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Adiabatic wall boundary conditions for rarefied gas flows are described with the isotropic scat-
tering model. An appropriate sampling technique for the direct simulation Monte Carlo (DSMC)
method is presented, and the corresponding macroscopic boundary equations for the regularized
13-moment system (R13) are obtained. DSMC simulation of a lid driven cavity shows slip at the
wall, which, as a viscous effect, creates heat that enters the gas while there is no heat flux in the
wall. Analysis with the macroscopic equations and their boundary conditions reveals that this heat
flux is due to viscous slip heating, and is the product of slip velocity and shear stress at the adi-
abatic surface. DSMC simulations of the driven cavity with adiabatic walls are compared to R13
simulations, which both show this non-linear effect in good agreement for Kn < 0.3.
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I. INTRODUCTION

Significant reduction in size of electro mechanical systems extends the demands for modeling and interpreting the
flow behavior of gasses to micro scales. As the mean free path λ, i. e., the average distance that a molecule travels
between collisions becomes comparable with the flow length scale, L, the theoretical assumption in the conventional
constitutive relations, i.e., the laws of Navier-Stokes and Fourier, lose their validity. The Knudsen number, which is
the ratio of the mean free path to the characteristic length of the flow domain, Kn = λ

L , is the main indicator of the
degree of rarefaction in gases.
The Boltzmann equation describes the behavior of a gas flow at every degree of rarefaction [1]. However, due to the

six dimensional phase space and the complexity associated with the molecular collision term, solving the Boltzmann
equation is challenging, and numerically expensive. Some researchers propose to solve kinetic model equations using
deterministic numerical schemes [2, 3]. These model equations have the same main characteristics as the Boltzmann
equation, but avoid some of the complexity arising due to to the collision term.
Another method to approximate solutions of the Boltzmann equation, is to derive a set of macroscopic transport

equations which can describe the flow behavior to various degrees of accuracy. The Grad moment method [4] extends
the set of conventional hydrodynamic variables, such as, density, temperature, and velocity, by introducing stress,
heat flux, and other higher moments. However, due to the hyperbolic nature, the Grad moment equations exhibit
un-physical subshocks [5, 6].
The regularized 13 moments (R13) equations are derived by combining elements of the Grad and Chapman-Enskog

methods, utilizing the concept of order of magnitude in the Knudsen number [7, 8]. As a result, the R13 equations are
stable [9], accurate up to the third order in terms of Knudsen number, and benefit from a complete set of boundary
conditions [10, 11].
Alternatively, the Boltzmann equation can be solved by stochastic schemes, commonly known as direct simulation

Monte Carlo (DSMC) methods. The DSMC method, first proposed by Bird [12], converges to the Boltzmann equation
in the limit of infinite number of simulating particles in each computational cell [13]. It is a statistical method where
simulating particles travel and collide with each other and solid surfaces.
According to Maxwell’s original paper [14], when the surfaces are microscopically rough and the incident molecules

are performing multiple scattering, or are momentarily trapped or absorbed on the surface, we can expect the surface
to behave as a diffusive reflector. However, it is well known from experiments on molecular beams that diffusive
reflection typically does not occur, beams are reflected in plumes that center on the reflection direction [1, 15]. To at
least have some element of the plume, Maxwell amended his model by the possibility for specular reflection.
As listed in [12], the diffusive reflection law should be critically reviewed when one or more of the following factors

are present:

• The ratio of the molecular weight of the gas to the surface molecules is small in comparison with unity.

• Or the translational energy of the molecules relative to the surface is larger than several electron volts.

• A smooth metal surface that has been outgassed through exposure to high vacuum and high temperature.

In the current study, we are modelling a rarefied gas of light atoms enclosed in a cavity with heavy surface molecules.
In the collision, the (light) gas particle has little change of absolute kinetic energy, while its collision angle depends on
the detailed microscopic geometry of collision with the (heavy) surface atom. The conventional assumptions for the
diffuse surface cannot be employed here. At such a surface, particles thermalize with the wall, and leave in a Maxwell
distribution– that is accompanied by marked exchanged between gas particle and the wall. The Maxwell model would
allow the description of non-diffusive collisions only by accounting for more specular reflections. However, specular
reflection are not expected, since the surface is never flat-on the microscopic level. Moreover, specularly reflecting
walls exchange neither energy nor momentum, hence there is no shear force on the gas.
Modeling the reflecting particle from walls with defined temperature is straightforward [12]; however, in the case

of an adiabatic surface, assigning a velocity to the reflecting particle from a wall with unknown temperature becomes
non-trivial. Researchers have proposed methods to implement adiabatic boundary conditions for DSMC. Wang et
al. [16, 17] introduced the inverse temperature sampling method to model the heat flux at the wall, and demonstrated
that this method can correctly specify the heat flux at the surface. More recently, Akhlaghi et al. [18] proposed an
iterative technique to impose the heat flux boundary condition in DSMC. In their method, an estimate to the wall
temperature is initially made. Then as the solution evolves in time, the wall temperature is modified according to
the predicted heat flux associated with the assumed temperature. They showed that using the Maxwell model and
adjusting the wall temperature iteratively, one can make the energy flux through a surface vanish, i.e., model an
adiabatic Maxwell surface. Tzeng et al. [19], proposed a microscopic method to model the adiabatic surface. In this
model the magnitude of the velocity vector for particles colliding with the adiabatic surface is kept constant before
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and after collision, while the normal component of the velocity is reversed. Then, the two other planar components
are obtained by using a single random number, such that the magnitude of velocity vector remains unchanged in the
collision. Although this microscopic treatment leads to zero energy transfer through the surface, the use of normal
velocity reversal in this model seems not necessary true for the particles colliding with a rough wall.
In the current study the isotropic scattering kernel [20] is utilized to model the adiabatic surface in the DSMC

