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a b s t r a c t

Conventional plane harmonic waves decay in direction of propagation, but uncon-
ventional harmonic waves grow in the direction of propagation. While a single un-
conventional wave cannot be a solution to a physically meaningful boundary value
problem, these waves may have an essential contribution to the overall solution of a
problem as long as this is a superposition of unconventional and conventional waves. A
fourth order diffusion equation with proper thermodynamic structure, and the Burnett
equations of rarefied gas dynamics exhibit conventional and unconventional waves.
Steady state oscillating boundary value problems are considered to discuss the interplay
of conventional and unconventional waves. Results show that as long as the second
law of thermodynamics is valid, unconventional waves may contribute to the overall
solution, which, however is dominated by conventional waves, and behaves as these.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Any mathematical model is expected to fulfil stability requirements, so that small disturbances do not blow up. The
amplitude of a small fluctuation in space should not grow over time (temporal stability), and a small disturbance at a
boundary should not induce a large disturbance away from the wall (spatial stability). Hence, new models should be
tested for stability of both types. The simplest test is for linear stability, where one considers only equations linearized
about a homogeneous equilibrium rest state, for small disturbances. If a model is linearly unstable, also the full non-linear
model will suffer from instabilities, which might render the model useless.

A well-known example are the Burnett equations of rarefied gas dynamics [1–3], which exhibit linear temporal
instabilities for disturbances of small wavelengths [4–6]. Solutions of the fully non-linear Burnett equations for the shock
wave structure problem are strongly affected by these linear instabilities. If a numerical time stepping method is used,
unavoidable numerical errors of small wavelengths occur on refined grids, which blow up over time, and make the solution
impossible [7,8], or at least introduce artificial oscillations [9].

The (linearized) Burnett equations also exhibit wave solutions with increasing amplitude in direction of propagation,
which indicates possible spatial instabilities. The following discussion aims to clarify the relation between such wave
modes, and spatial instability.

A plane harmonic wave of frequency ω > 0 and wavelength λ = 2π
|k| is given by the equation [3,10,11]

u (x, t) = u0e−ζx cos [ωt − kx+ φ] , (1)

where u0 is the amplitude, k is the (real) wave number, φ is the phase offset, and the spatial damping coefficient ζ
describes the change of amplitude in space. The wave travels with the phase speed vph = ω/k into positive x-direction
for k > 0 and into negative x -direction for k < 0.
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On physical grounds, for an individual wave that emerges from a source at x = 0, one would expect positive spatial
damping, such that the amplitude decreases in the direction of travel, i.e., ζ > 0 if k > 0 and ζ < 0 if k < 0 [3,11]. For
instance, the classical heat equation leads to wave solutions with k = ζ = ±

√
ω/2, hence behaves as expected. The same

is true for the description of damped sound waves by means of the linearized Navier–Stokes equations.
There are, however, models in the literature, where the solution includes waves with negative spatial damping, such

that the amplitude grows in the direction of propagation, i.e., ±ζ < 0 for ±k > 0. Well-known examples arise in
continuum models based on rarefied gas dynamics [2,3], which extend the Navier–Stokes and Fourier equations by adding
higher order terms: The Burnett [1] and super-Burnett [12] equations, and some related models, such as the augmented
Burnett equations [13], exhibit wave modes of this unconventional type [3,6].

In previous work, it was stated that these unconventional waves should not appear in solutions of transport models,
so that models that exhibit such ‘‘spatially unstable’’ waves should be discarded [3,6,11]. However, these statements were
not corroborated by performing actual solutions of the incriminated equations for boundary value problems.

In the following we will show that, in contrast to what was stated earlier [3,6,11], unconventional waves contribute to
meaningful solutions of proper thermodynamic models. The overall solutions are superpositions of several conventional
and unconventional waves, and these behave properly, when unconventional waves contribute, but conventional waves
dominate the solution. We consider two test cases, the diffusion equation with an additional fourth order term and the
linearized Burnett equations. The results indicate that the superpositions are meaningful when they solve equations that
are accompanied by a proper formulation of the second law of thermodynamics.

The fourth order diffusion equation is constructed based on the principles of non-equilibrium thermodynamics [14]
such that it is accompanied by a proper statement of the second law of thermodynamics, hence it has an entropy with
positive production term. The entropy flux is used to construct entropy generating boundary conditions. The equation
is solved for the oscillating steady state with an oscillating boundary. It will be seen that although unconventional
waves contribute significantly, the overall result behaves as expected, with a signal leaving the boundary with decreasing
amplitude in the direction of propagation.

