
Thermodynamically admissible boundary conditions for the regularized 13
moment equations
Anirudh Singh Rana and Henning Struchtrup 
 
Citation: Physics of Fluids 28, 027105 (2016); doi: 10.1063/1.4941293 
View online: http://dx.doi.org/10.1063/1.4941293 
View Table of Contents: http://scitation.aip.org/content/aip/journal/pof2/28/2?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Boundary conditions for the one-dimensional nonlinear nonstationary Boltzmann’s moment system
equations 
J. Math. Phys. 55, 123507 (2014); 10.1063/1.4902936 
 
Maxwell boundary condition and velocity dependent accommodation coefficient 
Phys. Fluids 25, 112001 (2013); 10.1063/1.4829907 
 
Couette and Poiseuille microflows: Analytical solutions for regularized 13-moment equations 
Phys. Fluids 21, 017102 (2009); 10.1063/1.3064123 
 
Viscous-slip, thermal-slip, and temperature-jump coefficients as defined by the linearized
Boltzmann equation and the Cercignani–Lampis boundary condition 
Phys. Fluids 15, 1696 (2003); 10.1063/1.1567284 
 
Model equations in rarefied gas dynamics: Viscous-slip and thermal-slip coefficients 
Phys. Fluids 14, 4123 (2002); 10.1063/1.1514973 
 
 

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  142.104.86.97

On: Tue, 09 Feb 2016 18:59:57

http://scitation.aip.org/content/aip/journal/pof2?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/614767649/x01/AIP-PT/PoF_ArticleDL_0116/AIP-APL_Photonics_Launch_1640x440_general_PDF_ad.jpg/434f71374e315a556e61414141774c75?x
http://scitation.aip.org/search?value1=Anirudh+Singh+Rana&option1=author
http://scitation.aip.org/search?value1=Henning+Struchtrup&option1=author
http://scitation.aip.org/content/aip/journal/pof2?ver=pdfcov
http://dx.doi.org/10.1063/1.4941293
http://scitation.aip.org/content/aip/journal/pof2/28/2?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jmp/55/12/10.1063/1.4902936?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jmp/55/12/10.1063/1.4902936?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/25/11/10.1063/1.4829907?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/21/1/10.1063/1.3064123?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/15/6/10.1063/1.1567284?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/15/6/10.1063/1.1567284?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/14/12/10.1063/1.1514973?ver=pdfcov


PHYSICS OF FLUIDS 28, 027105 (2016)

Thermodynamically admissible boundary conditions
for the regularized 13 moment equations

Anirudh Singh Rana1,a) and Henning Struchtrup2,b)
1Department of Mechanical and Aerospace Engineering, Gyeongsang National University,
Jinju, Gyeongnam 52828, South Korea
2Department of Mechanical Engineering, University of Victoria,
Victoria, British Columbia V8W 2Y2, Canada

(Received 21 September 2015; accepted 20 January 2016; published online 5 February 2016)

A phenomenological approach to the boundary conditions for linearized R13 equa-
tions is derived using the second law of thermodynamics. The phenomenological
coefficients appearing in the boundary conditions are calculated by comparing the
slip, jump, and thermal creep coefficients with linearized Boltzmann solutions for
Maxwell’s accommodation model for different values of the accommodation coef-
ficient. For this, the linearized R13 equations are solved for viscous slip, thermal
creep, and temperature jump problems and the results are compared to the solutions
of the linearized Boltzmann equation. The influence of different collision models
(hard-sphere, Bhatnagar–Gross–Krook, and Maxwell molecules) and accommoda-
tion coefficients on the phenomenological coefficients is studied. C 2016 AIP Pub-
lishing LLC. [http://dx.doi.org/10.1063/1.4941293]

I. INTRODUCTION

Transport mechanisms in a gas under rarefied conditions pose unique challenges in present
fluid mechanics. Such rarefied conditions occur, for example, in micro-electro-mechanical systems
(MEMS), and high vacuum systems, where the dimensions of the devices are comparable to the
mean free path of the gas molecules.11,20 Accordingly, the degree of rarefaction in a gas is character-
ized by the Knudsen number, Kn, which is defined as the ratio of the molecular mean free path to
the macroscopic length scale. Based on the value of the Knudsen number, the gas flow can be classi-
fied into four regimes: hydrodynamic regime (Kn . 0.001), slip flow regime (0.001 . Kn . 0.01),
transition regime (0.01 . Kn . 10), and free molecular flow regime (10 . Kn).11,20 It is commonly
accepted that the classical description based on the Navier-Stokes and Fourier (NSF) equations
is applicable only for the hydrodynamic flow regime.13,38,55 For flows outside the hydrodynamic
regime, many interesting rarefaction effects are observed, such as velocity slip and temperature
jump at the walls,24,38,46 Knudsen layers,13,23,38 transpiration flow,13,25,38 thermal stress,30,38 and heat
flux without temperature gradients.27,31 These effects are termed as non-equilibrium effects and they
cannot be described by the classical NSF equations. The range of validity of the NSF equations
may further be extended to the slip flow regime by applying appropriate slip and jump boundary
conditions to model the velocity slip and temperature jump at the walls, as well as transpiration
flows.59 However, they still cannot describe the Knudsen layers and other rarefaction effects.

A fully detailed description of the gas flow in all flow regimes is offered by the Boltzmann
equation, which solves for the microscopic distribution function of the gas particles.2,6 The solution
of the Boltzmann equation is usually cumbersome, and computationally expensive. In macroscopic
models, on the other hand, the behavior of a gas is described through physical quantities such as
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mass density, temperature, velocity, heat flux, stress tensor, and so on. The goal of these macro-
scopic transport equations is to reduce the high dimensional phase space of the particle descrip-
tion to a low-dimensional continuum model by relating the physical quantities to moments of the
distribution function.