and R13 equations. In this method the no energy transfer condition is directly imposed on each particle colliding
with the adiabatic surface. This method is expected to be fast and more accurate in convergence of the DSMC
solution compared to the iterative schemes. The appropriate sampling technique in the DSMC method is presented,
and the corresponding boundary equations for the R13 equations are derived. Then we briefly discuss the steps
required to model an adiabatic Maxwell surface using the macroscopic approach, and show the agreement between
the macroscopic boundary conditions obtained from the adiabatic Maxwell model, and the isotropic scattering model
for the R13 equations. Using the obtained boundary conditions, the DSMC and R13 equations are utilized to model a
partly adiabatic cavity in the rarefaction regime. The DSMC results show that the heat flux profile has a component
normal to the adiabatic surface. This heat generated is well captured by the R13 equations, which allows us to
interpret it as the viscous slip heating in the boundary of the adiabatic surface. Indeed, the heat flow into the gas is
the product of shear stress and slip velocity.
The remainder of the paper is organized as follows. The solution methods utilized in this study are introduced in

Section II . In Section III the boundary condition to model an adiabatic surface using the isotropic scattering kernel
is described, then in Sec. III C the microscopic approach for modeling the adiabatic surface in DSMC is introduced.
The associated macroscopic boundary conditions for the R13 equations are derived in Section III D. The adiabatic
Maxwell surface is presented in Sec. III E, and the appropriate wall temperature is introduced. Afterwards, in
Section IV the proposed boundary conditions are utilized to perform a microscopic and macroscopic modeling of the
partly adiabatic lid driven cavity, and the obtained results are discussed. The paper ends with our conclusions in
Section V .

II. GOVERNING EQUATION AND METHOD OF SOLUTION

A. Distribution function and Boltzmann equation

In kinetic theory a gas is described by the density distribution function f (t, xi, ci) such that fdxdc denotes the
number of particles in the phase space element dxdc at time t. The Boltzmann equation describes the evolution of
the density distribution function in phase space (x, c) by accounting for the translational motion and collisions of the
particles in the gas, as

∂f

∂t
+ ck

∂f

∂xk
+Gk

∂f

∂ck
= S (f, f) , (1)

where Gk is the external force acting on the gas. The term S (f, f) is the collision operator that describes the change
of the distribution function due to interaction between particles.
Macroscopic quantities such as mass density ρ, velocity vi, temperature T , shear stress σij and heat flux qi are

moments of the distribution function, obtained by integration over velocity space c,

ρ = m

∫
fdc , vi =

m

ρ

∫
cifdc , 3RT =

m

ρ

∫
C2fdc , (2)

σij = m

∫
C<iCj>fdc , 2qi = m

∫
CiC

2fdc .

Here, m is the mass of particle, R is the specific gas constant and Ci = ci − vi is the peculiar velocity of the gas
particles.
A rarefied gas is well described by the Boltzmann equation for all Knudsen numbers. However, the Boltzmann

equation is difficult to solve deterministically due to six dimensional phase space description, as well as the non-
linearity in the collision term.

B. DSMC method (Microscopic method)

The DSMC method is a statistical method, based on the kinetic theory of dilute gases, to model rarefied gas flows
[12]. In this method, many independent simulating particles are used to model gaseous flows, where each particle
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represents a large number of real gas molecules. In the DSMC method the simulating particles are allowed to move
and collide; however, the motion and collision of the particles are assumed to be decoupled. The time step is chosen
as a fraction of the mean collision time to ensure pure motion in the elapsed movement time. In order to implement
DSMC, the flow domain must be divided into computational cells. The cell size is chosen small enough to ensure
small changes in the thermodynamic properties of the flow across each cell. To satisfy the cell size limitation in
the current study, the mesh size in both directions of the square domain is chosen as 0.1λ. Within each cell, the
macroscopic thermodynamic properties are sampled from molecular properties. Moreover, in each time step, only
the particles within a computational cell are allowed to perform collisions. For the sake of accuracy, the cells are
divided into sub-cells to facilitate the selection of collision pairs. The no-time-counter (NTC) method is used to chose
the collision pairs in each computational cell, therefore the computational time is proportional to the number of the
simulating particles [12]. Later on, in this paper, we will compare DSMC results with extended macroscopic R13
equations, which are more conventional for Maxwell molecules. Therefore, in the current study, the code of Roohi
and co-workers [21–25] is modified to model Maxwell molecules in a cavity with adiabatic and diabatic walls. The
fluid is argon as a Maxwell gas, with m = 6.63 × 10−26kg and a reference viscosity of µ0 = 1.9549 × 10−5Pa · s. In
order to relate the particle diameter, d, to the reference viscosity we used the relation [12]

d2 =
5 (α+ 1) (α+ 2)

√
mkT0/π

4α (5− 2ω) (7− 2ω)µ0
.

Here, k and m are, respectively, the Boltzmann constant and the molecular mass for the gas, and T0 is the reference
temperature. In order to model Maxwell molecules we set α = 2.13986 and ω = 1 [12]. Following [12], the Knudsen
number is obtained as

Knb =
1

L

1√
2πd2n0

,

where n0 is the reference number density. Another definition of the Knudsen number is based on the viscosity [26]

Kn =
µ0

ρ0
√
RT0L

∼= 1.27Knb . (3)

Here, ρ0 is the reference density. This definition of the Knudsen number, Kn, is related to Bird’s definition of Knudsen
number, Knb, for the Maxwell molecules as above. To avoid confusion, all results presented in this article are given
in terms of the Knudsen number Kn in Eq. (3). The DSMC simulation starts with 32 particles located in each cell.
As the flow reaches the steady state, the molecular properties are sampled over a large period of time to reduce the
statistical scattering. In addition, a filtering post processor is used to minimize the scattering in the predicted results
of thermodynamic properties. In this filtering, the sampled macroscopic properties, F , in cell N are averaged over a
pattern of its neighboring cells, see [23],

F̃(N) =

FN +
I=Nn∑
I=1

FI

Nn + 1
.

