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a b s t r a c t 

Pressure retarded osmosis (PRO) power plants generate power from mixing of saltwater 

and freshwater by means of membrane systems. In this paper we present a model which 

describes the complete power station, suitable to optimize the power station both with 

respect to system parameters and in operating conditions. Special attention is dedicated 

to the flow model of the “core” membrane unit. It considers the relevant water and salt 

flows in the system. It also accounts for irreversible losses in the flow across the mem- 

brane as well as through the membrane unit, and in the surrounding pump-turbine sys- 

tem. The model represents a compromise between needed complexity (including the most 

relevant chemo-physics) and simplicity to allow rapid simulations which is an important 

prerequisit for optimisation. Finally, we optimise numerically, i.e., the net power output 

(per membrane area) with respect to geometric parameters, membrane parameters as well 

as operational parameters such as the applied pressure settings during operation. 

© 2019 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Earth’ largest 921 rivers discharge about 37 , 288 km 

3 
/ y or 1 . 18 × 10 9 l / s of freshwater into the worlds oceans [8] . As

the freshwater enters the oceans, it mixes with saltwater in an uncontrolled irreversible process and entropy is generated.

Whenever an irreversible process occurs, there is an associated potential to produce work. 

Thermodynamic analysis reveals that each liter of freshwater flowing into the oceans has a work potential of about

2.75 kJ that could be extracted by fully controlled mixing. Accordingly, the 921 largest rivers offer a total work potential

of 3.245 TWh, which is about one-fifth of the worldwide energy consumption [2] . Of course, not all freshwater discharge

will be accessible, and realistic power extraction processes will not be able to deliver the theoretical maximum work per

liter, but nevertheless the numbers show that power extraction from reversible mixing can be a factor in the future energy

production [13,14] . 

Power production by reversible mixing is based on osmotic processes with suitable membranes. When freshwater and

saltwater are brought into contact through a semipermeable membrane that lets only water pass, osmotic forces draw fresh-

water to the saltwater side, as long as the pressure difference across the membrane is below the osmotic pressure of the

saltwater. The strong desire of salt to draw more water is due to the system’s propensity to minimize its free energy by
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Fig. 1. Schematic representation of a pressure retarded osmosis (PRO) power plant by Statkraft [1] . 

Fig. 2. Schematic representation of a pressure-retarded osmosis (PRO) power plant with the pump-turbine setup. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

increasing the entropy of mixing. Thermodynamically speaking, the difference in chemical potential across the membrane

drives the flow of water and offers the opportunity to produce work [17] . 

The Norwegian company Statkraft ( www.statkraft.com ) has build a demonstration power plant based on the concept of

pressure retarded osmosis (PRO). A sketch of the prototype is shown in Fig. 1 , see [3,9,25] for more details. 

Pressure retarded osmosis power plants generally consist of membrane modules, turbine for power generation and pres-

sure exchanger. Fig. 2 shows the graphic representation of the substitute model we use to describe the PRO system design

in Fig. 1 and to which we will refer from now on. The pressure exchanger is simply substituted by two parts, a pump and

a turbine. The saltwater outflow is not split into two parts (as in the realisation in Fig. 1 ), turbine and pressure exchanger,

but the turbine and the pressure exchanger turbine substitute are put together in a single turbine. This makes no difference

in our power balance considerations. 

The freshwater and saltwater sides of the membrane unit are usually called feed and draw sides, so we will adjust our

notation accordingly. The mass flow J 0 
d 

of incoming saltwater (draw) enters the system at environmental pressure P E . Then,

the pump compresses it to the pressure P 0 
d 

. The mass flow of incoming freshwater (feed) J 0 
f 

is pressurized to P 0 
f 

. Both streams

then run along a membrane unit. 

Inside the membrane unit, freshwater at pressure P f is brought into contact with saltwater at pressure P d through the

semipermeable membrane. As long as the saltwater pressure is below the osmotic pressure, freshwater will pass through the

membrane and mix with saltwater. Because saltwater and freshwater have flow resistance, there are some pressure losses

along the membrane unit. The increased mass flow J L 
d 

of a diluted saltwater with outlet pressure P L 
d 

drives the turbine and

generates electricity. The resulting brackish (saltwater with the lower concentration than seawater) is then discharged back

in the environment. 

If the freshwater inflow J f is sufficiently large and the pressure losses are sufficiently small, the power generated by the

turbine W T is greater than the sum of W 

d 
P 

and W 

f 
P 

, that are the powers needed to pump and to pressurize water in the

draw and the feed side. Then, the resulting net power W net = W T − W 

d 
P 

− W 

f 
P 

is positive. The power plant design, membrane

http://www.statkraft.com
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Fig. 3. Cross-section through the membrane assembly along the flow. Saltwater at P 0 
d 

enters the membrane unit at x = 0 with initial draw flow J 0 
d 

. Osmotic 

forces draw water from the feed to the draw side of the membrane ( J w,in ) and salt in the opposite direction ( J s , in ). Obstacles provide mixing of permeate 

water and saltwater. Increased draw flow exits the membrane unit at J L 
d 

with reduced pressure P L 
d 

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

properties and operating conditions define the pressure losses and the amount of saltwater mass flow, which then – for

favorable operating conditions – give a certain net power output. The membrane setup is presented in Fig. 3 . 

The main flow direction is along the membrane length ( x -axis). The channel height is denoted as H , the membrane length

and width as L and Z , respectively. In the real application H � L and H � Z , therefore inflow and outflow boundary effects

are neglected. Moreover, the temperature is assumed to be a constant for all mass flows. The operating pressures have to be

chosen such that the hydraulic pressure difference �P is less than the osmotic pressure difference �π (see Fig. 7 ), therefore

freshwater is passing through the membranes. The inflow rate of pressurized saltwater J 0 
d 

increases to the outlet value J L 
d 
. 

As in any thermodynamic system, the amount of power produced will be reduced by irreversible losses such as pressure

losses in the pipes, the turbine and the pressure exchanger, friction in the flow through the membrane, and friction inside

the membrane unit. The losses depend on the details of construction, e.g., membrane material and thickness, length of flow

channels, etc. For a given unit with specified materials and dimensions, system performance depends on the detailed flow

setting, in particular the chosen pressures. Also, to have a better model description, it is essential to include relevant effects

like salt leakage through the membrane and the negative concentration polarization effect. 

The idea to produce energy via osmosis can be traced back to Pattle [19] (1954), and models for PRO have been developed

since the 1970’s [11–13,20] . A thorough historical review is provided by Achilli and Childress [3] (2010). We also refer to the

review of Logan and Elimelech [15] (2012). 

The near future relevance of this power source is related to technical feasibility and to economic profitability. The main

problem for the development of reliable and cost-effective PRO systems appears to be that of providing membranes with the

proper behavior and longevity. A crucial value with this respect is the power generation per membrane area. In Achilli and

Childress [3] the order of 3.5 W/m 

2 for seawater is reported. It seems that the value of 5 W/m 

2 is an important threshold

value for future realisations. 

In the last few years, the growing relevance of renewable energies and improvements in membrane technology, have

sparked new interest on the topic. In particular the modeling and simulation of such power plants has attracted partic-

ular interest. Models of different complexity have been proposed, including many of the (known) relevant physical and

chemical effects. Im portant effects in real settings are the reverse salt flow (RSF), the internal and the external concentra-

tion polarisation (ICP and ECP). Also, due to the known changes of the various flows, concentrations and pressures along

the membrane in flow direction models which resolve the spatial ( x ) dependence are necessary. Another important issue

are realistic boundary conditions for such a power plant. In many theoretical studies inflow conditions are used whereas

boundary conditions on the pressures would be more realistic and are much easier to realize. Various studies assume the

applied pressure over the membrane to be a given constant quantity and not to be the result of underlying (coupled) flow

equations. Finally let us mention that in many studies not the whole power station with the relevant components and losses

is considered but only the isolated membrane part. 