Macroscopic equations are obtained by an asymptotic reduction of the Boltzmann equation at
different levels of approximation and accuracy.13,38,41 Conventionally, these equations are derived
with either the Chapman-Enskog (CE) expansion method8 or Grad’s moment method.14,15 The NSF
equations can be obtained from the first order CE expansion of the Boltzmann equation. The second
and third order CE expansions result in the Burnett and super-Burnett equations, respectively.8,41

While the Burnett-type equations can describe rarefaction effects in the lower transition regime
(Kn . 1) with reasonable accuracy,1 they suffer from instabilities for time-dependent problems.3

Several modified forms of the Burnett equations have been suggested in the literature that are
stable;4,5,19,37 however, at present, no boundary conditions are available for any of these sets of equa-
tions. The 13 moment equations, obtained via Grad’s moment method, are linearly stable but due
to their hyperbolic character, Grad’s 13 (G13) moment equations produce unphysical sub-shocks
for high speed flows (Ma & 1.65).57 Furthermore, in Grad’s method, the number of moments is
arbitrary, and therefore it is difficult to know a priori which sets of moments should be considered
for a given process.

The regularized 13 (R13) moment equations, obtained by means of the order of magnitude
method,40 provide a clear relation between Knudsen number and the appropriate set of moment to
be considered, as seen in Refs. 40 and 44 and also Ref. 41. In Ref. 41, it was shown that the G13
equations are of second order in the Knudsen number, while the R13 equations are of third order
consequently, the Burnett and super-Burnett equations can be obtained by CE expansion of the R13
equations. The R13 equations are always linearly stable and give smooth shock structures for all
Mach numbers, particularly, in good agreement with kinetic theory for Ma . 3.52

The macroscopic boundary conditions (MBCs) for the R13 equations were already derived in
Refs. 16 and 53, by introducing the Grad’s 26 moment closure in Maxwell’s accommodation model.
It turned out that the original nonlinear R13 equations require more boundary conditions than those
required for the linearized R13 equations, and this issue was discussed in Refs. 31 and 53. In
Refs. 31 and 32, we used order of magnitude arguments to rewrite the non-linear part of the R13
equations such that the third order accuracy was maintained, but linear and nonlinear R13 equations
require the same number of boundary conditions. Recently, the R13 equations for the hard sphere
(HS) gas, gas-mixtures, and for polyatomic gases were derived in Refs. 47, 18, and 29, respectively.

Taheri et al. considered in Refs. 48–51 the closed-form solutions of the linearized R13 equa-
tions to several boundary value problems using MBC, which were qualitatively in good agreement
with the reference solutions. In Ref. 50, the breakdown of the Onsager symmetry relations33,34

was reported for pressure-driven and thermally driven rarefied gas flows in long capillaries using
extended macroscopic models. It was shown that the linearized R13 equations obey (approximately)
the Onsager reciprocity relation for moderate Knudsen numbers, Kn . 0.25.

Young in Ref. 58 calculated the Knudsen layers and jump coefficients using linearized G13
equations and R13 equations. He showed that when compared with the direct solutions of the
Boltzmann equation, the R13 equations with the MBC underpredict the velocity slip, thermal creep,
and temperature jump coefficients by about 10%.

In the present paper, we shall address two issues regarding the violation of Onsager reci-
procity relations50 and the underprediction of the slip, jump, and creep coefficients by MBC for
R13 equations.58 First, we shall derive phenomenological boundary conditions (PBCs) for the R13
equations, which are thermodynamically admissible for all processes. Furthermore, the phenome-
nological coefficients in these boundary conditions are obtained such that the R13 equation gives
correct velocity slip, thermal creep, and temperature jump coefficients in the bulk (i.e., outside of
the Knudsen layers46). Earlier, in Ref. 53, Torrilhon and Struchtrup introduced ad hoc coefficients
in the boundary conditions, so that an overall agreement with DSMC solutions was achieved. The
reason for these corrections, as discussed in Ref. 53, is that the R13 equations cannot describe
Knudsen layers completely, due to the lack of sublayer contributions from higher moments, see also
Refs. 41 and 46. In the case of NSF, where Knudsen layers are completely absent, it is well known
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that the slip and jump boundary conditions must be modified with artificial coefficients known as
the slip and jump corrections, see Ref. 59. However, the extended moment equations, such as R13
equations, contain additional higher order moments and their respective boundary conditions, and
without any physical meaning associated with these additional moments, a rational procedure to
find corrected coefficients is required.

A phenomenological model of the wall boundary was presented in Ref. 45, which laid the
foundation of the present work. To generalize the procedure in Ref. 45, in this paper, we consider
the coupling between the cross terms of the same tensorial structure (i.e., the Curie principle).9

When such coupling is considered, the resulting PBCs assume the same tensorial form as the MBC
obtained via Grad’s 26 moment closure in the Maxwell accommodation model,53 with additional
coefficients (Onsager coefficients). This allows us to identify and estimate the values for the On-
sager coefficients in phenomenological boundary conditions. The presented theory gives thermody-
namical restrictions on these coefficients. Furthermore, we revisit the Onsager symmetry using the
linearized R13 equations and show that the violation of the Onsager symmetry relations as reported
in Ref. 50 is due to the use of macroscopic boundary conditions, while the phenomenological
boundary conditions obtained in this article comply with the Onsager symmetry relations for all
Knudsen numbers.

The rest of the paper is organized as follows: The linearized R13 equations and their extended
entropy law are summarized in Sec. II. The phenomenological boundary conditions for the line-
arized R13 equations are presented in Sec. III. To obtain some insight into the phenomenological
coefficients appearing in the boundary conditions, in Sec. IV, we estimate the phenomenolog-
ical coefficients by comparing the phenomenological boundary conditions with the macroscopic
boundary conditions obtained from the Grad’s closure. The breakdown of the Onsager symmetry
relations for macroscopic boundary conditions is briefly examined in Sec. IV B. In Sec. V, the
phenomenological coefficients are re-evaluated by comparing the slip, jump, and creep coefficients
with the linearized Boltzmann solutions for different values of the accommodation coefficient. Our
conclusions are reported in Sec. VI. The first two Appendices A and B list the normal-tangential
decompositions for the tensors and the integration constants, respectively. Appendix C provides
details regarding the derivation of phenomenological boundary conditions.

