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This supplemental material reviews elements of thermodynamics to provide additional background
for the discussion in the main paper. In particular, we review:

Section I: Mathematical formulation of 1st and 2nd law of thermodynamics; Clausius, Kelvin-
Planck, Stability statements, discussed for their meaning, and evaluated with the laws of thermo-
dynamics.

Section II: Processes in chemically metastable systems, and work storage in these systems.
Section III: A simple quantum model with apparent negative temperature is used to discuss some

behavior of such systems.

I. 2ND LAW STATEMENTS

To provide background for the main paper [1], we re-
view various statements of the 2nd law of thermodynam-
ics, as well as the notions of equilibrium states, and tem-
perature. The next section states the 1st and 2nd law
of thermodynamics in mathematical form, which were
constructed to be in agreement with the various verbal
formulations of the second law that can be found any-
where in the literature. The subsequent sections present
these statements, and discusses them in their meaning,
and within the context of the mathematical formulations
of the laws.

A. 1st and 2nd Law of Thermodynamics

For a clear distinction of the different verbal formula-
tions of the 2nd Law of Thermodynamics, its mathemati-
cal form is required, along with the 1st Law of Thermody-
namics, which states conservation of energy. We present
the laws in a form typically found for the case of closed
systems (no exchange of mass), where they read [2]:

1st law: Conservation of Energy

dE

dt
=
∑
k

Q̇k −
∑
j

Ẇj (1)

Here, E = U+Emech is the energy of the system, which is
the sum of the internal (or thermal) energy of the system,
U , and its mechanical energy, Emech, which accounts for,
e.g., the kinetic energy in the center of mass frame, Ekin
(think of coffee swirling in the cup after stirring), or the
potential energy, Epot, etc., stored in the system. Since
the system is closed, its energy can only change due to
transfer of energy as heat, with contributions Q̇k, or as
power, with contributions Ẇj . Engineering sign conven-
tion is used, where heat into the system and work done
by the system are positive.

2nd law: Balance of Entropy

dS

dt
+
∑

βkQ̇k = Ṡgen ≥ 0 (2)

Here, S is the entropy of the system, and βk = − 1
Tk

is a
measure for the thermodynamic temperature at that sys-
tem boundary where the heat Q̇k is transferred across the
boundary; −βkQ̇k is the entropy flux across that bound-

ary. Moreover, Ṡgen is the generation rate of entropy
within the system boundaries which vanishes in equilib-
rium, and is positive in non-equilibrium processes.

The use of β instead of the thermodynamic tempera-
ture T is common, and useful, in the discussion of ther-
modynamic temperature and its sign; classical positive
temperature implies negative values of β while negative
thermodynamic temperature implies positive β.

We note that the laws of thermodynamics are valid
in equilibrium and non-equilibrium situations, that is at
all times the system possesses definite amounts of energy
and entropy. For equilibrium states energy and entropy
can be easily related to measurable properties such as
temperature, pressure or volume through material de-
pendent property relations [2], while for non-equilibrium
states one might not have explicit expressions for these.

We refer to Boltzmann’s kinetic theory as an example
for a description (of an ideal gas) that is accessible to
arbitrarily strong non-equilibria, and is accompanied by
laws such as the above at all times [5].

B. Approach to Equilibrium

An isolated thermodynamic system will over
time approach a unique and stable equilibrium
state, and remain in that state indefinitely [2,
3].

We shall discuss stability of the equilibrium state with
the other statements below. For an isolated system, all
exchange of heat and work vanishes, Q̇k = Ẇj = 0, so

that total energy stays constant, dE
dt = 0, and the 2nd

law reduces to

dS

dt
= Ṡgen ≥ 0 (3)

The latter equation states that in the isolated system en-
tropy will grow until it reaches a maximum compatible
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FIG. 1: Illustration of the Clausius statement: Heat conductor between two reservoirs at temperatures TH and TL. a) General

set-up: heat into the conductor is indicated as positive, the 1st law of thermodynamics gives Q̇L = −Q̇H = −Q̇; b) Forbidden
process: spontaneous heat transfer from cold to hot; c) Allowed process: spontaneous heat transfer from hot to cold.

with the fixed energy E and the fixed mass m of the sys-
tem. In the final equilibrium state the entropy generation
vanishes, Ṡgen = 0, and the system remains at this state
as long as it remains isolated.

It is a classical subject of thermodynamics to show that
in the final equilibrium state temperature, pressure and
chemical potential are homogeneous, and kinetic energy
vanishes [2].