In Straub et al. [21] a x dependence in the flow equations is introduced, the effects of internal and external concentration

polarization and reverse salt flux are taken into account. The pressure difference is used as a input value. Maison et al.

[16] introduce the nonlinear coupling of the pressure and pressure differences and the flow direction is resolved in a discrete

model. In [18] an energy efficiency analysis is presented. Sung et al. [22] and Sundaramoorthy et al. [23] use a 2 dimensional

model for the membrane only, the pressure is nonlinearly coupled. In Wang et al. [26] the flow equations are resolved along

the flow direction, the pressure difference are introduced in an averaged way. 
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There are other complex applications where PRO is used as an additional energy recovery system e.g. for reverse osmosis

[24] . 

For a deeper and profound understanding of the possibilities and limitations of PRO systems, accurate models have to

be developed and used. In this paper we present a flow model which takes care of all the above described effect and

phenomena. It is designed to describe a complete PRO power plant, with emphasis on the losses in the membrane flow

assembly. The system will be characterized by resistance parameters for the flow through the membrane unit (flow parallel

to membrane), and through the membrane itself (flow perpendicular to membrane). Parameters of the systems are the flow

length L of the membrane unit, some defining properties of the membrane and the various flow pressures. 

This leads to a continuous stationary model for both the mass fluxes and the pressures along the membrane in the

fresh and the salt water part. As has meanwhile become standard, we include RSF, ICP and ECP [10] . Static mixing of the

saltwater with the incoming freshwater is employed to avoid, or at least reduce, concentration polarization, and the resulting

flow resistance plays a role for the overall performance of the system. With this the important pressure differences depend

on the position along the membrane and are self-consistently and nonlinearly coupled to the local fluxes and densities. We

describe the complete power plant by including the pressure exchanger and the power turbines. This leads to a parameter

dependent nonlinear Ordinary Differential Equations (ODE) system for which a corresponding boundary value problem has

to be solved. To our knowledge presently this model with the described properties is one of the most complete models used

to describe a PRO power station. This model allows for fast simulations and thus for optimization approaches, so we can

optimize with respect to the various applied pressures and with respect to system parameters. Therefore this model can be

applied both in the planning phase and in the operational phase of a PRO power station. 

In Section 2 we set up and analyze a one-dimensional mathematical model, that represents the dynamics in the mem-

brane unit. It consists of a simple system of conservation laws for mass and momentum. We complete the model first with

one sided boundary value conditions ( Section 2.1 ), as a simplest first case; then a more realistic set-up is considered, as-

signing the values of the pressures on the boundaries. In Section 2.2 we include the pressurizing pumps and the turbine.

In order to evaluate the performance of a complete PRO system we introduce the gross and net power output of the PRO

power station and the specific energy (per total volume flow). In Section 3 we scale the system, perform numerical tests and

optimize the net power output with respect to system and operating parameters. In Table 6 we collected a list of symbols. 

2. Mathematical model 

Here we introduce the system of balance laws that we intend to use to model the phenomena described in the previous

section. The direction of the membrane width Z has no influence on the system performance, so we normalize any variable

F ( x ) as ˆ F (x ) = F (x ) /Z. The extended model for full-scale PRO system is given by 

d ̂  J sd (x ) 

dx 
= −J s,in (x ) , 

d ̂  J wd (x ) 

dx 
= J w,in (x ) , 

d ̂  J s f (x ) 

dx 
= J s,in (x ) , 

d ̂  J w f (x ) 

dx 
= −J w,in (x ) , 

dP d (x ) 

dx 
= − f mix (Re H ) 

4 

ˆ J d (x ) 2 

ρd (x ) H 

3 
− 1 

H 

2 

d 

dx 

[
ˆ J d (x ) 2 

ρd (x ) 

]
, 

dP f (x ) 

dx 
= − f mix ( R̄e H ) 

4 

ˆ J f (x ) 2 

ρ f (x ) H 

3 
− 1 

H 

2 

d 

dx 

[
ˆ J f (x ) 2 

ρ f (x ) 

]
. (2.1) 

where the indices f and d refer to fresh (feed) and salt water (draw) part, respectively. The indices s and w refer to salt and

water, respectively. 

The unknowns are six, namely: the salt and water mass flows ˆ J s f , 
ˆ J w f and the pressure P f in the freshwater (feed) part

and the corresponding quantities ˆ J sd , 
ˆ J wd , P d in the saltwater (draw) part. 

The first four equations in (2.1) define at every point x the changes of the mass flows ˆ J f (x ) and 

ˆ J d (x ) due to the water

flow per length through the membrane J w,in from the freshwater to the saltwater part and due to the salt flow J s , in from the

saltwater to the freshwater part. 

The last two equations in (2.1) are the stationary momentum balance in the draw and feed part. Pressure loss is given

by friction (first term on the right hand side) and by convection (second term on the right hand side). In the friction term

we have the (dimensionless) friction coefficient f mix which depends on the Reynolds number Re H of the flow. 

In the following we will close the system be expressing the remaining quantities - the total mass flows ˆ J f , ˆ J d , the mass

densities ρ f , ρd , the water and salt flows J s,in , J w,in through the membrane - as functions of the six unknowns. 
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We start with the total mass flows in the freshwater and in the saltwater part: these are given by 

ˆ J f (x ) = 

ˆ J s f (x ) + 

ˆ J w f (x ) , ˆ J d (x ) = 

ˆ J sd (x ) + 

ˆ J wd (x ) , 

respectively. 

Next we consider the mass densities in (2.1) : the local mass densities of freshwater ρ f and of saltwater ρd are defined

as ratios of the corresponding mass and volume flows. Under the assumption of ideal mixing the volume flows ˙ V f and 

˙ V d of

the mixture is the sum of volume flows of the unmixed components: 

˙ V f = 

J w f 

ρw 

+ 

J s f 

ρs 
, ˙ V d = 

J wd 

ρw 

+ 

J sd 

ρs 
, (2.2)

where ρw 

and ρs are the mass densities of water and salt respectively. 

Then local mass density of saltwater can be calculated as the ratio of the local total mass and volume flows, 

ρd = 

J d 
˙ V d 

= 

J wd + J sd 

J wd 

ρw 

+ 

J sd 

ρs 

. (2.3)

Likewise, the local mass density of the freshwater is calculated as 

ρ f = 

J f 
˙ V f 

= 

J w f + J s f 

J w f 

ρw 

+ 

J s f 

ρs 

. (2.4)

Before we pass to the flows trough the membrane, let us make a comment on the channel height H which plays an impor-

tant role. The quantity on the left (change of the pressure) is a quantity per unit area (in Nm 

−2 = kg s 
−2 

m ), where the area

is intended orthogonal to the x flow direction. Therefore on the right hand side we have mass fluxes per unit area 

ˆ J d /H = J d / (ZH) , ˆ J f /H = J f / (ZH) 

(in kg s −1 m 

−2 ) obtained as total mass fluxes J f , J d (in kgs −1 ) divided by the area orthogonal to the flow direction formed by

a rectangle of height H and depth Z . 