II. LINEARIZED EQUATIONS AND DIMENSIONLESS VARIABLES

We shall only consider flow conditions where the deviations from a constant equilibrium state,
given by the reference mass density ρ0 and the reference temperature T0, are small. Thereby, the
governing equations can be linearized with respect to the reference equilibrium rest state. Also the
model will be put into dimensionless form using non-dimensional quantities, defined as

x̂i =
xi

L
, ρ̂ =

ρ

ρ0
, T̂ =

T
T0
, p̂ =

p
p0
,

t̂ = t
L
√

RT0
, v̂i =

vi√
RT0

, σ̂i j =
σi j

ρ0RT0
, q̂i =

qi

ρo
√

RT0
3 ,

(1)

where L is a reference length and R is the gas constant. The hat over quantities indicates the
corresponding non-dimensional quantity. For brevity, the hats will be removed hereafter, and unless
otherwise stated, all variables will be given in non-dimensional form. The dimensionless R13 equa-
tions, after linearization, are written through conservation laws of mass, momentum, and energy,
that are

Dρ

Dt
+

∂vk
∂xk
= 0, (2a)

Dvi
Dt
+
∂σik

∂xk
+

∂p
∂xi
= Fi, (2b)

3
2

DT
Dt
+

∂vk
∂xk
+

∂qk
∂xk
= 0, (2c)
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TABLE I. Burnett coefficients for Maxwell molecules (MMs), BGK model,
and hard spheres (HS).

ϖ2 ϖ3= θ4 θ2

MM 2 3 45
8

BGK 2 2 5
2

HS 2.027 74 2.421 13 5.819 45

where Fi is the dimensionless body force. The pressure is given by p = ρT (or p = 1 + ρ + T after
linearization), due to the assumption of ideal gas. The balance equations (linearized) for the stress
tensor, σi j, and heat flux vector, qi, are given as41

Dσi j

Dt
+

4
5

Pr
ϖ3

ϖ2

∂q⟨i
∂x j⟩

+
∂mi jk

∂xk
= − 2

ϖ2

1
Kn


σi j + 2Kn

∂v⟨i
∂x j⟩


and (3a)

Dqi
Dt
+

5
4 Pr

θ4

θ2

∂σik

∂xk
+

1
2
∂Rik

∂xk
+

1
6
∂∆

∂xi
= − 1

θ2

5
2 Pr

1
Kn


qi +

5
2 Pr

Kn
∂T
∂xi


, (3b)

respectively. Here, ϖi, θi are the Burnett coefficients and Pr denotes the Prandtl number. These
depend upon the choice of intermolecular potential function appearing in Boltzmann’s collision
integral.8,41 Values of these coefficients for inverse-power potentials (i.e., the molecules repelling
each other with an intermolecular force ∝ r−ν) can be found in Table I.41

In addition to the stress tensor, σi j, and the heat flux vector, qi, Equations (3) contain higher
order moments, i.e., mi jk, Rik, and ∆. For first order models, it is sufficient to consider only the
terms on the right-hand side of Equations (3), which gives the linearized laws of Navier-Stokes and
Fourier. For Maxwell molecules (MMs), i.e., the molecules repelling each other with an intermolec-
ular force ∝ r−5, the second order equations turn out to be the original G13 moment equations and
give mi jk = 0, Ri j = 0, and ∆ = 0. At third order accuracy, one arrives at the regularized 13 moment
equations, see Ref. 41 and also Refs. 42 and 47. After linearization, they read

mi jk = −
3Kn
PrM

∂σ⟨i j
∂xk⟩

,Ri j = −
28
5

Kn
PrR

∂q⟨i
∂x j⟩

, and ∆ = −8Kn
Pr∆

∂qk
∂xk

, (4)

where transport coefficients Pr, PrR, PrM, and Pr∆ are given in Table II. Constitutive relations (4)
complete conservation laws (2) and balance equations (3) to form the linear R13 equations.

As shown in Ref. 45, the linear R13 equations are accompanied by an entropy law given as

Dη

Dt
+
∂Ψk

∂xk
= Σ, (5)

where η (=s/R) is the dimensionless entropy density, Ψk is entropy flux, and Σ is the entropy
production rate. For the linear R13 equations, the entropy is a quadratic convex function, given as

η = η0 −
ρ2

2
− 3

4
T2 − v2

2
− ϖ2

8
σ2 − 2θ2

25
Pr2q2, (6)

and the entropy flux and entropy generation rate read

TABLE II. Transport coefficients for Maxwell molecules (MMs),
Bhatnagar–Gross–Krook (BGK), and Hard-Sphere (HS) collision models.

Pr PrR PrM Pr∆

MM 2/3 7/6 3/2 2/3
BGK 1 1 1 1
HS 0.6609 1.3307 1.3951 0.9025
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Ψk = − (ρ + T) vk − viσik − Tqk −
ϖ3

5
Pr qiσik −

ϖ2

4
σi jmi jk −

2θ2

25
Pr2

(
qiRik +

∆

3
qk

)
, (7a)

Σ =
σi jσi j

2Kn
+

2 Pr
5Kn

q2 − ϖ2

4
mi jk

∂σi j

∂xk
− 2θ2

25
Pr2 Rik

∂qi
∂xk
− 2θ2

75
Pr2
∆
∂qk
∂xk

, (7b)

respectively. Hence, R13 constitutive relations (4) give Σ ≥ 0, for any thermodynamic process.

III. PHENOMENOLOGICAL BOUNDARY CONDITIONS FOR THE LINEARIZED
R13 EQUATIONS

Integrating entropy balance equation (5) directly on the interface and using Gauss’s theorem,
we readily find that the entropy production density on an infinitesimal surface element is equal to
the difference between the entropy fluxes into and out of the surface. For the wall in the rest frame,
the local entropy production (per unit surface of the wall) reads

ΣW =
�
Ψk − ΨW

k

�
nk, (8)

where nk denotes the components of the unit normal vector of the wall pointing toward the gas and
ΨW

k
denotes the non-convective entropy flux from the wall. The entropy flux Ψk in (8) is given from

Equation (7a). For a gas-wall interface, the jump conditions of mass and energy at the impermeable
boundary are written as45

�
vk − vWk

�
nk = 0,ΨW

k = −TWqk . (9)