A more careful discussion of stability will follow be-
low. We point out already here, that the stable equilib-
rium state as defined above requires that the mechanical
(i.e., kinetic, potential, etc.) energy of the system as-
sumes a minimum–which is the stable equilibrium state
for the mechanical degrees of freedom. A system might
be trapped in an elevated mechanical state, e.g., by fixing
an upside down pendulum, by spanning and clamping a
spring, or by putting a weight into a bowl. A state is
considered stable, when after a disturbance, the system
will return to the initial state. A disturbance removing
the ficture of the pendulum, pushing the spring out of
the clamp, or pushing the ball over the edge of the bowl,
will lead to a different state, which is the final stable
equilibrium state.

C. Clausius Statement

Heat cannot pass spontaneously from a body
of lower temperature to a body of higher tem-
perature [2, 3, 6].

This statement is based on daily experience. The Clau-
sius Statement implies that heat might indeed pass spon-
taneously from a body of higher temperature to a body
of lower temperature. The forbidden and the allowed
process are indicated in Figs. 2b/c.

In particular, the Clausius statement implies the ther-
mal stability of the equilibrium state, where temperature
is homogeneous. Indeed, would a small fluctuation of

temperature occur in a body at equilibrium, and would
heat spontaneously flow from cold to hot, then the fluc-
tuation would grow, and the temperature become inho-
mogeneous.

To consider the statement in the light of the above for-
mulations of 1st and 2nd law (1, 2), we apply these to
a closed system which acts as heat conductor between
two thermal reservoirs at temperatures TH = − 1

βH
and

TL = − 1
βL

(see Fig. 2a). When the process runs at steady

state, and the heat conductor is in mechanical equilib-
rium, we have dU

dt = dS
dt = Emech = Ẇj = 0, and the

laws reduce to

0 = Q̇H + Q̇L , βHQ̇H + βLQ̇L = Ṡgen ≥ 0 (4)

From the 1st law we find Q̇H = −Q̇L = Q̇, hence the 2nd
law reduces to

(βH − βL) Q̇ = Ṡgen ≥ 0 . (5)

According to the Clausius statement, heat goes from
hot (H) to cold (L), and not vice versa, therefore we

must have Q̇ > 0, so that the inequality demands
(βH − βL) > 0. Hence, hotter states have larger value
of the temperature parameter β. From this statement
follows no restriction for the sign of β = − 1

T , negative T
are not excluded. Since β grows with hotness, it is clear
that states of negative T are considered to be hotter, for
the Clausius statement to be valid [7].

We note that the thermal reservoirs are assumed to be
in stable equilibrium states, but the heat conductor—the
system to which we apply the laws of thermodynamics—
is in an inhomogeneous non-equilibrium state.

While the direction of spontaneous heat transfer is
restricted, no such restriction exists for the transfer of
work: gears and levers can be used to transfer work in
any direction. Hence, the 2nd law contains only the en-
tropy flux term

∑
βkQ̇k, which ensures the direction of

heat transfer, and has no counterpart for work (which
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FIG. 2: Illustration of the Kelvin-Planck statement: Engine E in heat transfer contact with one or two reservoirs. Transfer
direction for heat and work is indicated by arrows. a) Forbidden proces: full conversion of heat into work; b) Allowed process:
full dissipation of work into heat; c) Allowed process: conversion of some of the heat flowing between two reservoirs to work..

could be, e.g., a term
∑
γjẆj ; careful reasoning shows

γj = 0 [2]).

D. Thermodynamic driving forces

Let us consider the Clausius statement in light of the
stated trend for equilibration: As soon as we connect the
two equilibrium reservoirs at TH and TL through the heat
conductor, we have created a larger system, consisting
of two reservoirs and the heat conductor, which is in a
non-equilibrium state: the temperature of the compound
system is inhomogeneous. The heat transfer through the
conductor is the compound system’s attempt to reach
an equilibrium state of uniform temperature: The heat
transfer process is driven by the desire to equilibrate.

Using the language of irreversible thermodynamics [4]
we can say that the non-equilibrium state, here the tem-
perature difference, provides a thermodynamic force that
drives a thermodynamic process, the transfer of energy as
heat [4].

Indeed, all thermodynamic processes are driven by
thermodynamic forces of some kind, which induce the
processes such that the system moves towards equilib-
rium.