The Burnett equations [1] are well known to be unstable [4] and violating the second law of thermodynamics [15], at
least for large frequencies [16]. We consider the equations for the setting of an acoustic resonator [17], i.e., a boundary
value problem. At small frequency the equations describe sound waves leaving the oscillating boundary with decreasing
amplitude in the direction of propagation. For larger frequency, however, the unconventional modes are dominant, and
the equations produce a nonsensical result, namely waves arriving at the oscillating boundary, with increasing amplitude
in the direction of propagation. In this case, the oscillator produces power—a clear violation of the second law.

We are not aware of discussion of unconventional wave modes by others. Hence, this contribution aims to clarify
the relevance of such waves. The results indicate that these waves might contribute to reasonable results, as long as the
underlying equations do not violate the second law of thermodynamics. Occurrence of these waves does not justify to
discard a set of transport equations. However, one has to carefully examine the equations, since unconventional waves,
if dominant, lead to nonsensical results.

2. Plane harmonic waves

2.1. Dispersion relation

We consider plane harmonic waves in complex formulation as solution of partial differential equations [10,11]. A set
of n variables uA (x, t), A = 1, . . . , n obeys a set of linear partial differential equations of the form

∂uA

∂t
+ A(1)

AB
∂uB

∂x
+ A(2)

AB
∂2uB

∂x2
+ · · · + A(n)

AB
∂nuB

∂xn
= −CABuB (2)

with constant coefficient matrices A(j)
AB, CAB. Plane harmonic wave are a class of solutions for such a system, where all

variables are assumed to be of the complex form

uA = ûA exp [i (ωt − kx)] . (3)

Here, ω denotes frequency, k denotes wave number, and ûA denotes complex amplitude. While only the real part of uA
is relevant, it is advantageous to perform all calculations in the complex form, and take the real part only at the end of
calculations.

Insertion of the wave ansatz into the system (2) yields a homogeneous system for the amplitudes ûA,[
iωδAB + (−ik) A(1)

AB + (−ik)2 A(2)
AB + · · · + (−ik)n A(n)

AB + CAB

]
ûB = AAB (ω, k) ûB = 0 (4)

Non-trivial solutions require that the determinant of the coefficient matrix vanishes, i.e.,

det [AAB (ω, k)] = 0 . (5)

This relation between frequency ω and wave number k is known as the dispersion relation. Note that det [AAB (ω, k)] is
a polynomial in both, k and ω.
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2.2. Initial value problems: stability in time

The further proceedings depend on the type of problem one wishes to consider. For an initial value problem, one
assumes waves of a particular real wave number k (that is of wavelength λ = 2π

k ) and finds from the dispersion relation
a set of ν̄ complex solutions for frequency, ωα (k) = ωα

r (k) + iωi (k), α = 1, . . . , ν̄. The real part ωα
r is directly related

to phase velocity vα
ph = ωα

r (k) /k and the temporal damping coefficient is given by ωα
i (k), so that the wave solution for

mode α can be written as

uα
A (x, t; k) = ûα

A (k) e−ωα
i (k)t exp

[
ik
(
vα
ph (k) t − x

)]
, (6)

where ûα
A (k) is a complex amplitude.

Meaningful transport equations require stability in time, in the sense that the amplitude of an initial disturbance should
not grow over time, but either stay constant or decay. Hence, for all modes, linear stability is ensured for

ωα
i (k) ≥ 0 . (7)

All typical transport equations, such as wave and diffusion equations, the Navier–Stokes equations, etc., are stable in this
sense. Stability tests are highly useful in modelling, where this is one of the first consistency tests one will perform [6].
Typically, instability is linked to violation of the second law of thermodynamics.

A well-known example for an unstable model are the Burnett equations of rarefied gas dynamics [1], for which waves
of larger wavelengths are stable, but those with shorter wavelength are unstable [4]. The instability can be linked to the
loss of a proper second law for the equations [15]. The instability renders the equations effectively useless for numerical
simulations, since unavoidable numerical errors on fine grids will induce waves of small wavelength, which will blow up
over time exponentially [7–9].

For stable equations, solutions of initial value problems are obtained from superposition of all modes at all wavelengths,
uA (x, t) =

∫ ∑
α uα

A (x, t; k) dk, where the amplitudes ûα
A (k) are obtained from the initial conditions. Typically, this

approach to solution of initial value problems requires solutions in the infinite space domain. Certain boundary values
problems might be accessible through clever continuation of initial values from the bounded domain to the infinite
domain, but in general, i.e., for systems with more complicated boundary conditions such as those discussed below, this
will not be possible.