Here, vW
k

and TW denote the velocity and temperature of the wall, respectively. We use relations (9)
to eliminate ΨW

k
in Equation (8). This yields the entropy production per unit surface area as

Σ
LR13
W =

(
−Viσik − T qk −

ϖ3

5
Pr qiσik −

ϖ2

4
σi jmi jk −

2θ2

25
Pr2

(
qiRik +

∆

3
qk

))
nk, (10)

where Vk = vk − vWk and T = T − TW are velocity slip and temperature jump, respectively. It is
convenient to decompose the right hand side in Equation (10) into the normal and tangential compo-
nents of the vectors Vi and qi and tensors σi j, Ri j, and mi jk (see Appendix A for the explicit
expressions). In this case, Equation (10) simplifies to

Σ
LR13
W = −qn


T + ϖ3

5
Prσnn +

2θ2

25
Pr2

(
Rnn +

∆

3

)
− mnnn


3ϖ2

8
σnn



− σ̄nk


Vk +

ϖ3

5
Pr q̄k +

ϖ2

2
m̄nnk


− R̄nk


2θ2

25
Pr2 q̄k


− mni j


ϖ2

4
σi j


. (11)

In the last equation, subscripts n indicate the normal components of a tensor, and there is no
summation implied for repeated indices. As the definitions Appendix A show, in Equation (11), qn,
σnn, mnnn, etc., are the rank zero tensors (i.e., scalars), σ̄nk, q̄k, m̄nnk, R̄nk, etc., are the rank one
tensors (i.e., vectors), and finally mni j, σi j, etc., are the rank two tensors (i.e., matrix). Therefore,
first two terms in (11) are multiplication of scalers, third and fourth terms are the dot product of
vectors, and the last term is the dot product of two matrices. Furthermore, in Equation (11), the
fluxes with the odd degree in n (i.e., qn, mnnn, σ̄nk, R̄nk, mni j) are identified as the unknowns
and the even moments as their driving forces (i.e., the expressions in square brackets). This is
motivated from the observation of Grad which states that at the boundary only odd fluxes need to
be prescribed.14 From Equation (11), a positive entropy production can be achieved by writing the
unknown boundary values for the odd moments proportional to their driving forces.10,21 Thereby,
we find the phenomenological boundary conditions for the linear R13-moment equations as (see
Appendix C for the details)

σ̄nk = −ς0


Vk +

ϖ3 Pr
5

q̄k +
ϖ2

2
m̄nnk


+ ς1

2θ2

25
Pr2 q̄k, (12a)

R̄nk = ς1


Vk +

ϖ3 Pr
5

q̄k +
ϖ2

2
m̄nnk


− ς2

2θ2

25
Pr2 q̄k, (12b)
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qn = −τ0


T + ϖ3 Pr

5
σnn +

2θ2 Pr2

25

(
Rnn +

∆

3

)
+

3τ1ϖ2σnn

8
, (12c)

mnnn = τ1


T + ϖ3 Pr

5
σnn +

2θ2 Pr2

25

(
Rnn +

∆

3

)
− 3τ2ϖ2σnn

8
, (12d)

mni j = −τ3
ϖ2

4
σi j . (12e)

Here, the matrices

ςi j =



ς0 −ς1

−ς1 ς2


, τi j =



τ0 −τ1

−τ1 τ2


(13)

are any arbitrary symmetric non-negative definite matrices of Onsager coefficients and τ3 is an
arbitrary non-negative coefficient. The significance of the underlined terms in Eqs. (12) will be
discussed in Sec. IV A.

IV. DETERMINATION OF PHENOMENOLOGICAL COEFFICIENTS

The phenomenological coefficients, ςi and τi, appearing in PBC (12) depend on the micro-
scopic interaction between gas particles and the wall. Due to the complexity of gas-wall interac-
tions, it is quite common in kinetic theory to use simplified microscopic gas-wall interaction models
which are determined by only a few parameters, typically known as accommodation coefficients.7,26

Best known is Maxwell accommodation model, which uses only one single accommodation coef-
ficient.26 In this section, we shall estimate the phenomenological coefficients corresponding to the
Maxwell accommodation model. In Secs. V A and V B, we shall investigate the effects of the
phenomenological coefficients on the slip and jump coefficients and match them with more accurate
solutions obtained from the linearized Boltzmann equation.

A. Macroscopic boundary conditions from Maxwell accommodation model

For the Maxwell accommodation model, the velocity distribution function f̃ (c) in an infinites-
imal neighborhood of the wall is given as

f̃ (ci) =



χ fW (ci) + (1 − χ) f (∗) (ci) nk

�
ck − vWk

�
≥ 0

f (ci) nk

�
ck − vWk

�
< 0

, (14)

where the accommodation coefficient χ ∈ [0,1] gives the fraction of the particles coming from the
wall that have been diffused and reflected into the gas with a normal distribution fW

�
vW
k

; TW
�
. In

Eq. (14), the particles that hit the wall are described by the gas distribution function f , and the
distribution function of specularly reflected particles f (∗) is obtained by reversing the sign of normal
component of the microscopic velocities. In order to evaluate the macroscopic boundary conditions,
the gas distribution f in (14) must be approximated. In Ref. 16, Gu and Emerson used Grad’s 26
moment distribution function to approximate f in (14) to obtain MBC. Subsequently, Torrilhon
and Struchtrup53 and Taheri et al.31 extended and refined these boundary conditions for the R13
equations. The macroscopic boundary conditions, after linearization, read

σ̄nk = −


2
π

χ

2 − χ


Vk +

1
5

q̄k +
1
2

m̄nnk


, (15a)

R̄nk =


2
π

χ

2 − χ


Vk −

11
5

q̄k −
1
2

m̄nnk


, (15b)

qn = −


2
π

χ

2 − χ


2T + 1

2
σnn +

5
28

Rnn +
∆

15


, (15c)

mnnn =


2
π

χ

2 − χ


2
5
T − 7

5
σnn −

1
14

Rnn +
∆

75


, (15d)
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m̃ni j = −


2
π

χ

2 − χ


σi j +

1
14

Ri j


. (15e)

A comparison of PBC (12) with MBC (15), derived for the Maxwell’s accommodation model,
allows us to identify

ς0 =


2
π

χ

2 − χ
, τ0 =


2
π

2χ
2 − χ

,

ς1 = ς0, ς2 = 13ς0, τ1 =
τ0

5
, τ2 =

26τ0

25
, τ3 = τ0.