Thus the friction term can be written as 

− f mix (Re H ) 

4 

ˆ J d (x ) 2 

ρd (x ) H 

3 
= − f mix (Re H ) 

2 

1 

2 H 

( ̂  J d (x ) /H) 2 

ρd (x ) 

where the 2 H in the denominator represents the limit of the so called hydraulic diameter 2 HZ/ (H + Z) for the mentioned

H × Z rectangle for Z → ∞ or H / Z → 0. 

To describe the water and salt flows J w,in and J s , in trough the membrane in (2.1) we need (chemo-physical) models. The

amount of permeating salt at a fixed point x along the membrane can be modeled by the first Fick’s Law [7] . Thus for the

mass flow of salt we have 

J s,in = B �c salt , (2.5)

where B is the salt permeability coefficient and �c salt is the salt concentration difference across the membrane at a fixed

point x . The salt concentration difference is given by the difference of the (relative) concentrations 

�c salt (x ) = 

ˆ J sd (x ) 

ˆ J sd (x ) + 

ˆ J wd (x ) 
−

ˆ J s f ( x ) 

ˆ J s f ( x ) + 

ˆ J w f (x ) 
. 

The mass flow of freshwater through the membrane at a fixed point x along the membrane can be modelled as proportional

to the difference of the two competing effects, the pressure difference �P (x ) = P d (x ) − P f (x ) and the osmotic pressure dif-

ference �π(x ) = πd (x ) − π f (x ) , where πd is the osmotic pressure in the draw side and π f the osmotic pressure in the feed

side: 

J w,in = A ( �π − �P ) . (2.6)

A denotes the membrane water permeability coefficient. 

At this point the only quantities to define are the osmotic pressures π F and πd . To do so we assume that the saltwater

is an ideal mixture of water and salt; the osmotic pressure reads [17] 

π = −ρw 

R w 

T 0 ln ( X w 

) , (2.7)

where T 0 is the systems absolute temperature, R w 

is the gas constant of water, ρw 

is the mass density of water and X w 

is

the mole fraction of water in the saltwater. 

Assuming the same velocities for water and salt, the mole fraction of water in saltwater is given by 

X w 

= 

ˆ J wd 

M W 

ˆ J wd 

M W 

+ 2 

ˆ J sd 

M S 

= 

(
1 + 

2 M W 

M S 

ˆ J sd 

ˆ J wd 

)−1 

, (2.8)
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where M W 

is the molecular weight of water and M S is the molecular weight of salt. The factor 2 accounts for the dissociation

of salt crystals into Na + and Cl − ions. Substituting (2.8) into the Eq. (2.7) gives us the final form of the osmotic pressure. 

Therefore the corresponding equations for the draw (saltwater) and feed (freshwater) osmotic pressures are given by 

πd = ρw 

R w 

T 0 ln 

(
1 + 

2 M W 

M S 

ˆ J sd 

ˆ J wd 

)−1 

, (2.9) 

π f = ρw 

R w 

T 0 ln 

(
1 + 

2 M W 

M S 

J s f 

J w f 

)−1 

. (2.10) 

So we can state a first, simple version of the model, completing Eq. (2.1) with: 

J s,in = B 

(
ˆ J sd (x ) 

ˆ J sd (x ) + 

ˆ J wd (x ) 
−

ˆ J s f (x ) 

ˆ J s f (x ) + 

ˆ J w f (x ) 

)
, 

J w,in = A ( �π − �P ) = A 

⎛ 

⎜ ⎜ ⎜ ⎝ 

ρw 

R w 

T 0 ln 

(
1 + 

2 M W 

M S 

ˆ J s f 

ˆ J w f 

)
(

1 + 

2 M W 

M S 

ˆ J sd 

ˆ J wd 

) − �P 

⎞ 

⎟ ⎟ ⎟ ⎠ 

. (2.11) 

However, this form form of the model does not include concentration polarization, which is an essential effect for the pro-

cess we intend to describe. To take into account this effect, we need to slightly modify (2.5) and (2.6) . There are two types of

concentration polarization effects: the external concentration polarization (ECP) and the internal concentration polarization 

(ICP). The concentration polarization mechanism is shown in Fig. 4 . 

The external concentration polarization effect is due to a thin layer of diluted solution appearing both in draw and feed

side of the membrane. Assuming perfectly mixed conditions, ECP can be neglected and the external boundary layers can

be ignored [11] , i.e. we set the salt concentrations c 1 = c 2 , c 4 = c 5 and the osmotic pressures π1 = π2 , π4 = π5 (see Fig. 4 ).

Thus from now on we can set πd = π1 = π2 and π f = π4 = π5 . 

To include the internal concentration polarization we follow [11] , where a model for the water mass flow through the

membrane is derived: 

J w,in = A 

⎡ 

⎢ ⎣ 

πd − π f exp ( J w,in K ) 

1 + 

B 

J w,in 
[ exp ( J w,in K ) − 1 ] 

− �P 

⎤ 

⎥ ⎦ 

. (2.12) 

Here K is the internal concentration polarization mass transfer coefficient of the membrane support layer, namely a measure

of the resistance to salt transport in the porous support. It can be represented as K = S/D s , that is the ratio of a structural

parameter S and the salt diffusion coefficient of the membrane D s . The structure parameter is given by S = τ t/ε where τ is

the tortuosity, ε is the porosity and t is the thickness of the membrane. 

It is easy to see that for no internal concentration polarization (i.e. K = 0 , S = 0 , τ = 0 ) we obtain immediately the simple

model (2.11) from above. 

Note that the Eq. (2.12) is not explicit for J w,in but it can be simplified by expanding exp (J w,in K) for small J w,in K. Then,

(2.12) transforms into 

J w,in = A 

[
πd − π f ( 1 + J w,in K ) 

1 + BK 

− �P 

]
(2.13) 

and thus the related explicit form of J w,in is computed solving (2.13) : 

J w,in = −A 

π f − πd + �P ( 1 + BK ) 

1 + K 

(
B + Aπ f 

) . (2.14) 

Let us finally discuss the coefficients A and B . The water permeability coefficient A is usually obtained experimentally or

given by the membrane manufacturer. However, assuming also an independent given (constant) salt permeability coefficient

B is not realistic. B depends in general on the value of A . This is the last refinement of the model we have to discuss. The

relation is given by 

B = B (x ) = 

A (1 − R )(�π − �P ) 

R 

, (2.15) 

where R is the salt rejection coefficient (amount of rejected salt in %), which is usually given by the membrane manufac-

turer. As B now depends on �π and �P , it becomes also space dependent. Eq. (2.15) shows that the high water permeability

trades-off with the low salt selectivity and, vice versa, high salt selectivity of the membrane results in low water perme-

ability. 
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Fig. 4. Cross-section of the membrane unit across the flow; c i are the salt concentration values: c 1 – draw side of the membrane, c 2 – membrane surface 

on the saltwater part, c 3 – inside membrane porous support, c 4 – membrane surface on the freshwater part, c 5 – feed side of the membrane [11] . We 

denote by π i the related osmotic pressures. 

 

 

 

So we can finally write an updated version of (2.11) that includes internal concentration polarization effects: 

J w,in (x ) = −A 

π f (x ) − πd (x ) + �P (x ) ( 1 + B (x ) K ) 

1 + K 

(
B (x ) + Aπ f (x ) 

) , 

J s,in (x ) = B (x )�c salt (x ) , 

B (x ) = 

A (1 − R )(�π(x ) − �P (x )) 

R 

. (2.16)

The complete set of Eq. (2.1) together with the definitions of the various terms in this section have to be completed with

additional boundary conditions. 