2.3. Boundary value problems: Conventional and unconventional waves

For a boundary value problem, one prescribes oscillations of real frequency ω > 0 at a location (say, x = 0), and finds
from the dispersion relation a set of ν complex solutions for wave number, kα (ω) = kα

r (ω)+ ikα
i (ω), α = 1, . . . , ν. The

real part is directly related to phase velocity as vph (ω) = ω/kα
r (ω), so that the wave solution for mode α reads

uα
A (x, t;ω) = ûα

A (ω) ek
α
i (ω)x exp

[
iω

(
t −

x
vα
ph (ω)

)]
(8)

For positive phase velocities, a wave propagates towards positive x (i.e., to the right), while for negative phase velocity,
the wave travels towards negative x (i.e., to the left). For typical transport equations (wave, diffusion, etc.) with positive
spatial damping, the amplitude of a wave decays in the direction of travel, so that

kα
i (ω) < 0 if vα

ph (ω) > 0 , and kα
i (ω) > 0 if vα

ph (ω) < 0 (conventional). (9)

However, there are (systems of) equations that have at least some modes with negative spatial damping, for which
the signs are opposite, so that

kα
i (ω) > 0 if vα

ph (ω) > 0 , and kα
i (ω) < 0 if vα

ph (ω) < 0 (unconventional). (10)

Accordingly, the amplitude of these modes grows in direction of propagation. For instance, such modes occur in higher
order models in rarefied gas dynamics, such as Burnett-type models. In previous work such modes were described as being
‘‘unstable in space’’, and considered to be unphysical, so that equations that have such modes should be discarded [3,6].
As the discussion below will show, these modes might be problematic, but their occurrence does not suffice to judge on a
transport model. Therefore, as already in the introduction, we shall refer to ‘‘conventional’’, and ‘‘unconventional’’ modes,
and not refer to "spatial stability’’.

The general solution of a boundary value problem is a superposition of all modes at all frequencies of the form
uA (x, t) =

∫ ∑
α uα

A (x, t;ω) dω, where the amplitudes ûα
A (ω) are obtained from boundary conditions. Typically, in this

approach it is not possible to prescribe initial conditions.
Two transport models that produce unconventional waves will be studied below, an extended diffusion model with

proper second law structure, and the Burnett equations of rarefied gas dynamics which are well known to violate the
second law.
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3. Extended diffusion equation

3.1. Equation and boundary conditions

Loss of stability in time is typically linked to a breakdown of the second law of thermodynamics, but unconventional
waves may occur in entropic models. Here, we use as an example an extended diffusion equation, which is accompanied
by a proper formulation of the second law.

The model is based on an entropy with non-equilibrium contributions, for which one can find a balance equation with
positive entropy generation. The constitutive equations for the energy flux and the boundary conditions are deduced from
the second law, such that all processes in the bulk and at the boundaries are dissipative. The model can also be derived
from a simple kinetic model, that is it is rooted in meaningful physics. Details of this procedure are presented in the
Appendix, here we only summarize the resulting transport equation and boundary conditions for the case of interest.

The higher order diffusion equation for the deviation of energy (or temperature) from a homogeneous groundstate
u (x, t) reads

∂u
∂t
−

∂2u
∂x2
+ ξ

∂4u
∂x4
= 0 . (11)

where ξ > 0 is a constant. We shall consider problems where at the left boundary, at x = 0, the boundary energy
uB (t) = u0 cosωt is periodic, with the jump boundary conditions (40),

−
∂u
∂x |0
+ (τ1 + τ2) u|0 − τ1ξ

2 ∂4u
∂x4 |0

− τ2ξ
∂2u
∂x2 |0

= (τ1 + τ2) uB (t) (12)

ξ
∂3u
∂x3 |0

+ (τ2 + τ3) u|0 − τ2ξ
2 ∂4u
∂x4 |0

− τ3ξ
∂2u
∂x2 |0

= (τ2 + τ3) uB (t)

The right boundary is either infinitely far away (semi-infinite problem), or an adiabatic boundary at x = L, for which (40)
reduce to

∂u
∂x |L
= −ξ

∂3u
∂x3 |L

= 0 (13)

The constant coefficients can be chosen freely, as long as ξ ≥ 0, τ1 ≥ 0,
(
τ1τ3 − τ 2

2

)
≥ 0. For all computations below we

set u0 = 1, ξ = 1, τ1 = τ3 = 1, τ2 = 1
4 .

The classical diffusion equation and its jump boundary conditions are obtained by setting ξ = τ2 = τ3 = 0.

3.2. Dispersion relation and modes

Insertion of the wave ansatz (3) into the diffusion equation (11) yields the dispersion relation

iω + k2 + ξk4 = 0 . (14)

For an initial value problem, where k is real, the (single) purely complex frequency is

ω = iωi = ik2
(
1+ ξk2

)
. (15)

Convexity of the entropy (29) requires ξ > 0. Accordingly, the damping ωi (k) is always positive, and waves of
any wavelength are stable in time. In other words, with the second law guaranteed, the extended diffusion model is
unconditionally stable.