C. R13/NSF equations (Macroscopic models)

The detailed derivation of the R13 equations from the Boltzmann equation can be found in [9, 27]; here we only
present the final equations. Both macroscopic models consist of the conservation laws for mass, momentum, and
energy,

Dρ

Dt
+ ρ

∂vk
∂xk

= 0 , (4a)

ρ
Dvi
Dt

+
∂p

∂xi
+

∂σik

∂xk
= ρGi , (4b)

3

2
ρ
Dθ

Dt
+ (p δij + σij)

∂vi
∂xj

+
∂qk
∂xk

= 0 . (4c)

Here, the pressure p obeys the ideal gases law, p = ρRT = ρθ. Closure of the conservation laws (4a−4c) requires
specification of the stress tensor, σik, and the heat flux vector, qk, as constitutive equations. In classical hydrodynam-
ics, the NSF equations provide these constitutive relations from the laws of Fourier heat transfer and the Navier-Stokes
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relation for the stress, as

qi = −15

4
µ
∂θ

∂xi
, σij = −2µ

∂v⟨i

∂xj⟩
. (5)

The indices inside angular brackets denote the symmetric trace-free part of tensors [26].
In extended hydrodynamics theory, however, stress and heat–flux follow full balance equations as [26, 28, 29]

Dσij

Dt
+

4

5

∂q⟨i

∂xj⟩
+ σij

∂vk
∂xk

+ 2σk⟨i
∂vj⟩

∂xk
+

∂mijk

∂xk
= −2ρθ

∂v⟨i

∂xj⟩
− ρθ

µ
σij , (6)

Dqi
Dt

+
5

2
σik

∂θ

∂xk
− θσik

ρ

∂ρ

∂xk
− σik

ρ

∂σkl

∂xl
+ θ

∂σik

∂xk
+

7

5

(
qk

∂vi
∂xk

+ qi
∂vk
∂xk

)
+

2

5
qk

∂vk
∂xi

+
1

6

∂∆

∂xi
+

1

2

∂Rik

∂xk
+mijk

∂vj
∂xk

= −5

2
ρθ

∂θ

∂xi
− Pr

ρθ

µ
qi , (7)

where Pr is the Prandtl number, which is 2
3 for Maxwell molecules, and close to 2

3 for other molecule types. The

coefficients ( 45 , 1, 2, ...,Pr) are valid for Maxwell molecules. Some of the coefficients change with the molecule types
more significantly (up to 20%). The R13 equations for other molecule types were derived in [8], where the method is
outlined and coefficients are given for hard sphere molecules. Also for other molecule types, the R13 equations are of
third order of accuracy in terms of Knudsen number. Here we are more interested in the modelling of the adiabatic
surface, and used the R13 equations in their most convenient form, which is for Maxwell molecules. The modelling of
the adiabatic surface can be extended to all molecule types. In Eqs. (6,7) the higher moments mijk, ∆, Rij , appear as
unknown fluxes. Grad’s original closure in [4] gives ∆ = Rij = mijk = 0, while in the R13 equations these quantities
are obtained as [11, 27]

∆ = 5
σklσkl

ρ
+

56

5

qkqk
p

− 12µ

(
θ
∂ (qk/p)

∂xk

)
,

Rij =
20

7

σk⟨iσj⟩k

ρ
+

192

75

q⟨iqj⟩

p
− 24

5
µ

(
θ
∂
(
q⟨i/p

)
∂xj⟩

)
, (8)

mijk =
20

15

q⟨iσjk⟩

p
− 2µ

(
θ
∂
(
σ⟨ij/p

)
∂xk⟩

)
.

A Chapman-Enskog expansion of equations (6) and (7) shows that the R13 equations are of third order accuracy
in the Knudsen number [9, 26].

III. BOUNDARY CONDITIONS

The boundary conditions describe the interaction between the gas molecules and the surface. In kinetic theory
this is done by prescribing the velocity probability density of the molecules after hitting the wall. Since the actual
microscopic interaction between gas particles and a solid boundary is quite complicated, it is common to use simplified
models. Many gas-surface interaction models have been proposed [1]. The Maxwell accommodation model is the one
most widely used as the boundary condition for the Boltzmann equation [1, 26, 30] and in DSMC simulations [12],
which assumes particles are either thermalized with the surface or specularly reflected.

A. Dynamics of gas-surface interaction

When the surface is microscopically rough and the mass ratio of gas particle and surface particle is close to unity,
the gas particles might be trapped and perform multiple collisions with the surface to thermalize with the wall [12].
In this case the surface is behaving as a diffusive reflector. However, when the mass ratio of gas and surface particle
is not close to unity, the assumption of the diffusive reflection must be critically reviewed [12].
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FIG. 1. Gas and rough surface interaction at the molecular level, a) Collision of a light gas particle with a heavy surface
particle, b) Dynamics of collision on the relative velocities plane when mα

mβ
≪ 1.

Figure 1-a shows a light gas particle of mass mα and velocity c
′

α colliding with a heavy surface particle of mass mβ

and velocity c
′

β . Using the dynamics of collision [29] to obtain the post collision velocities, cα and cβ , we have

cα = c
′

α + 2
mβ

mα +mβ
Kβα

(
Kβα.g

′βα
)
,

cβ = c
′

β − 2
mα

mα +mβ
Kβα

(
Kβα.g

′βα
)

.

Here, Kβa is the apsidal vector, defined as [29]

Kβα =
g

′βα − gβα

|g′βα − gβα|
.

The relative velocities before and after collision are

g
′βα = c

′

β − c
′

α and gβα = cβ − cα .