2.1. Boundary conditions 

The differential Eq. (2.1) have to be equipped with boundary conditions. One possibility is to prescribe conditions for the

six unknowns at the right boundary (entrance), i.e. : 

ˆ J sd (x ) | x =0 = 

ˆ J 0 sd = 

ˆ J 0 
sd 

ˆ J 0 
d 

ˆ J 0 d 

ˆ J wd (x ) | x =0 = 

ˆ J 0 wd = 

ˆ J 0 
wd 

ˆ J 0 
d 

ˆ J 0 d 

ˆ J s f (x ) | x =0 = 

ˆ J 0 s f = 0 , 

ˆ J w f (x ) | x =0 = 

ˆ J 0 w f = 

ˆ J 0 f , 
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P s (x ) | x =0 = P 0 s , 

P f (x ) | x =0 = P 0 f . (2.17) 

Mathematically the problem with these conditions becomes an initial value problem (IVP). The coefficients ˆ J 0 
sd 

/ ̂  J 0 
d 

and 

ˆ J 0 
wd 

/ ̂  J 0 
d 

are the salt and the water mass fractions in the incoming saltwater assuming a salinity of ˆ J 0 
sd 

/ ̂  J 0 
wd 

. There is no incoming

salt in the freshwater part ( ̂  J 0 
s f 

= 0 ), and the total incoming saltwater flow 

ˆ J 0 
d 

and total incoming freshwater flow 

ˆ J 0 
f 

will be

assumed to be equal (see example in Table 4 ). To our knowledge this type of boundary conditions was used in all models

from the literature where a detailed x dependence of the quantities (along the flow in the membrane) is described (e.g.

[16,21,26] ). 

However, in reality controlling saltwater J 0 
d 

and freshwater J 0 
f 

inflow rates is difficult, mainly because of high dependency

on the membrane unit design. Clearly, membrane module geometry is fixed and cannot change once it is manufactured.

Technically the control of the fluxes would be realized by using the pumps at the entrances and therefore choosing appro-

priate pressures P 0 
f 

and P 0 
d 

. Therefore it is natural to prescribe directly the pressures on the two sides. 

Thus, we would like to determine the incoming draw and feed flow rates with respect to chosen in and out-let saltwater

and freshwater pressures. To answer this question, we have to formulate a two sided boundary value problem. 

We need to equip the model with 6 conditions. First, we start with saltwater P 0 
d 

and freshwater P 0 
f 

inlet pressures. Also

we prescribe saltwater and freshwater outlet pressures P L 
d 

and P L 
f 

respectively. Then, we assume that incoming feed flow

consists of pure water only, J 0 
s f 

= 0 . 

To find the last missing condition we will introduce a new function, the mass fraction on the draw side C d ( x ), a quantity

that we can compute easily and that we can prescribe at x = 0 . 

The salt to water mass fraction in the draw side of the membrane is given as the ratio of salt to pure water flow: 

C d (x ) = 

ˆ J sd (x ) 

ˆ J wd (x ) 
or ˆ J sd (x ) = C d (x ) ̂  J wd (x ) . (2.18)

Differentiating ˆ J sd (x ) with respect to x and combining with the first equation from (2.1) gives 

d ̂  J sd (x ) 

dx 
= 

dC d (x ) 

dx 
ˆ J wd (x ) + 

d ̂  J wd (x ) 

dx 
C d (x ) = −J s,in (x ) . (2.19)

Then, we can write the differential equation for salt to water mass fraction in the draw side as 

dC d (x ) 

dx 
= −

J s,in (x ) + 

d ̂  J wd (x ) 

dx 
C d (x ) 

ˆ J wd (x ) 
. (2.20) 

Changing the first equation in (2.1) to (2.20) will result in the following model: 

dC d (x ) 

dx 
= −

J s,in (x ) + 

d ̂  J wd (x ) 

dx 
C d (x ) 

ˆ J wd (x ) 
, 

d ̂  J wd (x ) 

dx 
= J w,in (x ) , 

d ̂  J s f (x ) 

dx 
= J s,in (x ) , 

d ̂  J w f (x ) 

dx 
= −J w,in (x ) , 

dP d (x ) 

dx 
= − f mix (Re H ) 

4 

ˆ J d (x ) 2 

ρd (x ) H 

3 
− 1 

H 

2 

d 

dx 

[
ˆ J d (x ) 2 

ρd (x ) 

]
, 

dP f (x ) 

dx 
= − f mix ( R̄e H ) 

4 

ˆ J f (x ) 2 

ρ f (x ) H 

3 
− 1 

H 

2 

d 

dx 

[
ˆ J f (x ) 2 

ρ f (x ) 

]
. (2.21) 

In the equations above, updated terms ρd ( x ), �c salt ( x ), ˆ J d (x ) and J s , in ( x ) are given as 

ρd (x ) = 

C d (x ) + 1 

1 
ρS 

C s (x ) + 

1 
ρW 

, �c salt (x ) = 

C s (x ) 

C s (x ) + 1 

−
ˆ J s f ( x ) 

ˆ J s f ( x ) + 

ˆ J w f (x ) 
, 

ˆ J d (x ) = C d (x ) ̂  J wd (x ) + 

ˆ J wd (x ) , J s,in (x ) = B (x )�c salt (x ) . (2.22) 

We can finally introduce the boundary conditions for Eq. (2.21) (see example in Table 5 ): 
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C d (x ) | x =0 = C 0 d = 

ˆ J 0 
sd 

ˆ J 0 
wd 

, 

ˆ J s f (x ) | x =0 = 0 kg/s, 

P d (x ) | x =0 = P 0 d , 

P d (x ) | x = L = P L d , 

P f (x ) | x =0 = P 0 f , 

P f (x ) | x = L = P L f = P E . (2.23)

Some of these quantities are fixed: C 0 
d 

= 

ˆ J 0 
sd 

/ ̂  J 0 
wd 

is the salinity of the incoming saltwater; P L 
f 

also does not change as the

freshwater channel does not end up in a turbine, so we have sea level standard external pressure; finally the incoming salt

flow in the feed side ˆ J 0 
s f 

is 0. 

We are left with three parameters, P 0 
d 
, P L 

d 
and P 0 

f 
, that we may discuss to obtain the optimal set of the operating pres-

sures. 

Since we do not know which type of conditions will prevail in future applications of such models, in this paper we

use them both. Although the two sided conditions are numerically more costly, we believe that the two sided pressure

conditions are easier to combine with realistic settings in experiments. Therefore we propose to use the two sided conditions

in the future. 

2.2. Net power 

To complete the model, we introduce a suitable expression for the net power produced by the PRO power plant: 

W net = W T − W 

d 
P − W 

f 
P 
, (2.24)

where W T is turbine power production, W 

d 
P 

is pump power demand to pressurize saltwater and W 

f 
P 

is pump power demand

to pressurize freshwater. 

Saltwater pump pressurizes incoming seawater to pressure P 0 
d 
, hence we can define 

W 

d 
P = 

1 

εP 

J 0 
d 

ρ0 
d 

(
P 0 d − P E 

)
. (2.25)

Here, ρ0 is the mass density of incoming saltwater, εP is the pump efficiency, J 0 
d 
/ρ0 

d 
is the volume flow of the incoming

saltwater and P E is environmental pressure. 

