GENERIC.

III. GENERIC FOR GRAD-13
A. Basic structure of GENERIC

In the framework of GENERIC, irreversible dynamics is gener-
ated by the entropy, while reversible dynamics is generated by the
energy, as in Hamiltonian dynamics. We give a summary of
GENERIC elements that suits our desire to reformulate the Grad-13
equations such that they fit into this general framework.

In GENERIC, when the variables are denoted by uA, the balance
laws in local form read

@uA
@t
¼ LAB

@�

@uB
þMAB

@g
@uB

; (23)

where L is the antisymmetric Poisson matrix, andM is the friction
matrix, and we assume a strictly local form of the total energy and
entropy functionals

E ¼
ð
�dr; S ¼

ð
gdr; (24)

where � and g are the local energy and entropy densities appearing as
generators in the evolution equation (23).

Poisson matrix and friction matrix must fulfill a number of
requirements:6

The Poisson matrix must obey the degeneracy requirement
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LAB
@g
@uB
¼ 0; (25)

to ensure entropy conservation under reversible dynamics.
The antisymmetry of LAB is defined through the Poisson bracket

A;Bf g,

A;Bf g ¼ � B;Af g ¼ @A
@uA
LAB

@B
@uB

; (26)

where AðuAÞ and BðuBÞ are arbitrary functionals of the variables uA.
Finally, LAB has to obey the Jacobi identity

J ¼ A; B; Cf gf g þ B; C;Af gf g þ C; A;Bf gf g ¼ 0: (27)

The friction matrixMAB appears in the transport equations line-
arly. Each dissipative mechanism contributes a friction matrixMk

AB
so that the overall matrixMAB is the sum

MAB ¼
X
k

Mk
AB: (28)

All friction matrices must obey the degeneracy requirement

Mk
AB

@�

@uB
¼ 0; (29)

which ensures energy conservation in irreversible processes.
The individualMk

AB must obey Onsager–Casimir relations; that
is, they are either symmetric or antisymmetric. The dissipative bracket
forMk

AB is defined as

A;B½ � kð Þ ¼ @A
@uA
Mk

AB
@B
@uB

: (30)

For a symmetric friction matrixMk;sym
AB , symmetry implies

A;B½ � k;symð Þ ¼ B;A½ � k;symð Þ ¼ @A
@uA
Mk;sym

AB
@B
@uB

; (31)

where non-negative entropy production requires that

A;A½ � k;symð Þ � 0: (32)

For an antisymmetric building block Mk;anti
AB , we have the non-

dissipative bracket

A;B½ � k;antið Þ ¼ � B;A½ � k;antið Þ ¼ @A
@uA
Mk;anti

AB
@B
@uB

; (33)

with

A;A½ � k;antið Þ ¼ 0: (34)

According to the discussion in Sec. 3.2 of Ref. 6, an antisymmetric
contributionMk;anti

AB corresponds to the irreversible evolution without
entropy production associated with the well-known Casimir symmetry
in linear irreversible thermodynamics.20 Note that a total friction
matrix consisting of both symmetric and antisymmetric contributions
associated with well-defined irreversible processes has no well-defined
symmetry.

B. GENERIC for 13 variables

While their entropy, entropy flux, and entropy production can be
approximated to second order, see Eqs. (16)–(18), the Grad-13 equa-
tions do not possess an accompanying second law with positive pro-
duction. Accordingly, it is not possible to find GENERIC building
blocks that just reproduce the full Grad-13 equations (10)–(12).

As already indicated above, instead we aim at finding GENERIC
building blocks that reproduce Grad-13 exactly to second order, that
is, those with powers ð-;-2Þ in Eqs. (21) and (22), while allowing
additional higher order terms, with powers -3 or higher. In the spirit
of the Knudsen number scaling, these higher terms are expected to
contribute very little to the solutions. In other words, we aim at cor-
recting the Grad-13 equations by higher order contributions, such that
the resulting equations possess a proper second law, while maintaining
their second-order accuracy.