Since there is a large difference between the masses, mα ≪ mβ , we have

mα

mα +mβ
= ε ,

mβ

mα +mβ
= 1− ε ,

where ε ≪ 1. Assuming that the surface is stationary, the average velocity of the surface particle is zero c
′
β = 0.

Therefore, in average, the relative velocity before collision is g
′βα = −c

′

α. The post collision velocity of the light
particle simplifies to

cα =
(
I− 2 (1− ε)KβαKβα

)
· c

′

α , (9)

where I is the unit tensor. In order to obtain the magnitude of post collision velocity of the light particle, we multiply
both sides of Eq. (9) with cα to get

|cα|2 =
[
δjk + 4

(
ε2 − ε

)
Kβα

j Kβα
k

]
c
′

j αc
′

k α . (10)

Note that in Eq. (10), we used Kβα
i Kβα

i = 1. By assuming a very small value for ε we have

|cα| ≃
∣∣∣c′

α

∣∣∣ .
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Therefore, as a result of the collision between a very light gas particle and a heavy wall particle, the light gas particle
will be reflected with almost the same kinetic energy, which subsequently leads to very small thermal accommodation.
Thomas [31] reported that the thermal accommodation coefficient becomes significantly less than unity, when the
mass ratio of gas particle and surface particle in the experiment is small. The momentum exchange between the gas
and surface leads to a different reflection direction for the gas particle, which is dependent on the detailed microscopic
geometry of collision with the surface. Figure 1-b demonstrates the collision between two particles in the plane of
the relative velocities with the apsidal vector K. For a rough surface as in Fig. 1-a, it is expected that the reflected
particle has no preferred direction. All possible reflection directions will have the same likelihood, that is the direction
will be isotropically distributed.

B. Adiabatic surface model (isotropic scattering)

The adiabatic boundary condition implies no-energy-transfer through the surface, where energy is conserved for
each individual particle. The total transport of energy through a wall with the normal in n-direction, as seen in the
rest frame of the wall, can be written as

Un = m

∫
cWn

(
cW
)2

2
fdc = qn + σtnVt + Vn

(
1

2
ρV2 +

5

2
ρRT

)
,

where cWi = ci − vWi is the particle velocity in the rest frame of the wall, and Vt = vt − vWt is the tangential slip
velocity. At a non-accumulating, adiabatic surface at rest we have vWi = vn = en = 0, therefore,

qn = −Vtσtn . (11)

From Eq. (11) we can see that, while the overall energy flux vanishes, there is a non-convective heat flux qn, which
transfers the heat of slip friction, −Vtσtn, into the gas. We denote this effect as viscous slip heating ; A detailed
discussion will follow in the sequel.
We are interested in adiabatic surfaces with friction. These cannot be described by the pure specular Maxwell

model, where an adiabatic wall is necessarily frictionless. An adiabatic surface can be modeled utilizing the fully
diffusive Maxwell surface, if the wall temperature is adjusted in each surface element so that the macroscopic heat
flux follows from Eq. (11). This model, however, requires an iterative scheme to modify the microscopic boundary
conditions in the DSMC method. In the macroscopic method, on the other hand, this process is rather straightforward
and we will be further discussed in Sec. III E.
We now turn our attention to processes where the particles leaving the surface are isotropically reflected while the

magnitude of their velocities is that of the incoming particle. Thus, the collision with the surface does not change the
kinetic energy of the individual particle, so that the surface is adiabatic in the rest frame of the wall. Some particles
exchange momentum with the wall so that there is friction on the surface [20, 32].
Accordingly, the phase density of the particles in an infinitesimal neighborhood of the wall is

f̄ =

{
f∗(cWi , xi, t), cWk nk ≥ 0

f(cWi , xi, t) cWk nk ≤ 0.
(12)

Here, f∗ in (12) denotes the phase density of particles leaving the wall (cWk nk ≥ 0). The function f∗ must be chosen
such that the wall does not accumulate particles, it must be isotropic in velocity, i.e.,

f∗(cWi , xi, t) = f∗(|cW |, xi, t). (13)

It is convenient to introduce spherical coordinates
{
|cW |, ϑ, ϕ

}
for the velocity space, i.e., with the direction vector

ξi,

cWi = |cW |ξi = |cW |
{
sinϑ cosϕ, sinϑ sinϕ, cosϑ

}
i
,

where |cW | ∈ [0, ∞], ϑ ∈ [0, π], ϕ ∈ [0, 2π], and dΩ = sinϑdϑdϕ. Writing the conservation of the normal number
flux of the gas to the wall with the assumption of isotropic distribution function, Eq.(13), gives

f∗(|cW |) =

∫ π

π/2

∫ 2π

0
cknkf sinϑdϕdϑ∫ π

π/2

∫ 2π

0
cknk sinϑdϕdϑ

. (14)
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C. Microscopic boundary conditions for adiabatic surface in DSMC

In order to implement a boundary condition in the DSMC method, the velocity vector for a reflected particle is
obtained by sampling from a specific distribution function. In other words, at first the distribution function for the
reflecting particle is specified, and then the velocity vector is obtained by sampling from the corresponding distribution
function
In the DSMC method changes in the total energy of a particle due to the collision with a solid surface determines

the amount of energy that flows through the wall. Monatomic particles only have translational energy. Therefore,
implementing the adiabatic boundary condition on a surface is equivalent to requiring an equal amount of translational
energy before and after collision with a solid surface. For a particle colliding with a surface, the translational energy
before collision is

U
′
=

1

2
m(c

′2
x + c

′2
y + c

′2
z ) =

1

2
mc

′2 ,

where m is the particle mass, and the apostrophe denotes the molecular state before the collision. As a particle reflects
from the adiabatic surface, the velocity vector must have the same magnitude, but different direction. Assuming that

the particles have the isotropic probability for scattering in all directions, the scattering kernel P
(
c

′ → c
)

for a

particle reflecting from a surface with the normal in the y−direction is [20]

P
(
c

′
→ c

)
=

1

πc3
cyδ
(
c
′
− c
)
.