E. Kelvin-Planck statement

It is impossible to construct an engine that
will work in a complete cycle and produce no
effect except the raising of a weight [i.e., pro-
duce work] and the transfer of energy out of
a system [e.g., a reservoir] in a stable equilib-
rium state [3].

The above is the formulation of Gyftopoulos & Beretta,
which explicitely clarifies that the system providing en-
ergy is in stable equilibrium, and does not specify how
energy is drawn form the reservoir (which could be heat

or work). Ramsey expresses the Kelvin-Planck statement
with less detail as

It is impossible to construct an engine that
will operate in a closed cycle and produce no
effect other than the extraction of heat from
a reservoir with the performance of an equiv-
alent amount of work [7].

The discussion of negative thermodynamic tempera-
ture in the framework of the 2nd law concentrates on
the Kelvin-Planck statement [7], although the actual pro-
cesses that are performed in the experiments are adia-
batic, that is the inverted quantum states are reached by
work interaction; processes like these will be discussed in
the next section.

Similar to our discussion of the the Clausius statement,
we include in the discussion not only what the Kelvin-
Planck statement forbids, but also what it allows. While
the direct conversion of heat to work is forbidden, the
full conversion of work to heat is allowed—this simply
describes heating through friction.

Also, while work cannot be obtained from a single
reservoir, the statement allows that work can be obtained
from two reservoirs at different temperatures. According
to the Clausius statement, heat will flow from the hot-
ter to the colder reservoir. The Kelvin-Planck statement
allows that some of the heat can be converted to work.

Figure 2 shows the three processes, one forbidden (a),
two allowed (b, c), which we discuss now by means of the
laws of thermodynamics.

The engine runs at steady state, hence for the inter-
action with a single reservoir (Fig. 2a/b) at temperature
T = − 1

β , the thermodynamic laws reduce to

0 = Q̇− Ẇ , βQ̇ = Ṡgen ≥ 0 . (6)

With the engineering sign convention used, the Kelvin-
Planck statement forbids positive work (i.e., work done
by the engine), but allows negative work (i.e., work done
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FIG. 3: Illustration of the Stability Statement: An equilibrium system, confined in an adiabatic rigid container, cannot lift a
weight (a), but can disspate work done on the paddle wheel by a falling weight (b). Work to lift the weight can be obtained
from a non-equilibrium state or an unstable state, such as a swirling motion of a fluid (c).

to the engine), so that

Q̇ = Ẇ < 0 , βẆ = Ṡgen ≥ 0 . (7)

Accordingly, the Kelvin-Planck statement requires neg-
ative β, or positive thermodynamic temperature of the
reservoir,

β = − 1

T
< 0 =⇒ T > 0 . (8)

For the interaction with two reservoirs (Fig. 2c), 1st
and 2nd law reduce to

0 = Q̇H + Q̇L−Ẇ , βHQ̇H +βLQ̇L = Ṡgen ≥ 0 . (9)

Eliminating the heat Q̇L, we find the work that can be
obtained as

Ẇ =

(
1− βH

βL

)
Q̇H−

Ṡgen
−βL

=

(
1− TL

TH

)
Q̇H−TLṠgen .

(10)
With thermodynamic temperature being positive, this
result leads to well known conclusion that no heat engine
operating between two reservoirs can have an efficiency

above the Carnot efficiency ηC = Ẇ
Q̇H

= 1− TL
TH

, and that

any irreversible processes occurring within the engine (so

that Ṡgen > 0) reduces the work output.
We included the last result into the discussion to em-

phasize that, while work cannot be obtained from a sin-
gle reservoir, one can obtain work from two reservoirs.
As was seen in the discussion of the Clausius statement,
there is a desire for equilibration between two reservoirs
in non-equilibrium, at different temperatures, which pro-
vides the driving force for the heat flow. The discussion
above shows that work can be obtained from the heat
flowing from hot to cold. It follows that non-equilibrium
provides the driving force for harvesting work from the
system.

F. Ramsey’s extension of the Kelvin-Planck
statement

It is impossible to construct an engine that
will operate in a closed cycle and produce no

effect other than . . . (2) the rejection of heat
into a negative-temperature reservoir with the
corresponding work being done on the engine.
[7]

For his extension of the Kelvin-Planck statement,
Ramsey allowed for thermodynamic temperature to be
negative, i.e., β > 0, and kept the mathematical formu-
lations of the 1st and 2nd law unchanged. For this case,
instead of (7), one finds

β > 0 , βQ̇ = Ṡgen ≥ 0 ⇒ Q̇ = Ẇ > 0 . (11)

Hence, for β > 0, the heat into the engine must be posi-
tive, that is the reservoir can only provide heat, but not
receive heat.