We construct the GENERIC version of the 13-moment equations
not for the original variables ðq; vi; h; rij; qiÞ of the Grad model, but
instead consider the related set (5) with

wi ¼
m
q

H�1jk

ð
CiCjCkfdc: (35)

Compared to the third moments qi defined in Eq. (3), the new varia-
bles wi have the major advantage that they possess vector transforma-
tion behavior under the general space deformations occurring in fluid
dynamics, whereas qi defines a Cartesian vector only. This behavior is
crucial for finding a Poisson bracket with a degenerate entropy, which,
as a scalar, can only depend on a scalar combination of Hjk and wj

under general space transformations. Evaluation of (35) with the
Grad-13 distribution gives

wi¼
1
q
H�1jk

2
5

qidjkþqjdikþqkdij
� �

¼ 1
q
2
5

qiH
�1
kk þ2H�1ik qk

� �
; (36)

which to leading order reduces to

wi ¼ 2
qi
qh
¼ 2

qi
p
: (37)

The energy density of the monatomic ideal gas is the sum of
internal and kinetic energy (8), which for these variables assumes the
form

� ¼ 3
2
qhþM2

2q
¼ 1

2
qHkk þ

M2

2q
; (38)

with the gradient

@�

@uA
¼ 3

2
h� 1

2
v2; vi;

1
2
qdij; 0

� �
A
: (39)

The convex entropy density is postulated to be of the form11

g ¼ q
kB
m

1
2
ln detH½ � � ln qþ �S uð Þ þ g0

� �
; (40)

where �SðuÞ as a dimensionless scalar under general space transforma-
tions is assumed to be a dimensionless function of the scalar quantity

u ¼ H�1ij wiwj > 0; (41)

with negative slope
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d�S
du

< 0: (42)

The desired consistency with the Grad-13 equations is achieved by
comparing the second-order expansion of the entropy (40) in rij and
qi with Eq. (16) by assuming a linear dependence of �SðuÞ on u. Note
that by its definition (6), the temperature tensor is positive definite,
and that by definition the flux variable wi has unit ½

ffiffiffi
h
p
�, while the unit

of heat flux qi is ½p
ffiffiffi
h
p
�.

The entropy gradient with respect to the variables uA is

@g
@uA
¼ g

q
� kB

m
; 0;

1
2
q
kB
m

H�1ij � q
kB
m

d�S uð Þ
du

wkH
�1
ki wlH

�1
lj ;

 

2q
kB
m

d�S uð Þ
du

H�1il wl

�
A

: (43)

To complete the model, we require a Poisson matrix LAB and a
set of friction matricesMk

AB that reproduce the various terms in the
Grad-13 equations. These must be inserted in to the balance laws (23)

for the variables uA. We note that the balance of total energy and
entropy balance results as

@�

@t
¼ @�

@uA

@uA
@t
¼ @�

@uA
LAB

@�

@uB
þ
X
k

@�

@uA
Mk

AB
@g
@uB

; (44)

@g
@t
¼ @g
@uA

@uA
@t
¼ @g
@uA
LAB

@�

@uB
þ
X
k

@g
@uA
Mk

AB
@g
@uB

: (45)

In Secs. III C–III F, we present matrices LAB andMk
AB that were con-

structed to reproduce terms in the Grad-13 equations. We present
these matrices one-by-one together with the resulting contributions to
the transport equations.

C. Lmatrix

A proper Poisson matrix that fulfills the degeneracy requirement
(25) and the Jacobi identity (27) is given by (see Table 2.1 on p. 66 of
Ref. 6 for lower convected tensors and vectors)

LAB ¼ �

0
@

@xk
q 0 0

q
@

@xi

@

@xk
Mi þMk

@

@xi
� @Hkl

@xi
þ 2

@

@xðk
HlÞi �

@wk

@xi
þ @

@xk
wi

0
@Hij

@xk
þ 2Hkði

@

@xjÞ
0 0

0
@wi

@xk
þ wk

@

@xi
0 0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

AB

; (46)

where indices in round brackets indicate symmetric tensors. It has been
argued in Sec. 5(a) of Ref. 10 that lower convected derivatives appear
naturally for moments of momentum. The contribution to the transport
equations for the variables uA ¼ ðq;Mi;Hij;wiÞA is found as

LAB
@�

@uB
¼ �

@qvk
@xk

@Mivk
@xk

þ @qHki

@xk
@Hij

@xk
vk þ 2jkðiHjÞk

@wi

@xk
vk þ wk

@vk
@xi

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
; (47)

where for compact notation, we have introduced the velocity gradient as

jik ¼
@vi
@xk

: (48)

The contributions to energy and entropy balance are of divergence
form

@�

@uA
LAB

@�

@uB
¼ � @

@xk

3
2
hqvk þ

1
2
v2qvk þ qHikvi

� �
; (49)

@g
@uA
LAB

@�

@uB
¼ � @

@xk
gvkð Þ: (50)

The degeneracy of the entropy with density (40) for the Poisson matrix
(46) can be verified by a lengthy but straightforward calculation. The
validity of the entropy degeneracy is the motivation for introducing
variables with the proper general transformation behavior for scalars,
vectors, and tensors.