(16)

With the coefficients given in (16) and the Burnett coefficients from Table I, the difference be-
tween the PBC from Equations (12) and the MBC for the Maxwell’s accommodation model is in
the underlined terms of Eqs. (12) and (15). We shall show in the next example that macroscopic
boundary conditions (15) lead to the violation of the Onsager reciprocity relation,33–35,50 whereas
the phenomenological boundary conditions satisfy the Onsager reciprocity relation for all Knudsen
numbers.

B. An example: Rarefied gas flow in a long capillary

We consider a gas flow between two reservoirs, joined by a circular capillary of radius r0 and
length L (≫r0), as depicted in Fig. 1. The flow is driven by either a constant pressure gradient,
P = ∂p/∂z, in z-direction, while the temperature in both reservoirs is the same (i.e., pressure
driven Poiseuille flow) or a constant temperature gradient, τ = ∂T/∂z, along z-direction, while the
pressure in both reservoirs is the same (i.e., transpiration flow).

A cylindrical coordinate system xi = {r, φ, z} is most appropriate for this problem, where r ,
φ, and z are the radial, azimuthal, and axial coordinates, respectively. The flow is assumed to be
fully developed, in steady state, axisymmetric and vi = {0,0, vz}. The solution of the linear R13
equations, under these assumptions, is obtained as50

σr z = −P
r
2
, vz = c1 + P

r2

4Kn
− Prϖ3

5
qz, (17a)

qz = P
Knθ4

2
− τ

5Kn
2 Pr
+ c2I0

(
β

Kn
r
)
, (17b)

Rr z = −
5c2

Pr βθ2
I1

(
β

Kn
r
)

and mrr z = P
3Kn
5PrM

, (17c)

where I0 and I1 are the modified Bessel functions of the first kind and β = 5


PrR
14 Pr θ2

. The integrat-
ing constants, c1 and c2, are obtained from boundary conditions (12) or (15).

FIG. 1. Schematic diagram illustrating Poiseuille flow and thermal transpiration flow through a long capillary.
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FIG. 2. Validity of Onsager-Casimir reciprocity relation (EP =MT ) in long tube: Reduced thermal energy flow rate (EP) in
Poiseuille flow and the reduced mass flow rate (MT ) in transpiration flow are compared for the phenomenological boundary
conditions (solid lines) and macroscopic boundary conditions (dashed lines) applied to the R13 equations with the Maxwell
molecules collision model. The results of the R13 equations for χ = 1.0 and 0.8 are compared to the solution of the linearized
Boltzmann equation (symbols) from Ref. 35, over moderate Knudsen numbers. Note that the R13 equations with PBC give
EP =MT for all Knudsen numbers. Also the curves for EP and MT as predicted with the phenomenological boundary
conditions coincide with MT predicted with the macroscopic boundary conditions, for all Knudsen numbers. On the other
hand, the macroscopic boundary conditions yield EP ≃MT only for Kn . 0.25.

The quantities of interest are the reduced thermal energy flow rate in the Poiseuille flow, EP,
and the reduced mass flow rate in transpiration flow, MT , defined as in Refs. 35 and 50, i.e.,

EP =
4
√

2

 1

0
qzrdr,MT =

4
√

2

 1

0
vzrdr. (18)

For the steady state flow in the linear regime, Sharipov33–35 derived the Onsager-Casimir reciprocity
relations as EP = MT for the entire range of Knudsen numbers. In Fig. 2, EP and MT are compared
for the PBC and MBC using the R13 equations. The results of the R13 equations with Maxwell
molecules collision model are shown in Figs. 2(a) and 2(b) for χ = 1 and 0.6, respectively. The
solution of the Boltzmann equation for the reduced mass flow rate, obtained in Ref. 35, is also given
in Fig. 2 for a comparison.

As shown in Fig. 2, the phenomenological boundary conditions and macroscopic boundary
conditions both give the same reduced mass flow rate in transpiration flows. Furthermore, the
phenomenological boundary conditions obey the reciprocity relation (Ep = MT) for all Knudsen
numbers; on the other hand, the macroscopic boundary conditions predict Ep ≃ MT only for Kn
. 0.25. However, not surprisingly, they both differ from Boltzmann results at larger Knudsen num-
bers. Here, it should be clearly stated that the Prandtl number given by the S-model and Maxwell
molecules is the same; however, they differ in other Burnett coefficients. Therefore, the comparison
between the S-model and Maxwell molecules is more qualitative rather than quantitative.

To summarize, macroscopic boundary conditions for the Maxwell’s accommodation model,
derived using Grad’s closure, may violate the reciprocity relation for high Knudsen numbers,
whereas phenomenological boundary conditions satisfy the reciprocity relation for all models as
long as the matrix ς in Eq. (13) is positive definite. This poor behavior of macroscopic boundary
conditions stems from the approximation f ≃ f Grad

|26 near the boundary in the derivation of MBC.
Nevertheless, macroscopic boundary conditions provide an approximation for the phenomenolog-
ical coefficients in phenomenological boundary conditions through Eqs. (16). For convenience, we

shall write ςi =
χ

2−χ


2
π
ς∗i and τi =

2χ
2−χ


2
π
τ∗i , where ς∗i and τ∗i are correction coefficients with first

approximations (16) as ς∗i ≃ τ∗i ≃ 1.

V. CORRECTIONS FOR THE PHENOMENOLOGICAL COEFFICIENTS ς∗i AND τ∗i
In what follows next, due to the considered geometries, the underlined terms in PBC (15) and

MBC (15) vanish, and therefore the PBC and MBC both agree for ς∗i = τ∗i = 1. In this section,
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FIG. 3. Schematic diagrams illustrating (a) viscous flow, (b) transpiration flow, and (c) temperature jump.

we shall investigate the effect of ς∗i and τ∗i on the slip and jump coefficients and match them with
those obtained from the linearized Boltzmann solutions for viscous slip and thermal creep and
temperature jump problems.23,24,28

For viscous slip and thermal creep problems, the coordinates are chosen such that the wall is
parallel to the x-direction and y is the direction perpendicular to the wall which is located at y = 0.
The wall is stationary and kept at an ambient temperature T0. Flow is assumed to be in steady-state,
where velocity, temperature, and all other flow parameters will depend only on the y-coordinate and
the only non-zero velocity component is along the x-direction.