Here, c is the particle velocity vector after collision with the surface. Sampling requires the cumulative probabilities,
which are best defined based on spherical coordinates {c, θ, ϕ} so that

P
(
c

′
→ c

)
dc =

1

πc3
c cosϕδ

(
c
′
− c
)
c2dc sinϕdϕdθ =

[
δ
(
c
′
− c
)
dc
] [ 1

2π
dθ

]
[2 cosϕ sinϕdϕ] . (15)

The delta function indicates that the absolute velocity of the leaving particle is deterministic, c = c′. However, the
direction of the leaving particle is subject to the process of random isotropic scattering. By considering the the
cumulative probabilities

Fθ =

Θ∫
0

1

2π
dθ , Fϕ =

Φ∫
0

2 cosϕ sinϕdϕ .

Here, Θ,Φ are the angles for the particles leaving. The integrals for the cumulative probabilities Fθ, Fϕ can be solved
analytically to give

Θ = 2πFθ , (16)

Φ = arcsin(
√
Fϕ) (17)

By converting back to Cartesian coordinates, and noting that cos(arcsin(x)) =
√
1− x2, the velocity of the randomly

scattered particle is

cx = c
′√

Fϕ cos(2πFθ) , (18)

cy = c
′√

1− Fϕ ,

cz = c
′√

Fϕ sin(2πFθ) .

Using this method, particles hitting the surface are reflected into arbitrary directions while carrying the same
translational energy as before the collision.
It is also worth noting that by following the same methodology we can model an adiabatic moving surface in DSMC.

The observer on the wall frame, which moves with the velocity of VW , measures the incoming particle’s velocity as

c′W = c
′
−VW .

The components of the reflecting velocity vector, still in the rest frame of the wall, are obtained as

cWx = c′W
√
Fϕ cos(2πFθ) ,

cWy = c′W
√
1− Fϕ ,

cWz = c′W
√
Fϕ sin(2πFθ) .

Finally, the velocity of the reflecting particle in the rest frame is c = cW +VW .
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D. Macroscopic boundary conditions for adiabatic surface in R13/NSF equations

To find the macroscopic boundary conditions, we follow the method outlined in [4, 11]. We consider the continuity
of normal fluxes over an infinitesimal surface area element which gives

m

∫
ΨAc

W
k nk f dcW = m

∫
ΨAc

W
k nk f̄ dcW , (19)

where ΨA are polynomials of the particle velocity, cWi . Integrating (19) yields relations between the moments in the
gas and the wall properties (θW , vWi ) that serve as boundary conditions for the moments.
To perform the integrations in Eq. (19), the velocity distribution function f and the appropriate velocity functions

ΨA are required. For the R13 system, the phase density in the gas is approximated by a Grad-type distribution that
reads [26]

fR13 = fM (1 + Φ) , (20)

where fM denotes the local Maxwellian and

Φ =

(
1

8
− C2

12θ
+

C4

120θ2

)
∆

ρθ2
+

CiCj

2ρθ2
σij −

1

ρθ2

(
1− C2

5θ

)
Cjqj+

CiCjCk

6ρθ3
mijk − 1

4ρθ3

(
1− C2

7θ

)
CiCjRij .

Here, Ck = cWk −
(
vk − vWk

)
is the peculiar velocity (i.e., the velocity in the rest frame of the gas), with Cknk = cWk nk.

Grad observed that, in order to get meaningful boundary conditions, the velocity functions ΨA must be even in
the normal component of the particle velocity cWk nk [4]. For example, if we consider a surface with the normal in
y−direction (y = x2), we take

ΨA =
{
1, Cx, C

2, CyCy, CxCx, C
2Cx

}
, (21)

which correspond to the fluxes

m

∫
ΨAc

W
k nk fdc = {ρvy, σxy, qy,myyy,mxxy, Rxy} . (22)

Using the isotropic distribution function for the reflecting particles, Eq. (12), and performing the integrations for
Eq. (19), we obtain the boundary conditions

vy = 0 , (23)

σxy =

√
2

πθ

(
−1

2
mxyy −

1

5
qx − PVx

)
ny ,

qy = −σxyVx ,

Rxy = 11θσxy +

√
2

πθ

(
36θVx

(
P − 2

3
ρθ − 3

8
σyy +

1

112

Ryy

θ

)
+ 5θmxyy

)
ny ,

mxxy = − 1

10
σxyVx +

√
2

πθ

(
3

2
V2
x

(
P − 1

2
ρθ

)
− θ

(
σxx − 1

4
σyy

)
− 1

14
Rxx +

1

56
Ryy

)
ny ,

myyy =
1

5
σxyVx +

√
2

πθ

(
−V2

x

(
P − 1

2
ρθ

)
− 3

28
Ryy −

3

2
θσyy

)
ny .

Here, Vx = vx − vWx is the slip velocity and P = ρθ + 1
2σyy − 1

120
∆
θ − 1

28
Ryy

θ . The integrals of fR13 over the
solid angle, as required in Eq. (14), cannot be solved algebraically, hence we expanded fR13 in the non-equilibrium
quantities {Vi, σij , qi, . . .} to second order. Note that this is not a linearization in the orders of Knudsen number, but
in the deviation from equilibrium state. For small lid velocity, as considered here, this deviation is small, hence, it
should be sufficient to only consider up to the second order.
From the boundary conditions we can see that, while the isotropically scattering wall is adiabatic, the normal heat

flux qy does not vanish. Indeed, as we expected from Eq. (11), slip friction creates heat that must go into the gas.
The corresponding slip boundary conditions for the NSF equations can be obtained from the boundary conditions

for the R13 equations (23) by considering the first order terms in Knudsen number, as [33]

vy = 0 , (24)

σNSF
xy = −

√
2

πθ

(
ρθVx +

1

5
qNSF
x

)
ny ,

qNSF
y = 0 .
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Note that, since the viscous slip heating is of second order in terms of the Knudsen number, it does not show in the
NSF limit, hence qy = 0 at the wall.