While Ramsey formulated the extension as a negative
statement (. . . impossible. . . ), one reads off (11) that the

stament allows to produce work (Ẇ > 0) from a single
reservoir (in stable equilibrium!) at negative tempera-
ture; there is no discernible driving force for such a pro-
cess.

We close with the comment that if one finds a reservoir-
like system that allows to produce work without a driving
force, the original Kelvin-Planck law would lead to the
conclusion that the system is not in a stable equilibrium
state, while the Ramsey extension would lead to the con-
clusion that the system’s thermodynamic temperature is
negative. This is further discussed in the next section.

G. Stability Statement

It is impossible to produce work by reducing
the energy of a system existing in stable ther-
modynamic equilibrium and confined within a
rigid adiabatic container. [6]

This statement is typically illustrated with a paddle
wheel and a weight, see Fig. 3: One will not expect that
in a system in stable equilibrium the molecular motion
will suddenly be such that the paddle wheel will move,
and lift a weight (a), while work done to the paddle wheel
from a falling weight can be absorbed in the system (b).
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However, if the system is in a non-equilibrium state or in
an unstable equilibrium state, in the figure indicated by
a swirling motion, work could be extracted (c).

At closer inspection, the stability statement guarantees
the mechanical stability of the equilibrium state: For a
classical system, such as a liquid or a gas, a small fluc-
tuation in velocity will not build up and develop into a
macroscopic motion of the system. Such a motion could
lead to macroscopic kinetic energy that can be harvested
as work by the paddle wheel as in Fig. 3c, or to a build-up
in pressure that could be harvested as work by a mov-
ing piston within the system (which is a rigid adiabatic
container).

Application of the 1st and 2nd law to the adiabatic
system in a rigid container yields at first (Q̇k = 0)

dUE
dt

= −Ẇ ,
dSE
dt

= Ṡgen ≥ 0 , (12)

where the index E indicates equilibrium states, as explic-
itly mentioned in the statement. Note that in equilibrium
mechanical energy vanishes, Emech|E = 0.

Further conclusions about temperature require the
Gibbs equation, which provides a universally valid re-
lation between thermodynamic properties in equilibrium
states. For simple systems (i.e., no change of composi-
tion) it reads TdSE = dUE +pEdV where pE is the equi-
librium pressure of the system, and V is system volume
[2].

Using the Gibbs equation to combine the two laws (for
constant volume), we find

dSE
dt

=

(
∂SE
∂UE

)
V

dUE
dt

= −
(
∂SE
∂UE

)
V

Ẇ

= −Ẇ
T

= βẆ = Ṡgen ≥ 0 . (13)

The stability statement forbids positive work, hence we
must have Ẇ < 0, which implies that the inequality de-

mands positive values of system temperature:
(
∂S|E
∂UE

)
V

=

1
T = −β > 0. The above discussion links the sign of ther-
modynamic temperature to mechanical stability: only if
the thermodynamic temperature is positive will the sys-
tem remain in the mechanical equilibrium state.

Note that the overall conclusion agrees with that from
the Kelvin-Planck statement: thermodynamic tempera-
ture is positive, and it is not possible to draw work from a
single reservoir (stable equilibrium), i.e., without a driv-
ing force [10].

If the liquid is in thermal equilibrium, but not in me-
chanical equilibrium (i.e., Emech 6= 0), and the system
does not exchange work or heat with its environment,
the first law gives dUE

dt = −dEmechdt , and the second law
demands that(

∂SE
∂UE

)
V

dUE
dt

= −
(
∂SE
∂UE

)
V

dEmech
dt

≥ 0 . (14)

For instance, with Emech = Epot, the weight connected

to the paddle wheel in Fig. 3, will fall (Fig. 3b),
dEpot
dt < 0,

only if T > 0. The driving force of the process is, again,
equilibration, here to reach the mechanical ground state
where the weight assumes the lowest possible position.

