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Abstract. R13 moment set of equations is the regularization of original Grad 13-moment system. Several variants of R13 equations
were presented after the first publication. The difference between them lies in the relations for higher order moments. It has
been shown that all variants are well applicable for numerical modelling of the moderately rarefied slow gas flows and allow the
modelling of main nonequilibrium effects in micro-flow problems. The difficulty is that the solid wall boundary conditions for
R13 equations were obtained from one of the variants which is not applicable to near hypersonic flows. This study is devoted to
the demonstration of the numerical results of R13 linear and nonlinear variants for supersonic flow over the flat plate. The R13
numerical solutions are compared with DSMC results computed by the SMILE++ software system.

INTRODUCTION

In 1949 Grad proposed original 13 moment system of equations which was derived from the kinetic Boltzmann
equation due to Hermite polynomial expansion of velocity distribution function around Maxwellian [1]. This system is
written with respect to macroparameters (moments of the distribution function) and describes the gas not only when it
can be considered as continuum, but also in the transitional flow regime, i.e., it takes rarefaction effects into account. In
the general case, the system of moment equations is infinite. Some additional closure relations are introduced to obtain
a finite system. Thus, higher-order moments that are not included into the system are expressed in terms of moments
retained in the system. It turned out later, however, that Grads method has some drawbacks. It was shown [2, 3] that
the series in the Hermite polynomials representing the distribution function in the shock wave does not converge in the
case of a finite radius of molecular interaction. As a result, there appear unphysical jumps of gas-dynamic parameters
in supersonic flows at Mach numbers greater than 1.65 [4, 5]. In this work, we consider 13-moment Grad system with
its regularization proposed by Struchtrup and Torrilhon [6] (or R13 equations). The regularization of original system
implies that high-order moments are presented in the form of expressions containing 13 moments (density, three
components of velocity, six components of the symmetric stress tensor, and three components of the heat flux) and their
gradients. It was shown the solution of the resultant system of equations does not contain unphysical jumps of gas-
dynamic parameters inside the shock wave front at Mach numbers greater than 1.65 [5]. Later on, the regularization
procedure proposed by Struchtrup and Torrilhon was also applied for the 20-moment and 26-moment systems of Grad
equations [7].

During last 15 years several variants of R13 equations were presented after the first publication [6]. The dif-
ference between them lies in the relations for higher order moments [8, 9]. It has been shown that all variants are
well applicable for numerical modelling of the moderately rarefied slow gas flows and allow the modelling of main
nonequilibrium effects in low-velocity micro-flow problems [10, 11, 12, 13, 14, 15, 16, 17] and some moderately
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rarefacted supersonic flows [5, 18, 19, 15, 20, 21, 22]. The difficulty is that the solid wall boundary conditions for
R13 equations were obtained from one of the variants [10] which is not applicable to near hypersonic flows [9]. This
study is devoted to the demonstration of the numerical results of R13 variants (linear and nonlinear) for supersonic
flow over the flat plate. It is a classical fluid dynamic problem. Simple geometry of the problem allows to minimize
the geometrical factor influence to the investigated flow. Moreover, the comparison of different rarefied gas models
for the flow about a flat plate at zero angle of attack is especially interesting due to significant degree of thermal
non-equilibrium which is observed in the vicinity of the leading edge at any Knudsen number. In fact, local Knudsen
number in the vicinity of the leading edge tends to infinity (because of the leading edge is mathematically sharp)
and it is challenging for the gas models to predict the flow in this zone with sufficient accuracy. The applicability of
this continuum approach is tested by the comparison with the kinetic solution obtained by DSMC with SMILE++

software [23, 24].