D. Mcc matrix

The convection of moments obtained from the Boltzmann
equation does not coincide with the lower convection behavior
implemented by the Poisson matrix (46). In our previous contribu-
tion on the 10-moment equations,14 we hence proposed to intro-
duce a “convective correction” term. Inspired by the
thermodynamically consistent realization of Schowalter derivatives
describing slip effects in rheology (see pp. 119f of Ref. 6), we pro-
posed to implement the convective correction via an antisymmetric
or Casimir-type contribution to the friction matrix, which is irre-
versible but non-dissipative (no entropy production; see Appendix
B for a brief discussion of Onsager–Casimir symmetry).
Incorporation of the convective correction as a reversible term is
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impossible because of a violation of the Jacobi identity, which is
widely accepted as a criterion for reversible behavior (in the sense
of being under “mechanistic control”). As an extension of the

friction matrixMcc of our previous contribution14 from 10 to 13
moments by introducing suitable additional contributions, we
propose

Mcc
AB ¼

2m
kB

0 0 0 0

0 0
@

@rs
h diðkHlÞs �HiðkdlÞs
	 
 1

2
@

@xs
dikws � dkswið Þh

0 h HsðidjÞk � dsðiHjÞk
	 
 @

@xs

1
3q

Hrjxir þHirxjr
	 


Hkl

� 1
3q

Hrlxkr þHkrxlr½ �Hij

2
6664

3
7775

1
6q

xirHrj þ xjrHir
	 


wk

� 1
3q

Hijxkrwr

2
6664

3
7775

0
1
2
h wsdik � dsiwkð Þ @

@xs
� 1
6q

wi xkrHrl þ xlrHkr½ � þ 1
3q

xirwrHkl
1
6q
ðxikwkws þ wiwkxksÞ

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

; (51)

with the vorticity tensor

xij ¼ jT
ij � jij ¼ jji � jij ¼

@vj
@xi
� @vi
@xj
¼ �xT

ji : (52)

The contribution to the transport equations for the uA reads

Mcc
AB

@g
@uB
¼

0

0

Hrjxir þHirxjr

xirwr

0
BBBB@

1
CCCCA

A

: (53)

This matrix fulfills the degeneracy condition (29) that it is has no con-
tribution to the energy balance, and also, it has no contribution to
entropy balance

@�

@uA
Mcc

AB
@g
@uB
¼ 0;

@g
@uA
Mcc

AB
@g
@uB
¼ 0: (54)

E. Mcross
AB matrix

The next friction contribution is constructed to give heat flux in
the energy balance as well as the cross-coupling between heat flux and
stress tensor in their respective moment equations, which we know
from the Grad-13 equations. It is of the form

Mcross
AB ¼

0 0 0 0
0 0 0 0
0 0 0 Mcross

43
0 0 Mcross

34 0

0
BB@

1
CCA

AB

; (55)

where a natural ansatz for the nonzero matrix elements reads

Mcross
34 ¼� m

2kBq
@

@xs
Z1ðHikHjs þHjkHis þ cHijHskÞ � Z2wiwjHsk
	 


;

(56)

Mcross
43 ¼� m

2kB
Z1ðHikHslþHilHskþ cHisHklÞ�Z2Hiswkwl½ � @

@xs

1
q
:

(57)

Here, the dimensionless parameters Z1, Z2, and c can be scalar functions
of the variable u. In these matrix elements, the expression in square
brackets has been chosen such that it provides the most general closure
approximation for the third-moment tensor

Ð
CiCjCkfdc [cf. Eq. (15) of

Ref. 11]. The straightforward implementation of this general closure
approximation throughMcross completes the discussion of 13-moment
equations with entropy initiated in Refs. 11 and 13, which are both
based on simplified closures. The corresponding general form of the
entropy current (3) of Ref. 13 implied byMcross is given by

/k ¼ �Q1ðwiHjk þ wjHik þ c wkHijÞ � �Q2 wiwjwk
	 
 @g

@Hij
; (58)

or, more explicitly,

/¼ q
kB
m

�Q1 1þ3
2
c�ð2þ cÞu d�S

du

� �
� �Q2u

1
2
�u

d�S
du

� �� �
w; (59)

with

�Qa ¼ Za
d�S
du

: (60)

We recognize that the contributions with Z2 in (56) and (57) are
of higher order; that is, they will not play a role in matching Grad-13
to second order in Kn. For simplicity of the following line of argu-
ments, we set Z2 ¼ 0, and we moreover assume that the parameters
Z1 and c are constants.