We consider the mechanical non-equilibrium case of
Fig. 3c, where the fluid is in a swirling motion with ki-
netic energy Ekin. We assume thermal equilibrium, so
that 1st and 2nd law read

d (UE + Ekin)

dt
= −Ẇ ,

dSE
dt

= Ṡgen ≥ 0 . (15)

Combining the laws by means of the relation
(
∂SE
∂UE

)
V

=

1
T , which is valid in thermal equilibrium, shows that work
can be obtained from the decrease of kinetic energy,

Ẇ = −dEkin
dt

− T Ṡgen . (16)

Entropy generation reduces the amount of work that
can be obtained. In case that no work is harvested, we
simply find the dissipation of kinetic energy until it van-
ishes in equilibrium, expressed as dEkin

dt = −T Ṡgen ≤ 0.

II. CHEMICALLY UNSTABLE EQUILIBRIUM
STATES

For the discussion of chemically unstable states we
consider a reacting mixture, such as oxygen, hydrogen
and water vapor, which might be found either in stable
chemical equilibrium, or trapped in an unstable state.
Phase changes can be considered as reactions, hence
phase changes such as between diamond and graphite are
included in this discussion as well. The following is valid
for any kind of mixture, constitutive equations are not re-
quired. We assume thermal and mechanical equilibrium,
so that temperature and pressure are homogeneous.

A. Gibbs equation for mixtures

For simplicity, we restrict the discussion to systems
where pressure, temperature, and chemical composition
are controlled. The Gibbs equation for the mixture in
thermal and mechanical equilibrium reads [2]

TdS = dH − V dp−
∑
α

µαdnα (17)

where p, T, V are pressure, temperature and volume of
the mixture, S =

∑
α nαsα is its total entropy and

H =
∑
α nαhα is its internal energy; here, µα, sα, ha

denote the chemical potential, entropy and enthalpy of
component α. Moreover, nα is the mole number of com-
ponent α, and the mole fraction of the component is
Xα = nα

n with n =
∑
nα and

∑
Xα = 1. We con-

sider closed systems in homogeneous states only, where
mole numbers can only change due to chemical reaction,
or phase change.
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For a single reaction mechanism, mole numbers change
as

dnα = γαdΛ (18)

where γα denotes the stoichiometric coefficients, and Λ
counts the number of reactions taking place. The reac-
tion can proceed forwards or backwards, that is dΛ can
be postivie or negative.

Then, the Gibbs equation for the mixture assumes the
form

TdS = dH − V dp−
∑
α

γαµα dΛ (19)

Next, we differentiate between cases where the mixture
is in stable chemical equilibrium at all times, and cases
where the mixture is trapped in an unstable state, out of
stable chemical equilibrium.

B. Stable chemical equilibrium

The equilibrium states that are assumed in the dis-
cussion of the 2nd law include chemical equilibrium, for
which the law of mass action is found as [2]∑

α

γαµα = 0 (chemical equilibrium) (20)

For a system where temperature and volume is con-
trolled, this follows from minimization of Gibbs free en-
ergy G = H − TS at constant pressure and temperature
[2]. According to the law of mass action, the mole num-
bers nα are not independently controlled, but related to
temperature and pressure. With (20), the Gibbs equa-
tion for a mixture that is always in stable chemical equi-
librium reduces to TdS = dH − V dp and we obtain the
well know relation between thermodynamic temperature,
enthalpy and entropy,

T =

(
∂H

∂S

)
p|E

(chemical equilibrium) (21)

C. Unstable chemical states

Due to a sufficiently large energy barrier, a reactable
mixture might remain away from its stable chemical equi-
librium state, while mechanically and thermally it is in
equilibrium (homogeneous pressure and temperature).
For instance, mixtures of hydrogen and oxygen are well
known to remain unchanged until a spark induces the
uncontrolled chain reaction in which they react to water.
Although graphite is the stable from of carbon at stan-
dard temperature and pressure, diamonds, the unstable
phase, “are forever”.

For such unstable systems, one can control the compo-
sition of the mixture by a well designed technical appara-
tus. An example process for the H2-O2-H2O reaction is

as follows: (a) control temperature through a heat bath
and pressure through the weight of a piston; (b) take a
small portion of the mixture and use a membrane system
to separate into the constituents (requires work); (c) let
H2 and O2 react in a fuel cell to produce electrical work
and water; (d) mix the resulting water back into the mix-
ture (possibly with a membrane system to produce some
work). With this, the mole numbers, temperature and
pressure are individually controlled, and the system can,
indeed, provide net work.

The inverse process extracts water from the mixture,
utilizes an eletrolyzer to split the into hydrogen and oxy-
gen, and feeds the product back into the mixture. The
process must not be reversible, but as described it could
even be idealized as a reversible process.