PROBLEM FORMULATION

The formulation of the problem is presented in Fig. 1. The length of the plate is 1 (from 0.5 to 1.5 coordinates in
the bottom). The plate surface is modelled with full accommodation. The rest of bottom part has specular reflection
(symmetry plane). The computations were performed in a monatomic gas with hard-sphere molecular interaction
(ω = 0.5 in the power viscosity law) for two cases of the free-stream Mach number (Ma∞ = 2.0 and Ma∞ = 4.0).
Knudsen number based on the plate length is equal to Kn=0.05 in both cases. The free-stream average free path λ∞ is
defined by [25]

λ∞ =
4α(5 − 2ω)(7 − 2ω)

5(α + 1)(α + 2)
µ

ρ
(2πθ)−

1
2 , (1)

where ω = 0.5 and α = 1.0.

FIGURE 1. The computational domain and flow structure.

R13 EQUATIONS

Bulk Equations
The regularization of the Grads original 13-moment system [1, 3] was derived in 2003 [6] by a Chapman-Enskog ex-
pansion [26] of higher moment equations only, based on the assumption of faster relaxation times for higher moments.
Later the derivation of the R13 equations were developed explicitly without this assumption (Order of Magnitude
Method) [18]. Nevertheless, the resulting equations are meaningful, and, since they contain some higher order terms.
The tensor form of the regularized 13-moment system (R13) can be written as
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where the mass density ρ, velocity υi, temperature θ in energy units θ = k
m T (k is the Boltzmann constant and m the

particle mass), trace-free viscous stress tensor σi j (with σii = 0), and heat flux qi form the 13 primitive variables. The
pressure is given by the ideal gas state equation p = ρθ. The angular brackets in the subscripts indicate the trace-free
and symmetric part of the tensor [18]. τ is the relaxation time, with the dynamic viscosity coefficient µ. This system of
equations was derived for the Maxwell model of molecular interaction. At the same time, the system is used for other
potentials of molecular interaction with the viscosity law obtained on the basis of these potentials [18]. The viscosity
is defined by the power law

µ =
p
ν

= pτ = µre f

(
T

Tre f

)ω
, (7)

where 0.5 ≤ ω ≤ 1.0. The values ω = 0.5 and ω = 1.0 correspond to the models of hard spheres and Maxwell
molecules, respectively. As it was mentioned above, we consider the case with ω = 0.5.

The equations (2) – (4) present the conservation laws for mass, momentum and energy; equations (5) and (6)
are the moment equations for stress tensor and heat flux vector, respectively. These 13 equations must be closed by
constitutive relations for the higher moments Ri j, ∆, mi jk, and they differ based on the method of regularization. For
Grads original 13 moment equations [1], Ri j = ∆ = mi jk = 0. Higher-order moments have the following analytical
form [18]:
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where σNS F
i j and qNS F

i are the values from the Navier–Stokes and Fourier laws correspondingly:
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There are several nonlinear variants of R13 equations which are different in higher order moment relations [6,
18, 10, 14, 9, 8]. In the linear case (the terms presenting only gradient transport mechanism, GTM [7]), higher-order
moments have the following form:
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The rest of terms in the relations present, so-called, non-gradient transport mechanism (NGMT, [7]). Their influence
increases in the case of strong non-equilibrium presence [9]. All the R13 variants and their applicability evaluation to
shock-wave structure problem are presented in [8, 9]. The linear variant and nonlinear variant obtained by Order of
Magnitude Method [18] of R13 equations have been used in present study.



Solid Wall Boundary Conditions
The first attempt to derive solid wall boundary conditions for R13 equations was done by Gu and Emerson in [27].
Further the similar method was used by Struchtrup and Torrilhon to derive their version of the boundary conditions
[10] on the solid wall. The obtaining of macro-parameter boundary conditions is based on Maxwell accommodative
model [28] and the Grad's idea that the weight function in the distribution function moments should be even in the
normal component of the particle velocity [29]. The resulting kinetic boundary conditions with wall velocity have
following form [10]:
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where χ is accommodation coefficient for Maxwell accommodative model [28] and pχ = p + σnn
2 −

Rnn
28θ −

∆
120θ .