In the viscous slip problem, also known as Kramers’ problem, the asymptotic velocity is
assumed to be a linear function of y , and there is a constant velocity gradient normal to the wall
in the y-direction, i.e., lim

y−→∞
dvx/dy = a, see Fig. 3(a). In thermal transpiration flow, lim

y−→∞
dvx/dy

= 0 and the flow is driven by a constant temperature gradient in x-direction, i.e., ∂T/∂x = τ, while
the pressure gradient along the flow direction is zero, see Fig. 3(b). The temperature jump problem
in Fig. 3(c) will be discussed in Sec. V D.

In Ref. 28, Ohwada et al. computed the viscous slip and thermal creep coefficients by solv-
ing the linearized Boltzmann equation for the viscous slip and thermal creep flow problems,
with the fully diffusive (i.e., χ = 1) boundary conditions. Siewert and Sharipov36 applied the
discrete-ordinates method to various model equations to obtain the viscous-slip and the thermal-slip
coefficients for both the Maxwell boundary condition and the Cercignani–Lampis boundary condi-
tion.

A. Solution of linearized R13 equations

The equations involved in the viscous slip and transpiration flow problems, from the linearized
R13 moment system of Equations (2)–(4), reduce to

dσxy

dy
= 0,

dvx
dy
+

Prϖ3

5
dqx

dy
= −

σxy

Kn
,

5
2 Pr

τ +
Pr θ2

5
dRxy

dy
= − qx

Kn
. (19)

The R13 constitutive relations, obtained from Equations (4), are

mxy y = 0,Rxy = −
14
5

Kn
PrR

dqx

dy
. (20)

The general solution for Equations (19) and (20) reads

σxy = −aKn, vx = c1 + ya − Prϖ3

5

(
c2e−

yβ
Kn + c3e

yβ
Kn

)
, (21a)

qx = −
5Kn
2 Pr

τ +
(
c2e−

yβ
Kn + c3e

yβ
Kn

)
, (21b)
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Rxy =
14β
5PrR

(
c2e−

yβ
Kn − c3e

yβ
Kn

)
,mxy y = 0, (21c)

where c1, c2, c3 are constants of integration. In the above solutions, as y → ∞, qx and Rxy

must remain finite; therefore, c3 = 0. For both flow configurations, integration constants, c1, c2
in Eqs. (21), are evaluated from boundary conditions (12a) and (12b). They are presented in
Appendix B 1. To be consistent with the dimensionless kinetic solutions given in Refs. 28 and
36, we took L0 = l̃0

√
π/2 and Kn = µ̃/

√
2, where l̃0 and µ̃ are mean free path and dimensionless

viscosity (µ̃ = 1 for BGK and µ̃ = 1.27 for hard sphere28).

B. Results for viscous-slip and thermal creep coefficients

The viscous-slip coefficients ηVS and thermal creep coefficients ηTC, defined as

ηVS =
χ

2 − χ

c1

aKn


π
2

, ηTC =
χ

2 − χ

c1

τKn
, (22)

are compared with the linearized Boltzmann solutions. The viscous-slip coefficients for χ = 1
are listed in Table III. From Table III, ηVS as predicted from macroscopic boundary conditions
(i.e., ς∗i = 1) are about 10%, 6%, and 8% smaller than the reference values obtained from the
linearized Boltzmann equation with BGK,28 HS,28 and MMs collision models,23 respectively. The
values of the thermal creep coefficient, η,TC are also listed in Table III, together with the reference
solutions for the linearized Boltzmann equation with BGK and hard sphere collision models. We
could not find any data for thermal creep with the Maxwell molecules collision model. For BGK
and hard sphere collision models, the macroscopic boundary conditions predictions are about 6%
and 16% smaller than the reference solutions, respectively.

Viscous slip and thermal creep coefficients strongly depend on ς∗0 and ς∗1 through c1 given
in Appendix B 1, and only weakly depend on ς∗2; hence, we choose ς∗2 = 1 (the value given by
the Maxwell accommodation model). Furthermore, the values for ς∗0,1 can be chosen accordingly
to give proper viscous slip coefficient, ηVS and thermal creep coefficient ηTC. The corresponding
values for the phenomenological coefficients ς∗0 and ς∗1, are given in Table III.

C. Detailed flow profiles for viscous slip and thermal creep flows

The profiles of defect velocity, vx − ay , for the viscous slip problem are shown in Fig. 4(a).
The R13 solutions from Eqs. (21) obtained using macroscopic boundary conditions (dashed curve)
and phenomenological boundary conditions (solid curve) with correction coefficients given from
Table III are shown and compared with the results of the linearized Boltzmann equation with
hard sphere collision model28 (circles). For proper scaling, the kinetic data are multiplied with the
factor

√
2.

TABLE III. Viscous-slip coefficients ηVS and thermal creep coefficients
ηTC for BGK, hard sphere (HS), and the Maxwell molecules (MMs) col-
lision models. Results obtained from the R13 equations with MBC are
compared with the linearized Boltzmann equation (LBE) with BGK,28 hard
sphere (HS),28 and Maxwell molecules (MM)23 collision models. Corre-
sponding values for correction coefficients, ς∗i are tabulated.

ηVS ηTC

MBC LBE MBC LBE ς∗0 ς∗1 ς∗2

BGK 1.0373 1.146728 0.7236 0.766328 0.8931 0.7649 1
HS 1.0450 1.114128 0.8572 1.017828 0.9088 0.5118 1
MM 1.0431 1.136623 1.1378 . . . 0.9143 0.9143 1
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FIG. 4. (a) Defect velocity and (b) tangential heat flux for the viscous slip problem: the R13 solutions obtained using
macroscopic boundary conditions (denoted by dashed curve) and phenomenological boundary conditions (denoted by solid
curve) with correction coefficients. The solution of the linearized Boltzmann equation with hard sphere collision model28 is
denoted by circles.