We note that violation of the second law occurs for ξ < 0. In that case waves with small wavelengths, so that
k2 > 1/|ξ |, become unstable: instability in time is linked to loss of entropic structure. We proceed with the entropic
equation, that is consider ξ > 0 only.

For boundary value problems, where ω is real, we find four complex modes,

k1,2 = ±
1
√
2ξ

√
−1+

√
1− i4ξω , k3,4 = ±

1
√
2ξ

√
−1−

√
1− i4ξω . (16)

Fig. 1 shows the four modes in the complex plane with ω as curve parameter. Modes k1, k2 are conventional modes,
while k3, k4 are unconventional modes, for which the amplitude grows in the direction of propagation.

3.3. Semi-infinite oscillating steady state

We consider problems in which all boundary disturbances are periodic with a single frequency ω. The general solution
of the transport equation is a superposition of the four modes,

u (x, t) = Re

[
4∑

α=1

ûα exp [i (ωt − kαx)]

]
. (17)
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Fig. 1. The solutions k (ω) of the dispersion relation in the complex plane with ω as curve parameter. Modes k1 , k2 are conventional modes, while
modes k3 , k4 are unconventional. The dots denote the points where ω = 0.

Here, ûα are the complex amplitudes of the four modes which must be determined from boundary conditions
The apparent problem with unconventional waves becomes most visible when one considers a semi-infinite problem,

where a periodic boundary disturbance is created at x = 0, with the boundary condition (12) and uB = u0 cosωt .
Considering that the disturbance originates at x = 0, and looking at transport towards x > 0, one might be inclined
to assume that only waves with positive wave speeds play a role, which are induced at the boundary, and travel into the
domain. With this assumption, only modes with Re [kα] > 0 contribute, that is conventional mode #1 and unconventional
mode #3. Since mode #3 grows in the direction of propagation (Im [k3] > 0, see Fig. 1) this leads to a nonsensical result,
where the energy u (x, t) blows up away from the oscillating boundary.

Indeed, for this problem, one will expect a solution that decays away from the source at x = 0, and based on this, only
modes with Im [kα] < 0 can contribute, i.e., modes #1 and #4, so that

u (x, t) = Re
[
û1 exp [i (ωt − k1x)]+ û4 exp [i (ωt − k4x)]

]
. (18)

While mode #4 appears to travel to the left, i.e., to come "out of infinity", this result is sensible, as will be explained
now. Indeed, what matters is not the individual modes, but only the superposition of all modes. That is, in the present
case, the overall signal u (x, t) must travel from the source towards x > 0 with decaying amplitude. Individual waves are
mathematical constructs, that have no meaning for observed transport as long as the overall signal is a superposition.

To evaluate the propagation of the oscillating overall signal u (x, t) one might for instance consider the velocity of axis
intercepts. If xn (t) solves u (xn (t) , t) = 0, the speed of signal propagation is

vS =
dxn
dt
= −

(
∂u
∂t

)
|xn(

∂u
∂x

)
|xn

(19)

It is clear from Eqs. (18), (19) that the signal speed depends strongly on the relative weight of the two modes as expressed
by the complex amplitudes û1 and û4, which must be determined from the boundary conditions (12). We have found
positive signal velocities for all frequencies. That is, for the extended diffusion model, the unconventional wave contributes
to the overall signal, but the overall signal propagates into the same direction as the conventional wave. Curves of u (x, t)
for the semi-infinite domain agree with those shown below for finite domain, hence are not shown.

3.4. Finite oscillating steady state

For further insight, we present some figures with results for a finite domain. We consider the transport equation (11)
with the boundary conditions (12), (13), with oscillating boundary energy uB|0 (t) = u0 cosωt , where u0 = 1, ω = 1. The
amplitudes ûα are obtained from the boundary conditions at x = 0 and x = L, as

ûβ = A−1αβ

⎛⎜⎝ (τ1 + τ2) u0
(τ1 + τ2) u0

0
0

⎞⎟⎠
β

(20)

where A−1αβ is the inverse of a matrix Aαβ with the elements

A1β = (τ1 + τ2)+ ikβ − τ1ξ
2k4β + τ2ξk2β , (21)
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Fig. 2. u (x, t) for ω = 1, L = 20 over one half-period of the boundary oscillation: solution of 4th order equation (continuous, brown) compared to
solution of classical diffusion equation (dashed, blue).