The pump power to pressurize freshwater is given by 

W 

f 
P 

= 

1 

εP 

J 0 
f 

ρ0 
f 

(
P 0 f − P E 

)
. (2.26)

The turbine is driven by the pressure difference between P L 
d 

and P E . Therefore, we can describe the turbine power generation

as 

W T = εT 

J L 
d 

ρL 
d 

(
P L d − P E 

)
, (2.27)

where ρL is the mass density of exiting saltwater, εT is the turbine efficiency and J L 
d 
/ρL 

d 
is the volume flow of exiting

saltwater. 

If εP = 1 then the pump is fully reversible. However, the typical pump efficiencies are around 95 % and for the turbine

90 %. For sake of simplicity, we will assume εP = εT . 

The power per width Z, ˆ W net , is given by 

ˆ W net = 

ˆ W T − ˆ W 

d 
P − ˆ W 

f 
P 

ˆ W T = εT 

ˆ J L 
d 

ρL 
d 

�P L d , 
ˆ W 

d 
P = 

1 

εP 

ˆ J 0 
d 

ρ0 
d 

�P 0 d , 
ˆ W 

f 
P 

= 

1 

εP 

ˆ J 0 
f 

ρ0 
f 

(
P 0 f − P E 

)
. 

A more common and useful criteria to estimate PRO system performances is the power per membrane area, defined as: 

W̄ net = 

ˆ W net 

L 
= 

W net 

ZL 
, (2.28)

where L is the membrane length. 
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Table 1 

Scaling table with typical reference values. 

Quantity Reference value Typical reference value 

Length x x r = L 1 m 

Pressure P P r = P E = P L 
f 

10 5 kg m 

−1 
s −2 

Density ρ ρr = ρw 10 3 kg m 

−3 

Flux J J r = 

√ 

H 3 x r P r ρr 10 −2 kg s 
−1 

 

 

 

 

 

 

 

 

 

In Section 4 , when evaluating the performances of our model, we will use mainly W̄ net ; however it is worth mentioning

another quantity that can be useful to estimate PRO system performance, the specific energy, that is the energy extracted

per total volume of the feed and draw solutions combined. In our notation the specific energy is: 

SE = 

W net 

J 0 
d 
/ρ0 

d 
+ J 0 

f 
/ρ0 

f 

, (2.29) 

measured in kWh/m 

3 . 

3. Numerical simulations 

3.1. Scaling 

Before discussing the numerical results, we scale the equations in order to better understand the relevant dimensionless

parameters and the role of the various terms. We use the reference values listed in Table 1 . The values are of the same order

of the ones in [16] and refer to a full scale PRO system. Contrary to that often “coupon-scale” examples are considered for

both simulations and experiments (see e.g. [16,21] ). 

We remark that for every scaled quantity we set ˜ f = f/ f r . In order to avoid a too heavy notation we use the same

symbols for the scaled quantities (without ˜ () ). 

The scaled equations for the one sided IVP are: 

d ̂  J sd (x ) 

dx 
= −γ J s,in (x ) , 

d ̂  J wd (x ) 

dx 
= γ J w,in (x ) , 

d ̂  J s f (x ) 

dx 
= γ J s,in (x ) , 

d ̂  J w f (x ) 

dx 
= −γ J w,in (x ) , 

dP d (x ) 

dx 
= − f mix (Re H ) 

4 

ˆ J d (x ) 2 

ρd (x ) 
− b 

d 

dx 

[
ˆ J d (x ) 2 

ρd (x ) 

]
, 

dP f (x ) 

dx 
= − f mix ( R̄e H ) 

4 

ˆ J f (x ) 2 ρ f (x ) − b 
d 

dx 

[
ˆ J f (x ) 2 

ρ f (x ) 

]
, (3.1) 

with parameters 

γ = 

x 2 r AP r 

J r C r 
∼ 2 . 5 · 10 

−2 b = 

H 

x r 
∼ 10 

−4 . (3.2) 

The convection term in the equations for pressure has a smaller effect than the friction term (as long as no rapid changes

in x occur). 

The amount of permeate salt J s , in ( x ) and water J w,in (x ) as well as the feed 

ˆ J f (x ) and draw 

ˆ J d (x ) flows are given as 

ˆ J d (x ) = 

ˆ J sd (x ) + 

ˆ J wd (x ) , 

ˆ J f (x ) = 

ˆ J s f (x ) + 

ˆ J w f (x ) , 

J w,in (x ) = −π f (x ) − πd (x ) + �P (x ) ( 1 + AP r KB (x ) ) 

1 + AP r K 

(
B (x ) + π f (x ) 

) , 

J s,in (x ) = B (x )�c salt (x ) , (3.3) 

where π f ( x ) and πd ( d ) are the osmotic pressures at feed and draw sides of the membrane unit, respectively. Additionally,

total local densities, salt concentration difference across the membrane, salt permeability coefficient, salt diffusion coefficient
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and structural parameter of the membrane support layer, as well as Reynolds number and friction factor are of the following

form: 

ρd (x ) = 

ˆ J sd (x ) + 

ˆ J wd (x ) 
ρW 

ρS 

ˆ J sd ( x ) + 

ˆ J wd (x ) 
, ρ f (x ) = 

ˆ J s f (x ) + 

ˆ J w f (x ) 
ρW 

ρS 

ˆ J s f ( x ) + 

ˆ J w f (x ) 
, 

�c salt (x ) = 

ˆ J sd (x ) 

ˆ J d (x ) 
−

ˆ J s f (x ) 

ˆ J f (x ) 
, �π = πd − π f , 

πd = 

ρw 

R w 

T 0 
P re f 

ln 

(
1 + 

2 M W 

M S 

ˆ J sd 

ˆ J wd 

)−1 

, π f = 

ρw 

R w 

T 0 
P re f 

ln 

(
1 + 

2 M W 

M S 

ˆ J s f 

ˆ J w f 

)−1 

, 

�P = P d − P f , B (x ) = 

(1 − R )(�π(x ) − �P (x )) 

R 

, 

Re H = 

J r 

x r 

ˆ J (x ) 

2 η
, K = 

S 

D s 
, 

f mix = 

96 

Re H 

(
4 . 86 + 0 . 65 

√ 

Re H 

)
, S = 

τ t 

ε
. (3.4)

The scaled equations for the two sided BVP are: 

dC d (x ) 

dx 
= −

γ J s,in (x ) + 

d ̂  J wd (x ) 

dx 
C d (x ) 

ˆ J wd (x ) 
, 

d ̂  J wd (x ) 

dx 
= γ J w,in (x ) , 

d ̂  J s f (x ) 

dx 
= γ J s,in (x ) , 

d ̂  J w f (x ) 

dx 
= −γ J w,in (x ) , 

dP d (x ) 

dx 
= − f mix (Re H ) 

4 

ˆ J d (x ) 2 

ρd (x ) 
− b 

d 

dx 

[
ˆ J d (x ) 2 

ρd (x ) 

]
, 

dP f (x ) 

dx 
= − f mix (Re H ) 

4 

ˆ J f (x ) 2 

ρ f (x ) 
− b 

d 

dx 

[
ˆ J f (x ) 2 

ρ f (x ) 

]
, (3.5)

with B , ˆ J f , J w,in from (3.3) and 

ˆ J d (x ) = C d (x ) ̂  J wd (x ) + 

ˆ J wd (x ) , 

ρd (x ) = 

C s (x ) + 1 

ρw 

ρS 
C s (x ) + 1 

, 

�c salt (x ) = 

C d (x ) 

C d (x ) + 1 

−
ˆ J s f (x ) 

ˆ J s f (x ) + 

ˆ J w f (x ) 
. (3.6)

Finally, we remark that also the one sided (2.17) and two sided boundary conditions (2.23) , the net power (2.28) and the

specific energy (2.29) have to be scaled. The fluxes are scaled by J r , the pressures by P r , C d is already a dimensionless

quantity. The net power W net is scaled by the reference values J r P r 
ρr 

, W̄ net accordingly by J r P r 
ρr ZL ; for the specific energy we use

the reference value P r . 