E. Adiabatic Maxwell surface

Another method for modeling the adiabatic surface is based on the Maxwell boundary conditions. Adiabatic
boundaries are achieved by adjusting the local wall temperature such that the energy flux vanishes. The particles
reflecting from the wall follow the Maxwell distribution,

fW =
ρW

m
√
2πθW

3 exp

(
−|ck − vWk |2

2θW

)
, (25)

where θW and vWk being the known temperature and velocity of the surface [1]. Moreover, ρW must be obtained such
that particles do not accumulate at the wall.
Considering the frame of reference in which the wall is at rest, the microscopic velocity of the gas particle is

cWk = ck − vWk and the velocity distribution function f̄ of the gas in an infinitesimal neighborhood of the wall is given
by

f̄ =

{
fW , cWk nk ≥ 0

f(cWi , xi, t), cWk nk ≤ 0,
(26)

where f(cWk , xk, t) is the velocity distribution function in the gas.
Inserting the distribution function (20) and performing the integration in equation (19) for the Maxwell model Eq.

(26) leads to the wall-boundary conditions [11]

vy = 0 , (27)

σxy =

√
2

πθ

(
−PVx − 1

5
qx − 1

2
mxyy

)
ny ,

qy =

√
2

πθ

(
−2PT +

1

2
PV2

x − 1

2
θσyy −

1

15
∆− 5

28
Ryy

)
ny ,

Rxy =

√
2

πθ

(
PθVx − 11

5
θqx − 1

2
θmxyy − PV3

x + 6PVxT
)
ny ,

mxxy =

√
2

πθ

(
− 1

14
Rxx − θσxx +

1

5
θσyy −

1

5
PT +

4

5
PV2

x − 1

150
∆

)
ny ,

myyy =

√
2

πθ

(
2

5
PT − 3

5
PV2

x − 7

5
θσyy +

1

75
∆− 1

14
Ryy

)
ny .

Here, T = T − TW denotes the temperature jump. In order to obtain the adiabatic boundary condition from the
Maxwell boundary equations, we have to adjust the heat flux to mimic the no energy transfer condition, Eq.(11), and
set qy = −Vxσxy, to account for the viscous slip heating. The temperature jump corresponding to the adiabatic fully
diffusive Maxwell surface is obtained from (27)3 as

T = T − TW = −1

4

θσyy

P
− 1

30

∆

P
− 5

56

Ryy

P
+

1

4
V2
x − 1

4

mxyyVx

P
− 1

10

qxVx

P
. (28)

By substituting the corresponding wall temperature, TW , into the Maxwell boundary conditions for the diffusive wall
(27), we obtain the same boundary conditions for the isotropically scattering adiabatic surface, Eq. (23).
The above calculation shows that whether we adjust the temperature of the surface to get adibaticity at the wall,

or use the isotropic scattering kernel to obtain the corresponding macroscopic boundary condition, the results, at
least on the level of R13 equations, are the same. Both models lead to the adiabatic surface. However, adjusting the
temperature in the microscopic DSMC model leads to an iterative scheme. The wall temperature should be modified
for each iteration so that the final temperature distribution on the wall can mimic the no-energy-transfer from the
surface. On the other hand, if we use the isotropic scattering kernel, there is no need to prescribe the temperature,
and the wall temperature will be obtained accordingly.
We also note that the proposed method of modeling the adiabaticity using the isotropic scattering kernel is more

consistent with the underlying physics of light gas particles interacting with heavy surface particles outlined in Sec.
III A. The adiabatic Maxwell surface is a well-working model, however, the complexity in nature of this wall, i.e.,
adjusting the temperature of each individual surface element, seems rather unphysical.
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FIG. 2. a) Adiabatic cavity geometry, b) Heat flux through the walls of cavity at UWall = 50ms−1, Kn = 0.05

IV. RESULTS AND DISCUSSION

A. Micro lid driven cavity

We consider the partly adiabatic two-dimensional lid driven micro cavity, depicted in Fig. 2-a and compare the
DSMC, R13 and NSF results in rarefaction regime. All walls except for the driven lid are assumed to be adiabatic; the
top wall is fully diffusive and isothermal at T = 273K. The corresponding boundary conditions for a fully diffusive
surface in DSMC and R13 equations are well studied and can be found in [34]. This geometry serves as a test for the
implementation of the adiabatic boundary conditions (18) for DSMC and (23) for R13 equations. The top lid velocity
is UWall = 50 ms−1and computation are for Knudsen numbers Kn = 0.05, 0.1, 0.3. The side length of the cavity walls
is fixed at L = 1µm and rarefaction occurs due to the reduction of the pressure in the cavity.

Figure 2-b shows the heat flux variation for the DSMC results along the four walls of cavity when UWall =
50ms−1and Kn = 0.05. The heat flux of the monatomic rarefied flow through the walls is obtained by

q
′′
=

B ×m

2×N × t

N∑
i=1

[(
c
′2
x + c

′2
y + c

′2
z

)
i
−
(
c2x + c2y + c2z

)
i

]
Ai

.

Here, B is the number of real gas molecules represented by each DSMC particle, N is the number of particle-surface
collisions taking place in the process of sampling, t is the elapsed time in the sampling, and A is the area of the cell
through which the particle transfer energy to the surface.