A2β = (τ2 + τ3)+ iξk3β − τ2ξ
2k4β + τ3ξk2β (22)

A3β =
[
ikβ

]
exp

[
−ikβL

]
, A4β =

[
iξk3β

]
exp

[
−ikβL

]
With this, the oscillating solution is readily available without any approximations, and can be examined. Fig. 2 shows,

for L = 20, the energy distribution u (x, t) at several times over one half-period of the boundary oscillation. The figure
compares the solution of the fourth order diffusion equation (continuous, brown) to that of the classical diffusion equation
(ξ = 0, dashed, blue). Notably, the boundary conditions lead to a jump between boundary and the domain, so that
u (0, t) ̸= uB|0 (t). The fourth order equation leads to differences from classical diffusion in particular close the left
boundary, but the overall behaviour of the signal travelling to the right is rather similar. The figures also visualize that
the overall signal speed vS as defined in (19) is positive, since the first axis intercept moves to the right.

Fig. 3 shows the contributions of the individual modes in comparison to the overall signal (dashed, brown) at time
t = 1.49, where conventional and unconventional modes are shown in blue and red, respectively. In each figure, the
u-scale is chosen such that one can identify the contribution of each mode; accordingly, subfigures for modes #2, 3, 4 do
not show the full u-curve. A closer look at the results shows that the adiabatic boundary conditions on the right lead to a
reflection of the waves, such that u1 (L, t) = u2 (L, t) and u3 (L, t) = u4 (L, t); this is not visible in the figures due to lack
of resolution.
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Fig. 3. Results for ω = 1, L = 20 at t = 1.49. Overall energy u (x, t) (dashed, brown) in overlay with the individual contributions of the four modes.
First row: conventional modes (continuous, blue); second row: unconventional modes (continuous, red). Left column: Waves travelling to the right
(→); right column: waves travelling to the left (←). (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

For interpretation, we recall that the oscillation is initiated at the left boundary, while the right boundary is adiabatic.
The main contribution to the overall signal comes from conventional mode #1, which emanates from the left boundary
and travels to the right, where it is reflected into mode #2. Unconventional mode #4, which emanates from the right
as the reflection of mode #3, travels to the left and contributes mostly in the vicinity of the left boundary, due to the
unconventional exponential increase of amplitude in direction of propagation. One can say that this mode contributes a
boundary layer at the left, but its contribution does not lead to an inversion of the signal speed.

3.5. Loss of entropy

The extended diffusion equation and its boundary conditions are constructed to ensure validity of the second law.
Choosing negative values for the coefficient ξ gives a model for which the second law is not satisfied, with temporal
instability for initial value problems at small wavelength, i.e., k > 1/

√
|ξ |, see the discussion below Eq. (15). Also in

this case one finds one pair of conventional and one pair of unconventional waves. Calculations for the above boundary
value problem, but now with negative coefficient ξ = −1, give results u (t, x) that are dominated by the left-going
unconventional wave, with, indeed, vS < 0 for the overall signal. This behaviour is somewhat similar to that of the
Burnett equations that we discuss next, hence we do not provide additional details or figures. From this observation one
might conjecture that it is not the unconventional waves that are the problem, but rather the loss of the second law.

For further insight, we also performed numerical solutions for initial–boundary value problems with initial conditions
u (x, t = 0) = 0. For the entropic model (ξ > 0) these agree with the steady state oscillations very soon, after about one
period of the boundary signal uB (t), independent of domain length L. For the non-entropic model (ξ < 0), the temporal
instability makes it impossible to produce meaningful results, since the discretization introduces numerical errors at small
wavelengths which grow exponentially in time.

4. Burnett equations

4.1. Equations and boundary conditions

The Burnett equations are derived from the Boltzmann equation as a model for slightly rarefied flows of ideal gases [1–
3]. We consider the equations in linearized dimensionless form, where all variables indicate dimensionless deviation from
a homogeneous rest state. The variables are mass density ρ, flow velocity v, temperature θ , with constitutive relations for
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non-equilibrium stress σ and heat flux q. From the ideal gas law, the pressure deviation is p = ρ + θ . For 1-dimensional
problems, the equations read

∂ρ

∂t
+

∂v

∂x
= 0

∂v

∂t
+

∂ρ

∂x
+

∂θ

∂x
+

∂σ

∂x
= 0 (23)

3
2

∂θ

∂t
+

∂q
∂x
+

∂v

∂x
= 0[

4
3

∂2ρ

∂x2
−

2
3

∂2θ

∂x2

]
+

4
3

∂v

∂x
= −σ[

7
6

∂2v

∂x2

]
+

5
2

∂θ

∂x
= −

2
3
q

Without the terms in square brackets, these equations are the Navier–Stokes–Fourier equations of classical hydrodynamics
(linearized, dimensionless). The additional terms describe higher order effects that are expected for moderately rarefied
gases. Specifically, the Burnett equations reduce to the Navier–Stokes–Fourier equations for very small Knudsen numbers,
and their validity is restricted to somewhat small Knudsen numbers. For wave problems this requires wavelengths
sufficiently larger than the mean free path of the particles, or frequencies sufficiently below the collision frequency. The
lengthscale to non-dimensionalize the equations above is of the order of the mean free path, so that frequency or wave
number can be interpreted as Knudsen numbers [17]. Hence validity of the above Burnett equations is expected for small
ω or k.