Clearly, the R13 equations are unable to provide an accurate description of the Knudsen layer
for velocity. From Eqs. (21), the R13 equations provide only one exponential function to describe
the velocity in the Knudsen layer. The moment method approach, however, approximates the Knud-
sen layer as superposition of many exponential functions;43 hence, to fully resolve Knudsen layers,
a sufficiently large number of moment equations are required. For example, the R26 equations
provide two exponential layers to describe the velocity close to the wall, which provides a signif-
icant improvement in describing Knudsen layers.17 However, the convergence and uniqueness of
the moment equations to the solution of the Boltzmann equations is not entirely clear. Torrilhon
in Ref. 54 studies the convergence of moment hierarchies. For the cases studied in Ref. 54, the
results show an initial non-monotonic convergence behavior for the considered families of moment
equations but all systems of equations resolve Knudsen layers eventually when a sufficiently large
number of moments are included.

Here, we are interested in the bulk behavior, in which the magnitude of the defect velocity
given from Eq. (B1) is inversely proportional to ς∗0. The macroscopic boundary conditions give
ς∗0 = 1; hence, in comparison to the linearized Boltzmann equation where ς∗0 ≃ 0.9, the macroscopic
boundary conditions underpredict the defect velocity. As shown in Figure 4(a), the phenomenolog-
ical boundary conditions give an accurate description of the bulk behavior, with the coefficients ς∗i
and τ∗i given the Table III. The profiles for tangential heat flux are shown in Fig. 4(b). In the viscous
slip problem, tangential heat flux is a rarefaction effect due to Knudsen layers, which cannot be
predicted by NSF. The magnitude of tangential heat flux is proportional to the ratio ς∗1/ς

∗
0, given

from Eq. (B6). The macroscopic boundary conditions give ς∗1/ς
∗
0 = 1, whereas from Table III, this

value is about 0.56; hence, the R13 equations, with macroscopic boundary conditions, overpredict
the heat flux, while the phenomenological boundary conditions with corrected coefficients from
Table III provide a good match.

In Fig. 5, profiles of velocity and heat flux in transpiration flow are shown for χ = 1, with
hard sphere collision model. Plots (a) and (b) compare the velocity and heat flux solutions of R13
equations, respectively, using macroscopic boundary conditions and phenomenological boundary
conditions and linear Boltzmann equation solutions. The solution of the R13 equations with macro-
scopic boundary conditions shows about 15% error in transpiration velocity, with respect to kinetic
data in the bulk. This error is corrected by using phenomenological boundary conditions with
the coefficients provided in Table III. Note that, in transpiration flow, the magnitude of tangential
heat flux only mildly depends on ς∗i through c0 in Eq. (B4). Therefore, in this case, the macro-
scopic boundary conditions and phenomenological boundary conditions both give similar solutions
for the tangential heat flux. The results presented so far were exclusively for χ = 1. In Ref. 36,
Siewert solved the Boltzmann equation—for fully diffusive to specular walls—to determine the
velocity slip and thermal creep coefficients, which we used to establish the relationship between

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  142.104.86.97

On: Tue, 09 Feb 2016 18:59:57



027105-12 A. S. Rana and H. Struchtrup Phys. Fluids 28, 027105 (2016)

FIG. 5. (a) Defect velocity and (b) tangential heat flux for the transpiration flow problem: the R13 solutions obtained using
macroscopic boundary conditions (denoted by dashed curve) and phenomenological boundary conditions (denoted by solid
curve) with correction coefficients. The solution of the linearized Boltzmann equation with hard sphere collision model28 is
denoted by circles.

phenomenological coefficients ς∗i and accommodation coefficient χ. In Fig. 6, we show (a) the
slip coefficient ηVS and (b) transpiration coefficient ηTC versus accommodation coefficient χ, us-
ing ς∗0 = 0.9952 − 0.1033χ, ς∗1 = 0.9853 − 0.2241χ, and ς∗2 = 1 for BGK, ς∗0 = 0.9949 − 0.0874χ,
ς∗1 = 0.5587 − 0.047 98χ, and ς∗2 = 1 for hard sphere, and ς∗0 = ς∗1 = 0.9985 − 0.085χ and ς∗2 = 1
for Maxwell molecules collision models. These expressions for ς∗i are obtained by linear fitting with
kinetic data from Refs. 36 and 56 for the BGK and hard sphere collision models, respectively, and
Ref. 23 for the Maxwell molecules collision model.

D. Temperature jump problem

In the temperature jump problem, one considers stationary heat transfer in a gas occupying the
y ≥ 0 half-space domain with one wall located at y = 0, as demonstrated in Fig. 3(c). Far from the
wall, the temperature is a linear function and there is a constant temperature gradient in y-direction,
i.e., lim

y−→∞
dT/dy = b. The equations involved in the temperature jump problem are obtained from

FIG. 6. (a) Viscous slip coefficients, η,VS and (b) thermal creep coefficients, ηTC, are plotted with respect to the accom-
modation coefficient χ. Results obtained form the linearized R13 equations with phenomenological boundary conditions
(continuous line) and macroscopic boundary conditions (dashed lines) are compared with the reference solutions of linearized
Boltzmann equation with BGK,36 hard sphere,56 and Maxwell molecules23 collision models (denoted by symbols).
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TABLE IV. Temperature jump coefficient ηTJ for BGK,39 hard sphere,39

and the Maxwell molecules22 collision models are compared between the
R13 equations using MBC and linearized Boltzmann equations. Corre-
sponding values for correction coefficients, τ∗i , are tabulated.