For systems that are in stable thermal and mechanical
equilibrium, but not in stable chemical equilibrium, and
for which the composition can be controlled, the law of
mass action does not hold, i.e.,∑

α

γαµα 6= 0 (chemical non-equilibrium) (22)

For a process at constant temperature and pressure, and
varying composition, the Gibbs equation (19) reduces to

T

(
∂S

∂Λ

)
T,p

=

(
∂H

∂Λ

)
T,p

−
∑
α

γαµα . (23)

Entropy and enthalpy of the mixture change due to the
change in composition. With dnα = γαdΛ and

H =
∑
α

nαhα (T, p,Xα) , S =
∑
α

nαsα (T, p,Xα) ,

(24)
we find after careful calculation(

∂H

∂Λ

)
T,p

=
∑
α

γαhα ,

(
∂S

∂Λ

)
T,p

=
∑
α

γαsα . (25)

Hence, for this case (control of population in chemical
non-equilibrium state) the Gibbs equation is fulfilled due
to the definition of the chemical potential,

µα = hα − Tsα ⇒ T
∑
α

γαsα =
∑
α

γαhα −
∑
α

γαµα

(26)
Most importantly, the variation of enthalpy and entropy
due to change in composition cannot be used to find the
temperature of the mixture:(

∂H

∂S

)
T,p

=

(
∂H
∂Λ

)
T,p

dΛ(
∂S
∂Λ

)
T,p

dΛ
=

∑
α γαhα∑
α γαsα

=
∆hR
∆sR

6= T .

(27)
Here, ∆hR and ∆sR are the enthalpy and entropy of
reaction (including mixing contributions). Note that for
the hydrogen-oxygen reaction both have the same sign,
so that ∆hR

∆sR
> 0, but there are reactions for which this

ratio is negative, ∆hR
∆sR

< 0, such as the combustion of
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carbon, with the reaction C + O2 
 CO2, or the phase
change between graphite and diamond.

In the controlled process towards stable chemical equi-
librium discussed above, enthalpy and entropy change,
but their ratio ∂H

∂S is not the temperature T of the sys-

tem. Indeed, the relation T =
(
∂H
∂S

)
X

requires processes

in which the system is in stable equilibrium states (chem-
ical, mechanical and thermal) at all times. Work can be
produced as the system approaches its stable equilibrium
state, where the deviation from the stable equilibrium
state serves as the driving force for the process.

D. Work from systems in chemical non-equilibrium

Next, we consider 1st and 2nd law for the controlled
change of composition in chemically unstable systems.
There are two work contributions, the volume change
work pdVdt for the isobaric process, and the contribution

Ẇc related to the chemical changes (e.g., fuel cell, elec-
trolyzer). Heat will be exchanged with a reservoir at
temperature T to keep the system temperature constant.
Accordingly, 1st and 2nd law assume the form (enthalpy
is H = U + pV )

dH

dt
= Q̇− Ẇc ,

dS

dt
− Q̇

T
= Ṡgen ≥ 0 . (28)

Eliminating heat between the two laws, and use of the
Gibbs equation (for fixed T, p) yields

Ẇc = −
∑
α

γαµα
dΛ

dt
− T Ṡgen Q 0 . (29)

There is no sign limitation for the reaction rate dΛ
dt , since

the composition of the metastable state can be controlled
in any direction. This control of composition is exclu-
sively via work, not heat. In case of the hydrogen-oxygen-
water system one would employ, e.g., electrolyzer and fuel
cell. For a controlled phase change between diamond and
graphite, one has to heat, compress or expand, and cool.

We consider both directions, charge and discharge of
the system. To charge the system, the power is negative,
Ẇ c
c < 0, work is done to the system, and stored in the

nonequilibrium state. For discharge, the power is pos-
itive, Ẇ d

c > 0, and work is obtained from the system,
which is released from the nonequilibrium state.

Typically one will expect irreversible losses within the
process, which lead to work loss T Ṡgen > 0, hence ex-
tra work is required for the charging process, and less
work obtained from the discharge process. For a charge-
discharge process that ends at the initial composition,
the difference between stored and returned work (power
integrated over the duration of the process) is the total
work loss

Wloss = |W c
c | −W d

c = T
(
Sdgen + Scgen

)
≥ 0 , (30)

which is positive, as long as the thermodynamic temper-
ature of the heat bath is positive.