It is well known that the Burnett equations are not accompanied by an entropy, that is they violate the 2nd law of
thermodynamics. In particular, they exhibit temporal instabilities for small wavelengths, i.e., two of the three frequency
modes ωα

i (k) become unstable for dimensionless wave numbers |k| > 2.46.
For boundary value problems, the Burnett equations have six modes kα (ω), where two pairs of modes are of

conventional type for all frequencies, while one pair of modes changes their type from conventional (for lower frequencies)
to unconventional (for frequencies ω > 5.96). Interestingly, the modes change sign just at wave numbers

⏐⏐kα
r

⏐⏐ = 2.46,
corresponding to the wavelength where temporal instability begins. There might to be a relation between the temporal
instability and the unconventional mode, but this was not further explored.

The Burnett equations where solved for an acoustic resonator in Ref. [17] with the following jump and slip boundary
conditions, motivated from kinetic theory,

v = vW (t) , (24)

θ −
1
3

∂v

∂x
−

2− χ

2χ

√
π

2
15
4

∂θ

∂x
ν −

1
3

∂2ρ

∂x2
+

115
42

∂2θ

∂x2
−

2− χ

2χ

√
π

2
7
4

∂2v

∂x2
ν +

6
5

∂3v

∂x3
= θW (t) (25)

θ +
14
3

∂v

∂x
+

14
3

∂2ρ

∂x2
−

125
42

∂2θ

∂x2
− 8

2− χ

2χ

√
π

2
∂2v

∂x2
ν

−
3
10

∂3v

∂x3
− 8

2− χ

2χ

√
π

2
∂3ρ

∂x3
ν + 4

2− χ

2χ

√
π

2
∂3θ

∂x3
ν = θW (t) . (26)

Here, ν denotes the (1-dimensional) wall normal, vW (t), θW (t) are the velocity and temperature variations of the wall,
and χ is the wall accommodation coefficient which we set to χ = 1. For the resonator, one sets at the left: x = 0, ν = 1,
vW (t) = v0 cosωt , θW = 0, and at the right: x = 0, ν = −1, vW (t) = θW = 0.

4.2. Wave solutions

The method of solution for the resonator problem for the Burnett equations is very similar to what we did before,
see [17] for more detail. We show two sets of results, for L = 40, and frequencies ω = 5 and ω = 7, respectively.

Fig. 4 shows, for ω = 5, the overall result (dashed, brown) compared to the contributions of the six modes (continuous,
blue). All modes are of conventional type, and only modes emanating from the left boundary contribute significantly to
the overall signal (figures in right column). The two faster modes contribute only boundary layer effects in the vicinity of
the oscillating boundary, while the slowest mode (vph = 2.197) carries the sound signal into the domain.

The work (per area) to drive the resonator over one period of the boundary signal is the integrated product of velocity
and normal force,

W =
∫ 2π

ω

0
v (0, t) [p (0, t)+ σ (0, t)] dt . (27)

For ω = 5 the computation gives positive work W = 0.623 > 0, which means that work is required to drive the resonator,
due to dissipation in the domain. In short, while ω = 5 is a bit large to expect validity of the Burnett equations, they
predict reasonable behaviour of a damped resonator.
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Fig. 4. Resonator solution for Burnett equations at ω = 5, t = 0: Velocity v (x, t) (dashed, brown) and contributions of the six modes as functions
of space. All six modes are conventional (blue). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

The picture changes drastically as the frequency gets larger. As an example, Fig. 5 shows, for ω = 7, overall result
(dashed, brown) in comparison to the contribution of the individual modes. As before, the fast conventional modes
contribute boundary layer effects at the oscillating boundary. But now the main contribution to the overall result comes
from the unconventional mode travelling to the left (red curve in upper left figure, vph = −2.684). With this, the overall
signal travels towards the moving boundary, with negative signal speed vS < 0 and negative work W = −5.02 < 0,
i.e., this process produces work without a driving force. This solution is a blatant violation of the second law!

5. Discussion and conclusions

Unconventional waves have increasing amplitude in the direction of propagation, while the amplitude of conventional
waves decreases in the direction of propagation.

Models that predict propagation of only unconventional wave type are unphysical in that they give nonsensical results
that contradict the second law of thermodynamics, and must be discarded.