By construction, Mcross
AB is energy degenerate, Mcross

AB
@�
@uB
¼ 0,

while the contribution to the GENERIC balance laws becomes

Mcross
AB

@g
@uB
¼

0

0

�1
q
Z1

d�S uð Þ
du

@

@xs
ðwiHjsþwjHisþcHijwsÞ
	 


q

�1
4
Z1ðHikHslþHilHskþcHisHklÞ

@H�1kl

@xs

þ
d�S uð Þ
du

Z1ðwiHslþHilwsþcHiswlÞ
@wnH

�1
nl

@xs

2
6664

3
7775

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
:

(61)
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The contribution to total energy balance gives the negative diver-
gence of the heat flux as

@�

@uA
Mcross

AB
@g
@uB
¼ � @qk

@xk
; (62)

with the heat flux

qk ¼ Z1
d�S uð Þ
du

q
3
2
chdkl þHkl

� �
wl: (63)

To identify the coefficients c, Z1, and d�SðuÞ=du, we study the
leading order contributions and match these two terms in the Grad
equations. To leading order the heat flux reduces to

qk ¼ Z1
d�S uð Þ
du

" #
ju¼0

3
2
cþ 1

� �
pwk; (64)

and by comparison with (37), we identify

Z1
d�S uð Þ
du

" #
ju¼0

3cþ 2ð Þ ¼ 1: (65)

The leading contribution to stress balance is the trace-free part times q,

q Mcross
AB

@g
@uB

� �
Hhiji

¼ � 4
2þ 3cð Þ

@qhi
@xji

; (66)

and comparison with (11) shows that c¼ 1, which will be used from
now on.

The leading contribution to the wi-balance can be written as

Mcross
AB

@g
@uB

� �
wi

¼ Z1

4
2
@Hik

@xk
þHisH

�1
kr
@Hrk

@xs

� �
; (67)

where we used @H�1kl
@xs
¼ �H�1kn H�1ml

@Hnm
@xs

. With the temperature tensor
given by (6), this can be further reduced to give the leading contribu-
tion to the heat flux equation (multiplication with p=2)

p
2

Mcross
AB

@g
@uB

� �
wi

¼ Z1

4
5
2

pdik þ rikð Þ @h
@xk
þ h

@rik

@xk

�

�hrik
@ ln q
@xk

� rik
@h
@xk

�
: (68)

Comparison with the Grad-13 equation (12) shows that setting
Z1 ¼ �4 results in recovery of the first three terms, while the last term

�rik
@h
@xk


 �
is extra, as will be discussed further below.

Thus, the matching at leading order yields

c ¼ 1; Z1 ¼ �4;
d�S uð Þ
du

" #
ju¼0
¼ � 1

20
; �Q1 ¼

1
5
; (69)

where the value for c implies symmetry of the third-moment tensor in
its three indices and the values for d�SðuÞ=du and �Q1 coincide with
previous findings.11 We note that �S itself must vanish in equilibrium,
�Sðu ¼ 0Þ ¼ 0, so that the proper equilibrium entropy results from
(40). We will continue with the simplest choice for �S that also gives
the proper equilibrium value and set

�S uð Þ ¼ �
u
20
: (70)

WhileMcross
AB is antisymmetric in the Casimir sense, it contrib-

utes to entropy flux (but not to entropy production). We find

@g
@uA
Mcross

AB
@g
@uB
¼ � @/s

@xs
(71)

with the non-convective entropy flux

/s ¼
1
2
kB
m

q 1þ 3
50

u

� �
ws; (72)

which is consistent with (59).