For the example, work is required to split water into
hydrogen and work can be obtained from the controlled
reaction of hydrogen and oxygen. The driving force for
the generation of work is the system’s desire to reach
the stable chemical equilibrium state, where almost all
of the hydrogen has reacted (assuming sufficient amount
of oxygen in the system).

III. A SIMPLE QUANTUM SYSTEM WITH
APPARENT NEGATIVE TEMPERATURE

It is useful to have a simple system to study inverted
states, for which, following Hoffmann [8], we consider a
system of n quantum elements, that can assume only two
states, at molar energies ε1 = 0 and ε2 = ∆ε. The system
is described as a mixture of two components, and system
entropy is just the entropy of mixing of the two states,
with molar entropies of the components sa = −R lnXa;
R is the universal gas constant.

A. Energy and entropy

The composition of the system is described through a
single mole fraction X = 1 − X1 = X2 = n2

n . Hence in
this simple model, total energy and entropy of the system
are

E =

2∑
a=1

naεa = n∆εX , (31)

S =

2∑
a=1

nasa = −nR [(1−X) ln (1−X) +X lnX] ,

(32)
This quantum system has a non-monotonous relation be-
tween energy and entropy with slope

dS

dE
=

dS
dX
dE
dX

=
R

∆ε

(
ln

1−X
X

)
, (33)

which will be positive for X < 1
2 and negative for X > 1

2 .
Figure 4 shows the relation between molar energy, e =
E/n and molar entropy, s = S/n.

The thermodynamic description for this mixture is just
as for the mixtures discussed above, when we chose the
stoichiometric coefficients γ1 = −1 and γ2 = 1, and the
reaction rate dΛ

dt = ndXdt . The chemical potentials of the
components are µa = εa − Tsa, and it is easy to verify
that the Gibbs equation reads

TdS = dE −
2∑
a=1

γaµadΛ . (34)

Here, T is the temperature of a heat bath, with which
the quantum system is in thermal equilibrium.
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B. Standard states

The stable equilibrium distribution of states is deter-
mined from the law of mass action (20),

2∑
a=1

γaµa = 0 =⇒ X|E =
exp

[
−∆ε
RT

]
1 + exp

[
−∆ε
RT

] . (35)

We note that within classical thermodynamics the tem-
peratures are positive, so that X|E < 1

2 .
For the equilibrium state found above, the Gibbs equa-

tion (34) reduces to

TdS|E = dE|E , (36)

and we find the classical equilibrium relation between
entropy, energy and temperature as(

dS

dE

)
|E

=
R

∆ε

(
ln

1−X|E
X|E

)
=

1

T
. (37)

C. Inverted states

For inverted states, however, the law of mass action
does not hold and (35) is not valid, therefore tempera-
ture T of the heat bath and distribution X of the quan-
tum state are independent parameters. While the Gibbs
equation (34) holds, it does not provide any additional
information. The temperature of the heat bath T occurs
in the Gibbs equation, but entropy and energy of the
quantum system (31, 32) are only determined through
the quantum distribution X, and independent of temper-
ature.

With the law of mass action not fulfilled, one finds
from the Gibbs equation (34)

dS

dE
=

1

T

(
dE

dE
−
∑
α

γaµα
dΛ

dE

)

=
1

T

(
T (s2 − s1)

∆ε

)
=

R

∆ε

(
ln

1−X
X

)
. (38)

This just is (33), while heat bath temperature T cancels
out.

On first glance, the equation dS
dE = R

∆ε ln 1−X
X appears

to be the same as (37). However, in the present case, the
ratio dS

dE is not related to the temperature of a heat buth
with which the quantum system is (or could be) in equi-
librium. This result is parallel to our earlier finding in
(27) for a metastable mixture, namely that in chemical
non-equilibrium, the derivative ∂H

∂S is not the tempera-
ture of the system.

Reminding the reader that we describe all processes
occurring within the framework of classical thermody-
namics, where thermodynamic temperature is positive,
we summarize as follows: For any X < 1

2 , i.e., for stan-
dard states, one can find a heat bath at thermodynamic

temperature T =
[
R
∆ε

(
ln

1−X|E
X|E

)]−1

> 0 such that the

quantum system is in thermal equilibrium with the heat
bath. For X > 1

2 , i.e., for inverted states, the quantum
system is in a non-equilibrium state, and no heat bath
exits, with which the system can be in thermal equilib-
rium.

D. Processes on the curve E (S)

If we allow the quantum system to exchange energy
with a classical heat bath (reservoir) at positive temper-
ature TR, 1st and 2nd law assume their usual form,

dE

dt
= Q̇− Ẇ ,

dS

dt
− Q̇

TR
= Ṡgen ≥ 0 , (39)

where the system boundary is at the temperature of the
heat bath.