Typically, however, models associated with unconventional waves have a larger set of modes, some conventional,
some unconventional, with the overall solution a superposition of both. These models must be judged for their overall
predictions. The individual waves are just mathematical constructs, that are meaningful only within the superposition, not
alone. The fourth order diffusion model considered above provides a simple example of an entropic model – by derivation
the second law of thermodynamics is valid for all solutions – that exhibits meaningful solutions as superpositions of
conventional and unconventional waves.
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Fig. 5. Resonator solution for Burnett equations at ω = 7, t = 0: Velocity v (x, t) (dashed, brown) and contributions of the six modes as functions of
space. The first two modes are unconventional (red), the other are conventional (blue). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

The Burnett equations at higher frequencies, on the other hand, provide an example where thermodynamic structure
– validity of the second law – breaks down, and the superpositions are dominated by unconventional waves, so that the
overall results become nonsensical.

Occurrence of unconventional waves does not suffice to judge negatively on a set of equations. In particular, one
has to discard the notion of "spatial instability" promoted in [3,6], since this might lead to dismissal of proper models.
If the equations considered, and their boundary conditions, are accompanied by a proper form of the second law of
thermodynamics, one will expect sound solutions. If the second law is not available, instead, one has to consider full
boundary value problems and evaluate their solutions, which are superpositions of conventional and unconventional
waves, with weights that follow from the boundary conditions.
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Appendix. Extended diffusion model

In this Appendix we present some details on the extended diffusion model that is used as one of our examples to study
conventional and unconventional wave modes.

A.1. Derivation from 2nd law

We denote the deviation of energy (or temperature) from a uniform groundstate as u (x, t), and the heat flux as q (x, t);
these, and all other variables and coefficients are dimensionless. We are interested only in a linear theory. The conservation
law for energy then reads

∂u
∂t
+

∂q
∂x
= 0 . (28)

The second law of thermodynamics is used to find a constitutive relation for the heat flux, where we use standard
arguments from non-equilibrium thermodynamics [14]. For linear transport laws a quadratic entropy suffices, and we
chose a non-equilibrium entropy with gradient contributions,

η = η0 −
1
2
u2
−

ξ

2

(
∂u
∂x

)2

, (29)

where η0 is the entropy of the equilibrium rest state, and ξ > 0, so that mathematical entropy (−η) is convex [11].
Taking the time derivative of entropy, and repeated use of the conservation law leads to the entropy balance

∂η

∂t
+

∂φ

∂x
= σ (30)

with the entropy flux

φ = −uq+ ξq
∂2u
∂x2
− ξ

∂u
∂x

∂q
∂x

, (31)

and the entropy generation rate

σ = q
(
−

∂u
∂x
+ ξ

∂3u
∂x3

)
. (32)

The entropy generation is interpreted as product of the thermodynamic flux q and the thermodynamic force(
−

∂u
∂x + ξ ∂3u

∂x3

)
. Entropy generation must be non-negative, σ ≥ 0, and this can be ensured by any linear relation between

thermodynamic flux and thermodynamic force with positive phenomenological coefficient. For simplicity, we set the
phenomenological coefficient, which for a linear theory is a constant, to unity, and find the heat flux as

q = −
(

∂u
∂x
− ξ

∂3u
∂x3

)
. (33)

Note, that for ξ = 0 this model gives the classical diffusion flux, q = − ∂u
∂x .

A.2. Derivation from microscopic model

With the above derivation, we have emphasized the connection between the extended diffusion model and the second
law of thermodynamics. To give more meaning to the model, we present an alternative derivation from a kinetic model
equation for one-dimensional heat transfer in dimensionless form [18]. The energy transfer is effected by particles that
travel with unit velocity in three dimensional space, and carry energy (such as photons or phonons). Thus, on the
microscopic level the particles are described through their location in space–time (x, t), and their direction which is
expressed through the direction cosine cosϑ = µ ∈ [−1, 1], where ϑ is the angle between the particle direction and the
x-axis. The particle distribution function f (x, t, µ) is defined such that fdxdµ gives the energy of particles in the interval
(x, x+ dx) with direction cosines in (µ, µ+ dµ) at time t . Thus, the energy density is

λ0 (x, t) =
∫ 1

−1
f (x, t, µ) dµ . (34)
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It is assumed that the particles undergo collisions (among each other, or with a background medium) which only
conserve energy; the dimensionless mean free path, i.e., the Knudsen number, is denoted by ε. The kinetic equation for
this simple transport model reads

∂ f
∂t
+ µ

∂ f
∂x
= −

1
ε

(
f −

1
2
λ0

)
(35)

A hierarchy of moment models can be derived from the kinetic equation by means of Grad’s moment method [19]. The
discussion in Ref. [18] shows that the required number of moments is related to the desired order in the smallness
parameter ε. For rather small ε, a standard diffusion model suffices, but for ε > 0.1 (say), Knudsen layer effects at
the boundaries arise that can only be approximated when a higher order model is used, with at least 3 variables. The
corresponding transport equations read [18]

∂λ0

∂t
+

∂λ1

∂x
= 0 ,

∂λ1

∂t
+

1
3

∂λ0

∂x
+

2
3

∂λ2

∂x
= −

1
ε
λ1 (36)

∂λ2

∂t
+

2
5

∂λ1

∂x
= −

1
ε
λ2 ,

where λn =
∫ 1
−1 Pn (µ) fdµ are moments of the distribution function based on Legendre polynomials Pn.