F. Dissipation terms

For the relaxation terms in the equations for stress and heat flux,
we use

Mrelax
AB ¼

2mh
qkB

p
l

0 0 0 0

0 0 0 0

0 0 Ahijihkli
1
2
whidjik

0 0
1
2
dihkwli

1
4
udik þ

5
6

dik þ 3hH�1ik

� �

0
BBBBBBB@

1
CCCCCCCA

AB

;

(73)

with Aijkl ¼ dik Hjl . The matrix Mrelax
AB gives energy degeneracy,

Mrelax
AB

@�
@uB
¼ 0, is Onsager symmetric, and its positive semidefiniteness

of the friction matrix follows from the results of Appendix A [see, in
particular, the examples given in (A9) and (A10)].

The production terms are found as

Mrelax
AB

@g
@uB
¼

0

0

� p
l

1
3
hH�1rr þ

1
30

hH�1kr wrH
�1
ks ws

� �
Hhiji

� p
l

1
6
hH�1ss dir �

1
3
hH�1ir þ

1
2
h2 H�1ik H�1kr

þ 1
60

hH�1kr H�1ks wswi

2
664

3
775wr

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

A

;

(74)

where we already used (70). Indeed, the matrix was constructed such,
that to second order the production terms reduce to the relaxation
terms of the Grad equations

Mrelax
AB

@g
@uB
’

0

0

� p
l

Hhiji

� 2
3
p
l

dij �
1
h

Hhiji

� �
wj

0
BBBBBBB@

1
CCCCCCCA

A

: (75)

The non-linear second-order contribution ½23
p
l

1
h Hhiji
� �

wj� to the wi-
balance is required for full matching, as will become clear further below.

This matrix contributes to entropy production as
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@g
@uA
Mrelax

AB
@g
@uB
¼ p2

l
kB
m

1
3
hH�1ss � 1

� �
1
2
H�1rr

�

þ 2
5
hH�1ss � 1

� �
1
12

W2þ 1
20

h H�1ik WiWk

þ 1
600

hW2W2

�
; (76)

where for compact notation, we introduced the abbreviation

Wi ¼ H�1ij wj: (77)

The entropy production is non-negative due to the positive definite-
ness of the matrix. This can also be recognized by considering that Hik

is positive definite with trace Hkk ¼ 3h, which implies for the trace of
the inverse that H�1ss � 3=h.

IV. GENERIC-13 EQUATIONS
A. Collected GENERIC-13 equations

We use the above results to assemble the transport equations for
the GENERIC variables uA ¼ ðq;Mi;Hij;wiÞA as

@uA
@t
¼ LAB

@�

@uB
þ Mcc

AB þMcross
AB þMrelax

AB


 �
@g
@uB

; (78)

where we use the abbreviations

jik ¼
@vi
@xk

; xij ¼ jT
ij � jij ¼

@vj
@xi
� @vi
@xj

; (79)

and insert the simplifications (69), (70), that is,

c ¼ 1; Z1 ¼ �4; �S uð Þ ¼ �
u
20
; �Q1 ¼

1
5
: (80)

1. Mass balance

The mass balance has only a contribution from LAB and assumes
the usual form

@q
@t
þ @qvk
@xk
¼ 0: (81)

2. Momentum balance

Also the momentum balance assumes its usual form, with the
pressure tensor qHij,

@Mi

@t
þ @Mivk

@xk
þ @qHki

@xk
¼ 0: (82)

3. Temperature tensor balance

The balance for the temperature tensor Hij includes the energy
balance as its trace, and the balance for anisotropic stress tensor
rij ¼ qHhiji as its trace-free part; it reads

@Hij

@t
þ @Hij

@xk
vk þ 2jkðiHjÞk �Hrjxir �Hirxjr

þ 1
q
@

@xs

q
5

wiHjs þ wjHis þHijws
� �� �

¼ � p
l

1
3
hH�1rr þ

1
30

hH�1kr wrH
�1
ks ws

� �
Hhiji: (83)

We note that this equation is equivalent to a conservation law for the
full second-moment Fij ¼ qðHij þ vivjÞ with the same production
term

@Fij
@t
þ @

@xk
Fijvk þ 2qvðiHjÞk þ

3
5
qwðiHjkÞ

� �

¼ � p
l

1
3
hH�1rr þ

1
30

hH�1kr wrH
�1
ks ws

� �
Hhiji: (84)