We show the well-known result that states on the non-
equilibrium branch of the curve S(E), where X > 1

2 ,
cannot be reached along the curve S(E), when the start-
ing point is a stable state [9]. For this, the system energy
E must be increased either by heating, or by work. For
all processes on the curve, energy and entropy are given
by (31, 32), that is entropy and energy are related by
(33), and the two laws assume the form

n∆ε
dX

dt
= Q̇− Ẇ ,

(40)

nR

(
ln

1−X
X

)
dX

dt
− Q̇

TR
= Ṡgen ≥ 0 .

For pure heat exchange between the system and the
heat bath at temperature TR, that is for Q̇ 6= 0, Ẇ = 0,
the laws can be combined to

n∆ε

[
R

∆ε

(
ln

1−X
X

)
− 1

TR

]
dX

dt
= Ṡgen ≥ 0 . (41)

This equation describes the irreversible approach to the
stable equilibrium state of the combined system consist-
ing of quantum system and heat bath. Driving force for
the process is the temperature difference between quan-
tum system and heat bath, and the process comes to an
end in the final equilibrium state, when the system tem-
perature equals the heat bath temperature,

R

∆ε

(
ln

1−X|E
X|E

)
=

1

TR
(42)

Since no (classical) heat bath can have a negative ther-
modynamic temperature, heating can at best bring the
system to the maximum of the curve, where X|E = 1

2 ,
and the temperature of heat bath and quantum sys-
tem is T = ∞. For heat baths with finite temperature
0 < TR <∞, we find X|E < 1

2 .
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s=S/n

e=E/n

a

b
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e® e¯
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FIG. 4: Mixing of states in two invertible quantum systems.
State α is on the stable branch, and state β is on the unstable
branch. Mixed states φ1 and φ2 are stable and unstable,
respectively.

For an adiabatic system, Q̇ = 0, the laws reduce to

n∆ε
dX

dt
= −Ẇ , nR

(
ln

1−X
X

)
dX

dt
= Ṡgen ≥ 0 .

(43)

While doing work to the system (Ẇ < 0) increases
energy, the 2nd law only allows X to grow (initially
X < 1

2 !), and the process comes to a stop when X = 1
2 ,

which, again, corresponds to infinite temperature of the
(thermally isolated) quantum system.

It follows that states on the descending branch (X >
1
2 ) can only be reached by processes that leave the curve
S(E), as discussed in the main paper.

E. Two quantum systems in contact

We consider energy exchange between two quantum
systems in standard and/or inverted states. E.g., con-
sider two states with mole numbers nα, nβ , energies

Eα = nαeα = nα∆εXα , Eβ = nβeβ = nβ∆εXβ (44)

and corresponding entropies

Sα = nαsα = −nαR [(1−Xα) ln (1−Xα) +Xα lnXα]

(45)

Sβ = nβsβ = −nβR [(1−Xβ) ln (1−Xβ) +Xβ lnXβ ]

The two systems are brought into contact, so that there is
no work exchange with the surroundings, and the com-
pound system is adiabatically shielded. The quantum
elements interact, mixing their states, and the two laws
of thermodynamics give for the final state (φ)

Eφ = Eα + Eβ , Sφ = Sα + Sβ + Sgen (46)

so that

Xφ =
Xα

1 +
nβ
nα

+
Xβ

nα
nβ

+ 1
(47)

We define the mole specific entropy of the two systems
before interaction as

ŝφ =
Sα + Sβ
nα + nβ

=
sα

1 +
nβ
nα

+
sβ

nα
nβ

+ 1
. (48)

Depending on the mole ratio nα
nβ

, the curve {ŝα+β , Xα+β}
is a straight line connecting states α, β as shown in Fig. 4.
Due to the concavity of the relation S (E), it is clear that

Sgen
nα + nβ

=
Sφ

nα + nβ
− Sα + Sβ
nα + nβ

= sφ− ŝα+β > 0 . (49)

The figure indicates mixing between a stable state α and
an inverted state β. The final state depnds on the mole
numbers nα and nβ , and the figure indicates the stable
mixing state φ1 and the inverted mixing state φ2.

We emphasize that this process is described as mixing
and redistribution of energies between quantum systems.
There is no need to consider heat transfer based on tem-
perature difference between these systems.
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