We proceed with showing the relation between this 3 moment model and the extended diffusion model. For this, we
apply the Chapman–Enskog expansion to the moment model [2,3]. Energy λ0 is conserved and hence is not expanded,
while the higher order variables are written as a series in the smallness parameter ε,

λ1 = λ
(0)
1 + ελ

(1)
1 + ε2λ

(2)
1 + ε3λ

(3)
1

λ2 = λ
(0)
2 + ελ

(1)
2 + ε2λ

(2)
2 + ε3λ

(3)
2

This expansion is inserted into the moment equations, and then the expansion coefficients λ
(α)
n are determined succes-

sively. For this, it is customary, to replace time derivatives through the conservation law for energy. Proceeding through
the orders of ε, one finally finds

λ1 = −ε
1
3

∂λ0

∂x
+ ε3 6

45
∂3λ0

∂x3
, λ2 = ε2 2

15
∂3λ0

∂x3
. (37)

Note that only the flux λ1 is required in the conservation law. The second order contribution to λ2 only plays a role in
the expansion, as it leads to a contribution to λ

(3)
1 . Inserting the third order flux into the conservation law, and rescaling

time and space as t = aτ , x = bχ with a
3b2
= 1, 2

5b2
= ξ , and setting ε = 1 yields the extended diffusion law as presented

in Eq. (11),

∂λ0

∂τ
−

∂2λ0

∂χ2 + ξ
∂4λ0

∂χ4 = 0 .

We note that this derivation of the extended diffusion model is using the same tools as the derivation of the Burnett
equations, which result from Chapman–Enskog expansion to 2nd order. While the Burnett equations are unstable, and
are not accompanied by a proper formulation of the second law, the diffusion model is stable, and has a proper 2nd law,
as was shown in the previous section.

As discussed in detail in Ref. [18], higher order moment models gives rise to Knudsen boundary layers due to the
non-equilibrium states induced at boundaries, where particle reflection leads to anisotropic distributions. The first order
diffusion model (Fick’s law) cannot describe such layers, but higher order moment equations and the extended diffusion
model do. These Knudsen layers lead to the differences between classical diffusion model and extended diffusion model
in Fig. 2.

A.3. Boundary conditions

Boundary conditions must be designed such that the entropy generation at any boundary is positive, and the heat flux
is continuous. For simplicity, we assume that the outside material is of the same type but with ξ = 0, that is classical
heat conduction with qB = −

∂uB
∂x and φB = −uBqB. The entropy generation at a boundary is, with qB = q,

σB = (φ − φB) ν =

[
(uB − u) q+ ξq

∂2u
∂x2
− ξ

∂u
∂x

∂q
∂x

]
ν , (38)

where ν denotes the normal pointing from the boundary into the domain, i.e., ν = +1 at the left boundary, and ν = −1
at the right boundary.
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Inserting the constitutive relation for q, this can be brought into the form

σB =

(
−

∂u
∂x

ν

)[
(uB − u)+ ξ 2 ∂4u

∂x4

]
+

(
ξ
∂3u
∂x3

ν

)[
(uB − u)+ ξ

∂2u
∂x2

]
. (39)

This interface entropy production can be interpreted as the sum of two products of thermodynamic fluxes (in round
brackets) and thermodynamic forces (in square brackets). Boundary conditions that guarantee Onsager symmetry [14]
and positive entropy generation are

[Onsager BC]

[
−

∂u
∂x ν

ξ ∂3u
∂x3

ν

]
=

[
τ1 τ2
τ2 τ3

][
(uB − u)+ ξ 2 ∂4u

∂x4

(uB − u)+ ξ ∂2u
∂x2

]
, (40)

provided the matrix of coefficients τα is semi-positive definite, which requires τ1 ≥ 0 and
(
τ1τ3 − τ 2

2

)
≥ 0. Note that

these boundary conditions allow for jumps of u at the boundary.
For an adiabatic boundary, one must set τ1 = τ2 = τ3 = 0, which guarantees vanishing heat and entropy fluxes,

q = φ = 0.
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