NUMERICAL METHODS

The variant of high resolution Godunov scheme with linear flow parameter reconstruction is chosen for numerical
solution of the R13 set of equations [21]. The second-order accuracy in space for smooth solutions is achieved using
essentially two-dimensional reconstruction procedures [12, 21] for the primitive variables within each computational
cell. The standard central difference approximation is used for elliptical part discretization of the fluxes (diffusion
terms). Six kinetic boundary conditions are taken as a base of mathematical model of the gas-wall interaction. The
complete system of the wall boundary conditions is obtained by the adding of the approximations of the selected
subset of the R13 bulk equations [30, 12] for the calculation of boundary convective flux. The resulted set of nonlinear
equations for the wall is solved with Newtons numerical method [12].

Direct Simulation Monte Carlo (DSMC) computations are performed with SMILE++ software system [23, 24]
that uses the majorant frequency scheme [31].

RESULTS OF NUMERICAL SIMULATION

The computational domain is presented in Figure 1. As it mentioned above, the Knudsen number based on the plate
length is equal to Kn=0.05. Figure 2 presents the comparison of the distributions of the local Mach number obtained
by R13 (Fig. 2a is the linear variant, Eqs. (12), and Fig. 2b is the nonlinear one, Eqs. (8) – (10)). First of all, there is
the strongest difference between the results of the linear and nonlinear versions of the R13 system with the DSMC
data at the leading edge of the plate. This area is the most difficult in this problem. The greatest gradients of all
macro-parameters of the flow are located right here. At the same time, this implementation of the boundary conditions
for the R13 system has not yet been tested in detail for similar large values of local derivatives near the wall. Fig. 3
demonstrates an overpredicted increase in gas temperature in this region, which noticeably pushes the shock wave
away from the plate. If we go further downstream from this area, we can see that the isolines of the Mach number,
temperature, and other gas macroparameters are getting closer to the DSMC result. Moreover, an interesting fact is



a b

FIGURE 2. Ma∞ = 2.0. Local Mach number distribution comparison of R13 (a – linear, b – nonlinear) results with DSMC data
(upper parts of the Figures).

a b

FIGURE 3. Ma∞ = 2.0. Temperature distribution comparison of R13 (a – linear, b – nonlinear) results with DSMC data (upper
parts of the Figures).

that the linear version of R13 behaves noticeably worse than the nonlinear one even with the Mach number of the
free-stream Mach number Ma = 2.0. This seems unusual due to the fact that in [9] it was shown that all variants of
R13 allow to obtain almost identical distributions of macro-parameters in the one-dimensional internal structure of
the shock wave with Ma ≤ 2.0.

There is the same situation in case of Ma∞ = 4.0. The solution of linear R13 version is worse than R13 variant
with non-gradient transport terms (NGMT). The zoomed region around the leading edge of plate is presented in
Figures 4 and 5. As it can be seen, the difference between the solutions increases with the increase of free-stream
Mach number. The shock wave offset from plate is also noticeably bigger. At the same time the nonlinear variant
gives better qualitative results in the zone farthest from the front edge of the plate.

CONCLUSION

The problem of supersonic flow over the flat plate has been solved by our implementation R13 linear and nonlinear
modifications. There are two two facts which arise here. The first one is the opened question of boundary conditions
on a solid wall in case of large gradients of macro-parameters. It is the question for the future study. It is not clear now
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FIGURE 4. Ma∞ = 4.0. Local Mach number distribution comparison of R13 (a – linear, b – nonlinear) results with DSMC data
(upper parts of the Figures).

a b

FIGURE 5. Ma∞ = 4.0. The temperature distribution comparison of R13 (a – linear, b – nonlinear) results with DSMC data (upper
parts of the Figures).

if it is the numerical or mathematical problem here because almost all problems which were solved by R13 equations
before (especially slow-velocity flows) had not such difficulties in near-boundary area for wall-boundary conditions
[10, 11, 12, 13, 15]. The second conclusion here is the obvious difference of both R13 variants even in the case of
Ma = 2.0 free-stream Mach number. It is led us to the idea that the nonlinear R13 variant becomes more preferable
for supersonic calculations even for moderate Mach number flows.
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