4. w-balance

The balance for the vector wi reads

@wi

@t
þ vk

@wi

@xk
þ wk

@vk
@xi
þ xirwr

� HikHsl þHilHsk þHisHklð Þ @H
�1
kl

@xs

� 1
5

wiHsl þHilws þHiswlð Þ @wnH
�1
nl

@xs

¼ � p
l

1
6
hH�1ss dir �

1
3
hH�1ir þ

1
2
h2 H�1ik H�1kr

�

þ 1
60

hH�1kr H�1ks wswi

�
wr : (85)

This equation is equivalent to the balance for the heat flux, where both
vectors are related in a nonlinear fashion as

qk ¼
1
5
q

3
2
hdkl þHkl

� �
wl: (86)

5. Entropy balance

Finally, we take a look at the entropy balance, which has the gen-
eral form

@g
@t
þ @gvk
@xk
þ @/k

@xk
¼ r; (87)

where entropy, entropy flux, and entropy production are given by

g ¼ q
kB
m

1
2
ln detH½ � � ln q� 1

20
H�1rs wrws þ g0

� �
; (88)

/k ¼
1
2
q
kB
m

1þ 3
50

H�1rs wrws

� �
wk; (89)

R ¼ p2

l
kB
m

1
2

1
3
hH�1ss � 1

� �
H�1rr þ

1
12

2
5
hH�1ss � 1

� �
H�1ij H�1ik wjwk

�

þ 1
20

h H�1ij H�1jk H�1kl wiwl þ
1
600

h H�1ij H�1ik wjwk


 �2�
� 0:

(90)

B. Hydrodynamic limit

The first-order CE expansion of the GENERIC-13 transport
equations (83), (85), and (86) results from inserting equilibrium values
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for trace-free temperature tensor Hhiji and vector wi on the left hand
side of their transport equations. With the equilibrium values
Hij ¼ hdij; H�1ij ¼ dij=h; H�1kk ¼ 3=h, this yields the Navier–Stokes
and Fourier laws as

Hhiji ¼ �2
l
p

hjhiji; wi ¼ �
15
2

l
p
@h
@xs

: (91)

In this limit, we can also replace qk ¼ 1
2 pwk, hence stress and heat flux

agree with (20),

rij ¼ qHhiji ¼ �2l
@vhi
@xji

; qi ¼
1
2
pwi ¼ �

15
4

l
@h
@xs

: (92)

Then, entropy, entropy flux, and entropy production reduce to the
well-known relations

g ¼ q
kB
m

3
2
lnH� ln qþ g0

� �
; (93)

/k ¼
kB
m

qk
h
¼ qk

T
; (94)

R ¼ 1
lh

kB
m

1
2
rijrij þ

4
15

1
h
qiqi

� �
� 0: (95)

C. Second-order matching

Due to the nonlinear relation between heat flux qi and vector wi,
it is quite a cumbersome task to rewrite the GENERIC equations for
the Grad variables

�uA ¼ q; vi ¼
Mi

q
; h ¼ 1

3
Hkk ¼

p
q
;rij ¼ qHhiji;

�

qi ¼
1
5
q

3
2
Hrrdik þHik

� �
wk

�
A

: (96)

Indeed, for further understanding of agreement and differences
between the Grad-13 equations and the GENERIC-13 system, it suffi-
ces to consider the GENERIC equations within the appropriate order
of magnitude of the various terms. Using scaling based on the
Knudsen number, we identified both stress rij and heat flux qk as first-
order quantities in terms of the Knudsen number, or rather the formal
parameter -. Hence, the task is to use the same kind of order expan-
sion on the GENERIC equations, while introducing the Grad-13 varia-
bles. For the evaluation, one must use that temperature tensor is
related to the stress tensor as

Hij ¼ h dij þ
rij

p

� �
; (97)

so that within second order, that is, considering up to quadratic terms
in the stress, the inverse becomes

H�1ij ¼
1
h

dij �
rij

p
þ

rirrrj

p2
þ � � �

� �
þO -3ð Þ: (98)

Similarly, the vector wi can be approximated to second order as

wi ¼
2
p

dik �
2
5
rik

p
þ � � �

� �
qk: (99)

Careful evaluation yields that the conservation laws for mass,
momentum, and energy for both sets of equations are identical (this is
already guaranteed by the full nonlinear relation between qi and wi).

Differences between Grad-13 and GENERIC in the equations for
stress rij ¼ qHhiji turn out to be of higher order; that is, to the
required second order, the GENERIC balance (83) agrees with the
Grad-13 balance.