Now we can start with some simulations. We mention that the aim of the paper is to show the qualitative properties of

the proposed model. Standard parameter sets from the literature are used in order to verify the qualitative behaviour. The

parameters characterizing the membrane are summed up in Table 2 , while in Table 3 we introduce the remaining quantities

included in our set up. For the membrane parameter we refer to [11] and also to [4,16,21] where a similar set of parameters

for the PRO related considerations and simulations are used. Note that the salt permeability B is not prescribed as a fixed

parameter but given by the relation (3.4) . 

First we start our simulations by considering those as fixed parameters and secondly we will discuss the dependence on

the most relevant ones. 

Let us mention that all numerical simulations are done in Matlab using standard initial and boundary value problem

solvers. Since the direct simulations are extremely fast and robust, we optimize “by hand” running through the parameter

ranges under consideration. 
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Table 2 

Input data for the membrane sample [11] . 

Water permeability A 2 . 5 × 10 −9 s / m 

Structure parameter S 1 × 10 −4 m 

Height H 1 × 10 −3 m 

ICP mass transfer coefficient K 10 2 m 

2 s/kg 

Temperature T 297 K 

Length L 2 m 

Width Z 1 m 

Table 3 

Input data for fixed quantities. 

Temperature T 0 297 K 

Water mass density ρW 10 0 0 kg/m 

3 

Salt mass density ρS 2165 kg/m 

3 

Water molecular weight M W 18 kg/kmol 

Salt molecular weight M S 58.44 kg/kmol 

Water gas constant R w 462 J/kmolK 

Saltwater viscosity η 1.3 ×10 −3 kg/(ms ) 

Incoming salinity C 0 
d 

= 

ˆ J 0 
sd 

/ ̂ J 0 
wd 

35/983 

Incoming salt water salt mass fraction ˆ J 0 
sd 

/ ̂ J 0 
d 

35/1018 

Incoming salt water water mass fraction ˆ J 0 
wd 

/ ̂ J 0 
d 

983/1018 

Pump and turbine efficiency εP = εT 0.95 

Salt Rejection R 94% 

Table 4 

Initial conditions. 

Salt flux in fresh water J s f (x ) | x =0 = J 0 
s f 

0 kg/s 

Water flux in fresh water J w f (x ) | x =0 = J 0 
w f 

= J 0 
f 

0.01353 kg/s 

Salt flux in saltwater J sd (x ) | x =0 = J 0 
sd 

35 
1018 

0 . 01353 kg/s 

Water flux in saltwater J wd (x ) | x =0 = J 0 w 
983 
1018 

0 . 01353 kg/s 

Saltwater pressure P s (x ) | x =0 = P 0 s 1.151 · 10 6 Pa 

Fresh water pressure P f (x ) | x =0 = P 0 
f 

1.1 · 10 5 Pa 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2. Prescribed data at the inflow side: Initial value problem 

The one sided boundary conditions we start with are listed in Table 4 . As already mentioned, it is very common to use

such kind of conditions where the fluxes have to be prescribed, although the practical realisation is non trivial. We assume

purely sweet water at the fresh water side inlet and apply an overpressure for both the fresh water and the draw water

side, to make sure that a flow dynamics is induced. 

We start by visualizing the behavior of flux and pressure along x in the saltwater and in the freshwater channels ( Fig. 5 ).

The behaviour corresponds to our expectations, the total flow in the draw side is increasing, in the fresh water side decreas-

ing. This is due to the water passing through the membrane (see Fig. 6 ). For the change of the volume flow the salt flow

through the membrane plays a minor role. The pressure losses in both sides can also be seen. Interesting is the relation

between the different pressures along the flow direction in Fig. 7 . For very simple models the maximal power output is

expected for �P = (�π/ 2) (see [4] ). In reality this ratio will assume certain values and change along the flow direction, as

we can also observe in the simulation in the last panel of Fig. 7 . Notice that the operating condition are prescribed so that

�P < �π . 

Now we start to look for optimal operating conditions. In Fig. 8 we see how the net power per area W̄ net depends on the

values assigned to initial pressures (a) and to initial flux (b). We have max ( W̄ net ) ∼ 1 . 9 W/m 

2 and we obtain a first set of

optimal values for the parameters P 0 
d 
, P 0 

f 
, J 0 

d 
, J 0 

f 
. 

We can also look for optimal system parameters when designing a power plant. An interesting parameter is the mem-

brane length L . In Fig. 9 we see its influence on both the net power and the specific energy. The power output becomes

optimal at a certain lenght, for longer membranes the losses become again dominant. The optimum with respect the spe-

cific energy is reached at a much higher length, at about 7 m . This is not surprising, since the optimised target function was

different. 

Next we compare the influence of the different physical effects. In Fig. 10 (a) we compare the power per membrane area

obtained with our complete model, without the effects of internal concentration polarization (i.e., K = 0 ), and with the ideal

assumption of a membrane completely impermeable to salt (i.e., R = 100% and B = 0 ). We conclude that these effects have

a non negligible impact on the results, in this example up to 15 %. Therefore it is necessary to include these effects. 
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Fig. 5. Sea water flux J d and pressure P d , and fresh water flux J f and pressure P f along x . 

Fig. 6. Water flux J w,in and salt flux J s , in , across the membrane, along x . 

 

 

 

 

In Fig. 10 (b) we compare the gross (turbine) power output and the net power output. The former is monotonically

increasing in the applied pressure difference (between draw and fresh water input), the latter has the already know optimal

(maximum) value. 

3.3. Prescribed pressures at in- and outflow 

As already discussed the most realistic data to be described at the boundaries are the applied pressures. However, we

only have 4 applied pressures but the structure of the set of equations requires 6 conditions. The 2 missing conditions are
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Fig. 7. Osmotic pressure �π , hydraulic pressure difference �P , and their ratio, along x .. 

Fig. 8. (a) Power per membrane area as function of hydraulic pressures P 0 
d 

and P 0 
f 
, maximal value at P 0 

f 
= 10 5 Pa and P 0 

d 
= 1 . 25 · 10 6 Pa. (b) Power per 

membrane area as function of inlet draw and feed flows J 0 
d 

and J 0 
f 
, maximal value at J 0 

f 
= 0 . 0117 kg/s and J 0 

d 
= 0 . 0038 kg/s. 

 

 

 

 

 

 

 

 

 

obtained almost naturally, the vanishing salt content at the fresh water input and the salt concentration at the salt water

input given by 35/983 as the standard average for sea water. These boundary data are summarized in Table 5 . 

We assume the freshwater outlet pressure as the standard ambient pressure since there is no pump, turbine or similar.

We are left with P 0 
d 
, P L 

d 
and P 0 

f 
, as parameters that we are able to control, by controlling the two pumps at x = 0 and the

turbine in x = L . The only restriction that we require on these quantities are P 0 
d 

> P L 
d 

and P 0 
f 

> P L 
f 
, in order to keep the flow

from right to left. 