Figure 2-b demonstrates that the adiabatic boundary condition Eq. (18), for DSMC indeed guarantees the full
adiabaticity on the fixed walls. This is not so in Refs. [16, 18], where adiabaticity is implemented by an iterative
scheme that sets the local boundary temperature such that the local heat flux into the wall vanishes; as a result, one
observes oscillation of heat flux on the walls. We emphasize that by following the methodology in the current study,
as one sets a surface to be adiabatic by isotropic scattering, there is no need to prescribe any temperature for the
wall. We also note that the iterative schemes are less exact, and more time consuming. To us, the modelling of an
adiabatic surface by isotropic scattering appear more natural.
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FIG. 3. Grid dependency study test: a) vertical heat flux along the driven lid for DSMC method at Kn = 0.1, b) variation of
relative percentage changes in the net heat flux by number of grid points along the driven lid for R13 solution at Kn = 0.1

B. Grid dependency

In order to perform the grid dependency test for DSMC, we use three grids composed of 100× 100, 200× 200 and
300× 300 cells, and compare the heat flux profile along the driven lid when UWall = 100 ms−1and Kn = 0.1. Figure
3-a demonstrates that the results for 200 × 200 and 300 × 300 are numerically equivalent, while the 100 × 100 grid
gives insufficient results; therefore we used 200× 200 grid cells for the following results.
To determine an appropriate mesh size for the R13 solution, a grid dependency test was conducted as well. Since

solving the macroscopic transport equations takes considerable less amount of time than the DSMC approach, various
meshes of size N = 40, 50, 100, 200, 400 were tested. For these cases the relative percentage changes in the net heat
flux along the driven lid was monitored as the grid was refined successively. The results are plotted in Fig. 3-b. It is
evident from Fig. 3-b that the relative percentage change in the net heat flux between two successive grid sizes is less
then 0.2% as the grid is refined beyond 100 × 100. Therefore, for the following R13 results the grid with 100 × 100
cells is used.
It is also worth noting that a typical simulation with the R13 equations (as well as NSF) with a grid size of 100×100

takes about 20 minutes on a single quad core desktop PC. Whereas, depending on the flow parameters and the value
of the Knudsen number, the corresponding DSMC simulation takes up to 70 hours of the computational time.

C. Velocity profile

Figure 4 shows the velocity components on the two centerlines of the cavity for Uwall = 50 ms−1 in the rarefied
regime. For the small Knudsen number (Kn = 0.05) the three approaches– DSMC, R13 and NSF equations predict
the same results for the velocity. As the Knudsen number increases we observe a deviation in the results of the
continuum approaches from the molecular method; however, the predicted results of the R13 method are in better
agreement with DSMC data, as compared to NSF.
A closer look into Fig. 4-c shows that the largest deviation in the predicted velocity by R13 from the DSMC

solution takes place in the Knudsen layer at the side walls. Note that in this rarefaction regime the Knudsen layer
almost covers the entire flow field. The R13 equations, by benefiting from the Knudsen layer terms, can provide an
approximation to the Knudsen layer, however, in the presence of large non-equilibrium effects this approximation
becomes less accurate. The NSF equations, on the other hand, do not include the Knudsen layer terms at all and
their results deviates from the DSMC solution, almost in the entire domain in Fig. 4-c.
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FIG. 4. Comparison of horizontal and vertical velocity components on the vertical and horizontal centerlines of the cavity for
Uwall = 50 ms−1, a) Kn = 0.05, b) Kn = 0.1, c) Kn = 0.3
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D. Temperature profile

Variation of the flow temperature on the centerlines of the cavity with Uwall = 50 ms−1 are depicted in Fig. 5. This
figure illustrates that up to Kn = 0.1, the R13 equation can accurately predict the temperature variation along the
two centerlines. As Knudsen number increases, the R13 equations slightly underpredict the flow temperature (less
than 1%) in close vicinity of the left adiabatic wall. As shown in Fig. 5, the flow temperature increases and decreases
near the right and left walls, respectively. As the rarefied flow approaches the right wall it undergoes a compression
which subsequently increases the flow temperature. The R13 equations can capture the increase and decrease of the
flow temperature close to the side walls with a slight difference in the temperature magnitude in the non-equilibrium
regime.

E. Heat flux; Viscous slip heating

1. Heat lines

Figure 6 shows the heat flux streamlines inside the cavity for the three approaches when Kn = 0.05. Similar to
the case of a cavity with isothermal wall [23], the unconventional “cold-to-hot” heat transfer is observed. By using
the macroscopic equations, Rana et al. [27] showed that this so called anti-Fourier heat flux is due to domination
of the non-dimensional shear stress gradient over the temperature gradient. For a more detailed description of this
rarefaction effect see [27].

A closer look into the DSMC and R13 shows that the associated curved structures of the heat flux lines are properly
captured by the continuum method. Most interestingly, the DSMC and R13 results show heat apparently leaving the
adiabatic surface while this effect is not observed in NSF. This heat is not coming from the walls, but created in the
slip layer by friction.

In fact, the particles in the cell adjacent to the adiabatic surfaces collide with each other (and not the surface),
which subsequently leads to viscous heat generation in the boundary cells. This heat cannot escape into the adiabatic
wall; consequently, it will be directed towards the gas. Figure 6-a demonstrates that the R13 equations also predicts
the viscous heat generation in the boundary due to rarefaction. In fact, Eq. (23) shows that the normal component
of the heat flux in the proximity of the adiabatic surface boundary condition is a product of the slip velocity and the
shear stress on the boundary, qy = −σxyVx.