However, differences at the leading order occur at first in the heat
flux equation. After replacing ðHij;wiÞ by ðrij; qiÞ, multiplication with
the inverse of 1

5 q 3
2 hdkl þHkl
� �

, and removing all terms that are of
third or higher orders, we find

@qi
@t
þ vk

@qi
@xk
þ 5
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þ h
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� hrik

@ ln q
@xk
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2
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@xk
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@vi
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þ 7
5
qi
@vk
@xk
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5
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@vk
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¼ � 2
3
p
l
qi þ

2
3
p
l

rikqk
p
þ rik

@h
@xk
þ 4
5
qk
@vhi
@xki

: (100)

This equation is written such that all terms of the Grad-13 heat flux
balance (12) appear explicitly, and additional terms are underlined,
with the difference to Grad-13 given by

DQi ¼
2
3
p
l

rikqk
p
þ rik

@h
@xk
þ 4
5
qk
@vhi
@xki

: (101)

Using the NSF relations (20), we can rewrite this difference
within the required second-order accuracy as an algebraic
expression

DQi ’
2
3
p
l

rikqk
p
� 4
15

p
l

rikqk
p
� 4
5
p
l

rikqk
2p
¼ 0; (102)

which vanishes within the required order. Indeed, we have constructed
the relaxation matrixMrelax

AB such that the non-linear relaxation term
compensates the two gradient terms. With this, also the Grad-13 heat
flux equation is included in the GENERIC-13 equations to second order.

To second order, GENERIC-13 entropy, entropy flux, and
entropy production (88)–(90) reduce so that we find full agreement
with the second-order expressions from the Grad-13 distribution func-
tion, viz. (16)–(18).

V. DISCUSSION AND OUTLOOK

In this paper, we have developed a set of 13-moment equations
that is thermodynamically admissible in the sense of possessing the
full GENERIC structure. On the one hand, these new 13-moment
equations generalize previous work11–13 that developed the ideas for
establishing an entropy, which is an important necessary but not suffi-
cient condition for thermodynamic admissibility. On the other hand,
we have generalized the full thermodynamic consistency of recently
established equations for 10 moments14 to the case of 13 moments.

We have completely aligned the well-known 13-moment equa-
tions of Grad and the GENERIC formalism of nonequilibrium ther-
modynamics. Owing to unavoidable approximations in their
derivation, the original Grad-13 equations are not accompanied by a
proper entropy inequality and exhibit entropic behavior only within
the limits of approximation, that is, for sufficiently small deviations
from the equilibrium state. Outside the limits of approximation,
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Grad’s equations become problematic (e.g., breakdown of hyperbolic-
ity). However, within the limits of approximation, the Grad-13 equa-
tions describe the physics of a mildly rarefied gas quite well.

GENERIC, on the other hand, guarantees thermodynamic struc-
ture for all processes. The GENERIC framework requires Poisson and
friction matrices as building blocks, which describe the reversible and
irreversible transport behavior, respectively. Moreover, the different
physical contributions to friction matrices are either of symmetric
Onsager type or antisymmetric Casimir type.

In our effort to align both approaches, we aim at constructing a set
of 13 equations within GENERIC, with full entropic structure, that agrees
to Grad-13 within second-order accuracy, based on Knudsen number
scaling. The resulting equations have additional terms of higher order
that provide the desired structure. The matching is fully successful.

An important role in the construction of the GENERIC-13 equa-
tions is played by friction matrices of Casimir type, on which we rely
heavily. Indeed, we use a well-established Poisson matrix from the the-
ory of complex fluids for the basic convection behavior and introduce
antisymmetric friction matrices to correct for additional transport
terms that occur in the Grad-13 equations. This somewhat nonstan-
dard and pragmatic approach to GENERIC allowed us to almost
completely match GENERIC to Grad-13 (to second order), while
guaranteeing the proper structure of GENERIC, including the validity
of the Jacobi identity for reversible transport.

Here, it must be noted that the Jacobi identity is the biggest
obstacle in the development of equations that comply with GENERIC
since it is tedious to prove and even harder to achieve in the construc-
tion of a Poisson matrix. Friction matrices are simpler—but not
trivial—to construct and have fewer restrictions. Hence, their use pro-
vides a welcome degree of flexibility.