After investigating the dependence of the net power production on these three pressures, we will look at the main

parameters given in Tables 2 and 3 . 

In Fig. 11 (a) we see how the power production depends on the pressures that we assign at the inlet and at the end of

the saltwater channel. Here we are considering only the case P 0 s > P L s , a left to right flow, with P 0 
d 
, P L 

d 
∈ [1.1, 1.4] · 10 6 Pa .

We obtain the maximal value for net power of max (W net ) = 1 . 8954 W/m 

2 
, at P 0 

d 
= 1 . 247 · 10 6 Pa and P L 

d 
= 1 . 2349 · 10 6 Pa

(about 12 bar over pressure). A huge part of the energy produced is balanced by that consumed in the pump. And we see

that there is a linear relation between the P 0 
d 

and P L 
d 

for the highest values (the red area in Fig. 11 (a)). 
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Fig. 9. (a) Power per membrane area as function of membrane length L , maximal value at L = 1 . 7474 m. (b) Specific energy as function of membrane 

length. 

Fig. 10. (a) Comparing the complete model ( max ( ̄W net ) = 1 . 86 W/m 

2 
), with a model that does not take into account the effects of internal concentration 

polarization ( max ( ̄W net ) = 1 . 98 W/m 

2 
) and a model for a membrane completely impermeable to salt ( max ( ̄W net ) = 2 . 15 W/m 

2 
). (b) Comparing the net 

power generated for membrane area W̄ net to W̄ T , the power per membrane area generated in the turbine, in the complete model. 

Table 5 

Boundary conditions. 

Data in x = 0 

Saltwater pressure (pump) P d (x ) | x =0 = P 0 
d 

1.151 · 10 6 Pa 

Fresh water pressure (pump) P f (x ) | x =0 = P 0 
f 

1.1 · 10 5 Pa 

Salt flux in fresh water J s f (x ) | x =0 = J 0 
s f 

0 kg/s 

Fraction of salt in saltwater C d (x ) | x =0 = C 0 
d 

35/983 

Data in x = L 

Saltwater pressure (turbine) P d (x ) | x = L = P L 
d 

1.141 · 10 6 Pa 

Fresh water pressure (-) P f (x ) | x = L = P L 
f 

= P E 10 5 Pa 

Fig. 11. (a) Dependence on P 0 
d 

and P L 
d 

of net power per membrane unit area. Maximal net power at P 0 
d 

= 1 . 247 · 10 6 and P L 
d 

= 1 . 2349 · 10 6 . (b) Dependence 

on P 0 
f 

. Maximal net power at P 0 
f 

= 1 . 1061 · 10 5 . 
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Table 6 

List of symbols. 

Quantity Symbol 

Height of the membrane unit H 

Width of the membrane unit Z 

Length of the membrane unit L 

position along the membrane unit x 

Salt flux in fresh water/salt flux in fresh water per with J s f , ˆ J s f 

Water flux in fresh water/water flux in fresh water per with J w f , ˆ J w f 

Flux in fresh water/flux in fresh water per with J f , ˆ J f 
Salt flux in salt water/salt flux in salt water per with J sd , ˆ J sd 

Water flux in salt water/water flux in salt water per with J wd , ˆ J wd 

Flux in salt water/flux in salt water per with J d , ˆ J d 
Water flux through the membrane from fresh to salt water J w,in 

Salt flux through the membrane fram salt to fresh water J s , in 
Salt water mass density ρd 

Fresh water mass density ρ f 

Water mass density ρW 

Salt mass density ρS 

Water molecular weight M W 

Salt molecular weight M S 

Water mole fraction X w 
Salt water volume flow 

˙ V d 
Fresh water volume flow 

˙ V f 
Salt water pressure P s 
Fresh water pressure P f 
Pressure difference �P 

Salt water part osmotic pressure π s 

Fresh water part osmotic pressure π f 

Osmotic pressure difference �π

Pump power salt water part W 

d 
P 

Pump power fresh water part W 

f 
P 

Turbine power W T 

Net power W net 

Salinity in the salt water part C d 
Salt concentration difference �c 

Reynolds number Re H 
Friction coefficient f mix 

Temperature T 0 
Water gas constant R w 
Saltwater viscosity η

Pump/turbine efficiencies εP , εT 

Salt Rejection R 

Water permeability A 

Salt permeability coefficient B 

Membrane structure parameter S 

Membrane tortuosity τ

Membrane porosity ε

Membrane thickness t 

ICP mass transfer coefficient K 

Fig. 12. (a) Dependence of net power on membrane length. Max (W net ) = 1 . 899 W/m 

2 
, at L = 1 . 9293 m . (b) Dependence of specific energy on membrane 

length. 
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Fig. 13. (a) Dependence of net power on channel hight. Max (W net ) = 1 . 899 W/m 

2 
, at H = 0 . 001 m . (b) Dependence on of net power on pump and turbine 

efficiency. Minimum efficiency required: εP = εT > 0 . 852 . 

Fig. 14. (a) Dependence on membrane ICP mass transfer coefficient K . (b) Dependence on membrane water permeability A . Minimum required A > 0 . 4424 ·
10 −9 s / m . (c) Dependence on membrane salt rejection R . Minimum required: R > 0.5102. 

 

 

 

 

 

 

 

 

 

In Fig. 11 (b) we explore the dependence on the pressure at the inlet of the fresh water; according to our set-up this is

due to the pressurizing pump, here with P 0 
f 

∈ [1, 1.5] · 10 5 Pa , while the left side of the fresh water pipe is free, with constant

pressure P E = 10 5 Pa . Increasing P 0 
f 

helps increasing the power production, until the costs for the pump weight too much in

the net power computation, and W net starts decreasing. With this we have a good idea for which triple of (P 0 
d 
, P L 

d 
, P 0 

f 
) we

obtain the highest net power (per area) production. 

Having an idea about the optimal pressure boundary data, we can begin to investigate some of the other relevant pa-

rameters of our set up. We vary the geometry and the efficiencies of the pump and the turbine, and investigate both the

net power (per area) output and the specific energy. 

In Fig. 12 we vary the length of the membrane (along the flow direction) and see an optimal value of about 2 m

for the net power output and a higher value (about 5 − 6 m ) for the specific energy. For short membranes we do not

transfer enough fresh water to the salt water side, for long membranes the losses (in pressure due to friction) become

dominant. 
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Similar, the situation for the channel height H in Fig. 13 (a). For small H the frictional losses dominate, for large H the

transfered freshwater through the membrane (related to the flux in the salt water part) looses importance. 

In Fig. 13 (b) we study the dependence of the net power on the pump and turbine efficiency ε assumed to be equal. The

dependence is linear with a strong ratio, i.e. an increase of the efficiency from of 5 % increases the net power per area by

1 W/m 

2 . For the data set used there is a lower threshold at 85% below which we cannot gain power. 

In Fig. 14 we summarize the effects of the parameters characterizing the membrane: the ICP mass transfer coefficient K ,

the water permeability A and the salt rejection R . As expected, increasing K decreases the power output (seemingly linear).

There is a lower threshold for the water permeability A , above the threshold there is a nonlinear direct relation between

A and the power output. Also, there is a lower threshold for the salt rejection R , above that value there is (seemingly)

linear relation between R and net power output. We see that the proposed model offers the possibility to investigate the

dependence of the highly relevant quantities net power output and specific energy on system parameters or on control

quantities such as boundary data. 