Comparison of the heat lines for the R13 and DSMC results also shows the appearance of a heat flux vortex in
the bottom left and a heat source in the top left side of the cavity. Figure 7 shows the heat flux profile along the
two horizontal lines passing through the centre of bottom vortex, Y/L = 0.42 and the top source at Y/L = 0.95 for
R13 results. The maximum value of heat flux in the entire domain (qmax = 0.0187) is used to non-dimensionalize the
heat flux components. Figure 7-a demonstrates that the absolute value of the heat flux vector becomes zero at the
center of the bottom vortex, which consequently leads to circulation of the heat lines around it. Note that the DSMC
solution for heat flux lines in this region suffers markedly from large noises. Figure 7-b illustrates that the heat source
on the top left corner appears due to the very small value of absolute heat flux in this region.

2. Heat flux along the centerlines

Comparison of the heat flux profiles along the two centerlines of the cavity is depicted in Fig. 8. This figure illustrates
that the R13 equations can accurately predict the values of heat flux along the two centerlines in the adiabatic cavity.
In addition, Fig. 8 shows that increasing the rarefaction effects, i.e., larger Knudsen number, enlarges the heat flux
magnitude predicted by the NSF equations notably; however, the heat flux magnitude predicted by the R13 method is
not significantly increased over the Knudsen regime. The small increment of the vertical heat flux over the horizontal
centerlines for R13 results can be due to small increment role of the Knudsen layer as well as the third order terms
in the heat flux governing equation, Eq. (7).
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FIG. 5. Comparison of temperature profiles on the horizontal and vertical centerlines of cavity for Uwall = 50 ms−1, a)
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F. Shear stress

1. Shear stress distribution

Figure 9 shows the shear stress distribution overlaid on the velocity streamlines when Kn = 0.05 for the three
methods of solution. The shear stress is nondimensionlized with respect to σo = ρ0RT0. The R13 equations can
accurately predict the shear stress distribution inside the cavity; however, NSF predict that the shear stress contours
are generated at the top two corners.

2. Shear stress on the driven lid

In order to investigate the accuracy of the employed methods in more detail, we illustrate the shear stress profile
along the driven lid in Fig. 10. The R13 equations provide very accurate results for the magnitude of the shear stress
in the vicinity of driven lid. As the lid velocity increases, the shear stress in the flow field enlarges. A closer look into
Fig. 10 shows that the value of the shear stress predicted by R13 is in maximum deviation from the DSMC results
around the two top corners of the cavity where the flow undergoes sudden changes. Therefore, in this region the
local Knudsen number is significantly larger than the global Knudsen number, which indeed limits the accuracy of
the shear stress equation close to the top corners.

3. Drag coefficient

Although the R13 equations do not fully predict the accurate local values, they describe the overall behavior of
the flow rather well. Therefore, we were encouraged to determine the R13 drag coefficient and compare it with the
DSMC results. The drag coefficient on the driven lid is obtained by

CD =

∫ L

0
σxydx

σ0L

Figure 11 shows the variation of the drag coefficient with the Knudsen number. Comparison of the R13 results with
the DSMC data demonstrates that the R13 equations can accurately predict the drag coefficient up to Kn = 0.3. This
figure is a good indicator of the capabilities in the R13 equations when predicting the global flow behaviors.
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FIG. 11. Comparison of the drag coefficient obtained from the three methods

σ σ

a) b)

FIG. 12. Flow formation predicted by DSMC inside a lid driven cavity with three specular walls and diffusive driven lid,
UW = 50 m

s
, Kn = 0.05. a) Heat flux streamlines overlaid on the temperature distribution, b) Velocity streamlines overlaid on

the shear stress distribution.

G. Cavity with specular reflecting walls

Another method to model the adiabaticity of the surface is to use the specular reflection kernel. In this method,
the process of particle surface collision guaranties no-energy-transfer through the wall, however, the gas undergoes
a perfect slip condition at the surface. Figure 12 shows the DSMC results for the lid driven cavity with 3 specular
walls. The top driven lid is assumed to be a diffusive reflector at T = 273K.

Figure 12-a shows the heat lines overlaid on the temperature distribution. Compared to Fig. 6-b, a similar range
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of temperature is predicted inside the domain. However, the heat lines are completely different. More interestingly,
the shear stress distribution, Fig. 12-b, shows a rather large shear stress close to the top lid, while the rarefied flow in
the rest of the domain exhibits small shear stress. The perfect slip condition on the wall leads to a very small shear
stress distribution inside the flow field. Since the assumption of the perfectly smooth surface at the microscopic level,
specular reflection, is not realistic, such modelling of adiabaticity is not of our interest.

V. CONCLUSION

In the current study microscopic and macroscopic models are employed to model adiabatic surfaces. When a gas
with light particles interacts with a rough surface of heavy particles, the gas-surface interaction can be considered
adiabatic, and the reflecting particles have no preference in the reflection direction (isotropic scattering). In the
DSMC method the isotropic scattering kernel is utilized to ensure the no-energy-transfer condition on each particle
colliding with the adiabatic surface. The corresponding macroscopic boundary equations for the isotropic scattering
distribution functions are obtained for the R13 equations. By taking into account the second order nonlinearity in
the normal heat flux to an adiabatic surface, the viscous slip heating effect appears. The generation of heat due to
intermolecular collision in the adjacent cell to the adiabatic surface (microscopic approach) can be well captured, and
interpreted, by the product of the slip velocity and the shear stress on the adiabatic wall (macroscopic approach).
The viscous slip heating that occurs at all slip boundaries can be more clearly identified in the case of adiabatic
surface. Comparison of the solution for temperature, shear stress and heat flux profiles obtained from R13 and DSMC
methods demonstrates the capability of the R13 equations in predicting the flow behaviors upto Kn = 0.3.
To be more general, the reflection of a particle from a surface can be modeled as a superposition of the diffusive

reflection, specular reflection and isotropic scattering [32]. Therefore, using a general reflection kernel for the particle
based method, which can model the three possible scenarios, seems to be essential.
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