In this paper, we focus entirely on the thermodynamic admissi-
bility of the 13-moment equations. The empirical adequacy of the
resulting admissible equations remains to be investigated by studying
their solutions in a variety of flow problems, such as 1D shock struc-
tures, and the interesting question of hyperbolicity for the GENERIC-
13 equations.
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APPENDIX A: A POSITIVE-SEMIDEFINITE MATRIX

Let Hij be a positive-semidefinite, regular matrix, and wi a vec-
tor. We then define the auxiliary quantities

Vijmn ¼ xHz1
imHz2

jn ; Wimn ¼ yHz3
imHz4

ln wl; (A1)

where x, y, and z1…z4 are real parameters, and we consider the
matrix

M ¼ N
VhijimnVhklimn VhijimnWkmn

WimnVhklimn WimnWkmn

 !
; (A2)

where the prefactor N is positive. The trace-free symmetrization
hkli is required to obtain energy conservation. As a sum of dyadics,
this matrix M must be positive semidefinite. By inserting the defini-
tions (A1), we obtain the alternative representation

M ¼ N
x2 Ahijihkli xy wn Hz2þz4

nhi Hz1þz3
jik

xyHz1þz3
ihk Hz2þz4

lin wn y2 H2z3
ik wmH2z4

mnwn

0
@

1
A; (A3)

with

Aijkl ¼ H2z1
ik H2z2

jl : (A4)

If we are interested only in the first-order Knudsen expansion and
use x ¼ h�ðz1þz2Þ and y ¼ �y h�ð1þz3þz4Þ, then we get the simplified
representation

M ¼ N
Ahijihkli

�y
h
whidjik

�y
h

dihkwli 0

0
BB@

1
CCA; (A5)

with

Aijkl ¼ dik djl þ
2z1
p

rik djl þ
2z2
p

dik rjl: (A6)

If we consider the corresponding relaxation matrix

Mrelax
AB ¼

1
sH

mh
qkB

0 0 0 0

0 0 0 0

0 0 2hAhijihkli whidjik
0 0 dihkwli 0

0
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1
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AB

; (A7)
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we find

Mrelax
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¼ 1
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0

�Hhiji þ 1� 2ðz1 þ z2Þ½ � h
p2

r2
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1
CCCCCCCA
: (A8)

1. Example

We choose z1 ¼ z3 ¼ 0; z2 ¼ 1=2; z4 ¼ �1=2; Aijkl ¼ dik Hjl ,
x¼ 1, y¼ 1/2 and obtain
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AB ¼
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0 0 0 0
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which leads to
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¼
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APPENDIX B: BARE AND DRESSED
ONSAGER–CASIMIR SYMMETRY

The brief discussion of Onsager–Casimir symmetry properties
of friction matrices in this appendix is based on Sec. 3.2.1 of Ref. 6.
As the variables uA ¼ ðq;Mi;Hij;wiÞA are alternatingly even and
odd moments of velocity, the corresponding bare symmetry proper-
ties of the friction matrix under time reversal are given by the
checkerboard pattern

OCbareðMccÞ ¼

þ � þ �
� þ � þ
þ � þ �
� þ � þ

0
BBBB@

1
CCCCA: (B1)

Since the bare symmetry depends only on the time-reversal behav-
ior of the independent variables, the checkerboard pattern (B1)
actually characterizes the bare symmetry for all contributions to the
friction matrix.

As the matrix elements of the friction matrix are not just con-
stants (as they would be in linear irreversible thermodynamics), but
they themselves can change sign under time reversal if they contain
the third-moment vector wi or the vorticity tensor xij, the structure
ofMcc proposed in (51) leads to the dressed symmetry properties

OCdressedðMccÞ ¼

� � � �
� � � �
� � � �
� � � �

0
BBBB@

1
CCCCA: (B2)

As zeros are consistent with both symmetry and antisymmetry, the
entire matrix Mcc is consistent with antisymmetry, that is, of the
Casimir type.

For the cross-coupling between heat flux and stress tensor
through friction matrixMcross in (55), the bare checkerboard pat-
tern is dressed to become

OCdressedðMcrossÞ ¼

� � � �
� � � �
� � � �
� � � �

0
BBBB@

1
CCCCA; (B3)

which is also consistent with Casimir antisymmetry. On the other
hand, for the relaxation termMrelax in (73), the dressed symmetry
is given by

OCdressedðMrelaxÞ ¼

� � � �
� � � �
� � � �
� � � �

0
BBBB@

1
CCCCA; (B4)

which is consistent with Onsager symmetry.
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