4. Conclusions 

We present a model which gives an overall description of a PRO power station with the aim of optimizing key quantities

such as net power output or specific energy. The model describes the detailed dependence of the quantities along the flow

in the membrane ( x dependence), which results to be essential due to the significant changes of the quantities in that

direction. This approach makes it possible to include a precise description of the nonlinear coupling of the pressures at each

position along the flow in the membrane. We discuss to different possibilties of boundary conditions and propose the two

sided boundary conditions for future applications. 

In addition - as it is meanwhile standard in the membrane literature - we include reverse salt flow and internal and

external concentration polarisation along the membrane. 

We consider the presented model as a step towards accurate modeling of PRO systems. Our results show that PRO per-

formance can vary drastically with design and settings, and thus underlines the need and usefulness of reliable and robust

models for PRO performance optimization. We believe that our model includes the most relevant known chemo-physical

effects to be considered for a PRO system. On the other hand the model is simple enough to allow for optimizing with

respect to system and operational parameters. 

We are convinced that models of this type can significantly contribute in the design and the development of future PRO

systems. Exact models like the presented one can be used i.e. to further evaluate advanced configurations with multi-staging

[5] , or combined reverse and forward osmosis processes for energy storage [6] . 

References 

[1] http://www.yuvaengineers.com/wp- content/uploads/2010/04/osmotic- power- 7.jpg . 
[2] International Energy Agency (2018), 2012 Key World Energy Statistics, http://www.iea.org/publications/freepublications/ , IEA. 

[3] A . Achilli , A .E. Childress , Pressure retarded osmosis: From the vision of sidney Loeb to the first prototype installation – review, Desalination 261 (2010)
205–211 . 

[4] A. Achilli , T.Y. Cath , A.E. Childress , Power generation with pressure retarded osmosis: an experimental and theoretical investigation, Desalination 343
(2009) 42–52 . 

[5] D. Bharadwaj , T.M. Fyles , H. Struchtrup , Multistage pressure retarded osmosis, J. Non Equilibr. Thermodyn. 41 (2016) 327–347 . 

[6] D. Bharadwaj , H. Struchtrup , Large scale energy storage using multistage osmotic processes: approaching high efficiency and energy density, Susta.
Energy Fuels 1 (2017) 599–614 . 

[7] J. Crank , The Mathematics of Diffusion, Oxford Science Publications, 1980 . 
[8] A. Dai , K.E. Trenberth , Estimates of freshwater discharge from continents: latitudinal and seasonal variations, J. Hydrometeorol. 3 (2012) 660–687 . 

[9] K. Gerstandt , K.V. Peinemann , S.E. Skilhagen , T. Thorsen , T. Holt , Membrane processes in energy supply for an osmotic power plant, Desalination 224
(1) (2008) 64–70 . 

[10] W. He , Y. Wang , M.H. Shaheed , Modelling of osmotic energy from natural salt gradients due to pressure retarded osmosis: Effects of detrimental

factors and flow schemes, J. Membrane Sci. 471 (2014) 247–257 . 
[11] K.L. Lee , R.W. Baker , H.K. Lonsdale , Membranes for power generation by pressure-retarded osmosis, J. Membrane Sci. 27 (1981) 141–171 . 

[12] S. Loeb , Production of electric power by mixing fresh and salt water in hydroelectric pile, J. Membrane Sci. 1 (1976) 49–63 . 
[13] S. Loeb , R. Norman , Osmotic power plants, Science 189 (1975) 654–655 . 

[14] S. Loeb , F. Van Hessen , D. Shahaf , Production of energy from concentrated Brines by pressure-retarded osmosis, II. experimental results and projected
energy costs, J. Membrane Sci. 1 (1976) 249–269 . 

[15] B.E. Logan , M. Elimelech , Membrane-based processes for sustainable power generation using water, Nature 488 (2012) 313–319 . 

[16] J. Maisonneuve , P. Pillay , C.B. Laflamme , Pressure-retarded osmotic power system model considering non-ideal effects, Renewable Energy 75 (2015)
(2015) 416–424 . 

[17] H. Struchtrup , Thermodynamics and Energy Conversion, Springer, Heidelberg, 2014 . 
[18] G. O’Toole , L. Jones , C. Coutinho , C. Hayes , M. Napoles , A. Achilli , River-to-sea pressure retarded osmosis: Resource utilization in a full-scale facility,

Desalination 389 (2016) 39–51 . 
[19] R. Pattle , Production of electric power by mixing fresh and salt water in hydroelectric pile, Nature 174 (1954) 660 . 

[20] R. Pattle , Water salination: a source of energy, Science 186 (1974) 350–352 . 

[21] A.P. Straub , S. Lin , M. Elimelech , Module-scale analysis of pressure retarded osmosis: Performance limitations and implications for full-scale operation,
Environ. Sci. Technol. 48 (2014) 12435–124 4 4 . 

[22] S.-S. Hong , W. Ryoo , M.-S. Chun , S.O. Lee , G.-Y. Chung , Numerical studies on the pressure-retarded osmosis (PRO) system with the spiral wound module
fo power generation, Desal. Water Treatment 52 (2014) 6333–6341 . 

[23] S. Sudaramoorthy , G. Srinivasan , D.V.R. Murthy , An analytical model for spiral wound reverse osmosis membranes modules: Part i- model development
and parameter estimation, Desalination 280 (2011) 403–411 . 

http://www.yuvaengineers.com/wp-content/uploads/2010/04/osmotic-power-7.jpg
http://www.iea.org/publications/freepublications/
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0001
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0001
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0001
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0002
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0002
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0002
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0002
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0003
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0003
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0003
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0003
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0004
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0004
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0004
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0005
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0005
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0006
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0006
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0006
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0007
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0007
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0007
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0007
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0007
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0007
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0008
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0008
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0008
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0008
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0009
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0009
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0009
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0009
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0010
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0010
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0011
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0011
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0011
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0012
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0012
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0012
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0012
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0013
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0013
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0013
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0014
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0014
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0014
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0014
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0015
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0015
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0016
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0016
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0016
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0016
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0016
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0016
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0016
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0017
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0017
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0018
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0018
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0019
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0019
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0019
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0019
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0020
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0020
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0020
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0020
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0020
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0020
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0021
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0021
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0021
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0021


F. Di Michele, E. Felaco and I. Gasser et al. / Applied Mathematics and Computation 353 (2019) 189–207 207 

 

 

 

[24] S. Senthil , S. Senthilmurugan , Reverse osmosis-pressure retarded osmosis hybrid systems: modelling, simulation and optimisation, Desalination 389
(2016) 78–97 . 

[25] H. Torleif, T. Thorsen, Semi-permeable membrane for use in osmosis, and method and plant for providing elevated pressure by osmosis to create
power. US patent 7,566,402 B2, 2009. 

[26] Z. Wang , D. Hou , S. Lin , Gross vs. net energy: Towards a rational framework for assessing the practical viability of pressure retarded osmosis, J.
Membrane Sci. 503 (2016) 132–147 . 

http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0022
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0022
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0022
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0023
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0023
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0023
http://refhub.elsevier.com/S0096-3003(19)30061-X/sbref0023

	Modeling, simulation and optimization of a pressure retarded osmosis power station
	1 Introduction
	2 Mathematical model
	2.1 Boundary conditions
	2.2 Net power

	3 Numerical simulations
	3.1 Scaling
	3.2 Prescribed data at the inflow side: Initial value problem
	3.3 Prescribed pressures at in- and outflow

	4 Conclusions
	References