ηTJ

MBC LBE τ∗0 τ∗1 τ∗2

BGK 1.0189 1.176039 0.8642 0.8642 1
HS 1.0207 1.126739 0.9041 0.9041 1
MM 1.0209 1.162122 0.8762 0.8762 1

Equations (2c), (3a), and (3b) as

dqy

dy
= 0,

θ4

2
dσy y

dy
+

5
2 Pr

dT
dy
= −

qy

Kn
,
ϖ2

2
dmy y y

dy
= −

σy y

Kn
. (23)

The R13 constitutive relationships, obtained from Equations (4), are

my y y = −
9Kn
5PrM

dσy y

dy
,Ry y = 0, and ∆ = 0. (24)

The solution obtained from the Eqs. (23) and (24) is

qy = −
5Kn
2 Pr

b,T = c1 + yb − Pr θ4

5

(
c2e−

yγ
Kn + c3e

yγ
Kn

)
,

σy y = c2e−
yγ
Kn + c3e

yγ
Kn ,my y y =

9γ
5PrM

(
c2e−

yγ
Kn − c3e

yγ
Kn

)
,

where γ =


10PrM
9ϖ2

, and c1, c2, c3 are constants of integration, with c3 = 0, because, as y → ∞, σy y

and my y y must remain finite. The remaining constants c1, c2, obtained from boundary conditions
(12c) and (12d), are given in Appendix B 2. The temperature jump coefficient, ηTJ, defined as

ηTJ =
4 Pr

5


2
π

χ

2 − χ

c1

b Kn
, (25)

for χ = 1, is listed in Table IV. As with the case of viscous slip and thermal creep, the R13
equations with macroscopic boundary conditions underpredict the temperature jump coefficient by

FIG. 7. (a) R13 solutions with phenomenological boundary conditions (solid curves) and macroscopic boundary conditions
(dashed curves) for the temperature defect comparing with the linearized Boltzmann solutions for hard sphere collision model
(denoted by circles), Ref. 39 with fully diffusive wall and Kn= 0.8980. (b) Comparison of temperature jump coefficient ηTJ
obtained from the R13 equations with macroscopic boundary conditions and the phenomenological boundary conditions
with those obtained from the linearized Boltzmann equation for BGK and hard sphere from Ref. 12 and Maxwell molecules
Ref. 22 collision model.
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about 13%, 9%, and 12% with respect to the linear Boltzmann equation with BGK,39 hard sphere,39

and Maxwell molecules22 collision models, respectively. The corresponding correction coefficients,
τ∗i , are also listed in Table IV. Figure 7(a) presents the R13 solutions for the temperature defect,
T − by , in comparison to the Boltzmann solutions for the hard sphere collision model.39 Results are
presented with fully diffusive walls (χ = 1), and b = 1 with Kn = 0.8980

(
=µ̃/
√

2
)
. In Fig. 7(a), as

before, the R13 equations cannot capture the Knudsen layer profile for temperature. Here, as well as
in the earlier case, the offset in the bulk value results from the mismatch in the temperature jump and
Knudsen layer at the boundary. With PBC corrections, the overall jump is corrected such that the
bulk value is rectified. The results for the temperature jump coefficient ηTJ are shown in Fig. 7(b).
Here, we compare the temperature jump coefficient obtained from the Boltzmann equation with
those obtained from the R13 equations with macroscopic boundary conditions (i.e., τ∗i = 1) and the
phenomenological boundary conditions with correction factors τ∗0 = τ∗1 = 0.9920 − 0.1315χ, τ∗2 = 1
for BGK, τ∗0 = τ∗1 = 0.9944 − 0.0932χ, τ∗2 = 1 for hard sphere, and τ∗0 = τ∗1 = 0.9965 − 0.1221χ,
τ∗2 = 1 for Maxwell molecules collision model. These expressions for τ∗i are obtained by linear
fitting to match the temperature jump coefficients for the linearized Boltzmann equation for BGK
and hard sphere from Ref. 12 and Maxwell molecules Ref. 22 collision model.

VI. CONCLUSION

Evidently, the R13 equations cannot describe Knudsen layers completely due to the lack of
sublayer contributions from higher moments. Knudsen layers arise from an eigenvalue problem for
the moment equations, and thus to fully capture the Knudsen layer one must consider moment equa-
tions much beyond the 13 moments. Note that the moment equations themselves are not derived for
the bulk flow, but from the Boltzmann equation, without any statement of being close or away from
the wall. So the moment equations able to approximate the Knudsen-layer dominated processes
accurately provided a sufficient number of moments which are considered in the approximation,
although convergence is not proven. The question remains how to obtain an accurate result with as
few moment variables as possible.

This paper presented a phenomenological approach to the boundary conditions for the line-
arized R13 equations using the second law of thermodynamics. To generalize earlier work,45 in
this paper, we considered the cross-coupling between terms of the same tensorial structure. This
procedure allowed us to identify and estimate the values of the unknown coefficients appearing in
these phenomenological boundary conditions. It was also shown that the macroscopic boundary
conditions, derived using Grad’s closure, violate the reciprocity relation for high Knudsen numbers,
whereas the phenomenological boundary conditions satisfy the reciprocity relation for all Knudsen
numbers and collision models, although the R13 equations are only accurate for small Knudsen
numbers. The classical half-space problems of velocity slip, thermal creep, and temperature jump
problems were revisited using the R13 equations. The macroscopic boundary conditions underpre-
dict the slip, jump, and creep coefficients. The presented approach allowed us to systematically
correct this mismatch through phenomenological coefficients, which were determined by compar-
ing the R13 solutions with the linearized Boltzmann equations for three collision models (BGK,
hard sphere, and Maxwell molecules) for arbitrary accommodation coefficient.
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APPENDIX A: NORMAL AND TANGENTIAL COMPONENTS OF VECTORS AND TENSORS

The normal and tangential components of a vector qi are defined as

qn = qknk and q̄i = qi − qnni, (A1)
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respectively, and therefore by definition q̄knk = 0. Similarly, for a second order tensor σi j (trace free
and symmetric), we can define a normal-normal component, σnn, normal-tangential vector, σ̄ni,
and tangential-tangential tensor, σi j, as

σnn = σrknknr , (A2a)

σ̄ni = σiknk − σnnni, (A2b)

σi j = σi j − σnn

(
3
2

nin j −
1
2
δi j

)
− σ̄nin j − σ̄n jni, (A2c)

where by definition σ̄nknk = 0 = σkk and σiknk = 0. For a third order tensor mi jk (symmetric and
trace free), we may define

mnnn = mi jknin jnk, (A3a)

m̄nni = mi jkn jnk − mnnnni, (A3b)

mni j = mi jknk − mnnn

(
3
2

nin j −
1
2
δi j

)
− m̄nnin j − m̄nn jni. (A3c)

Hence, by definition, m̄nnknk = 0, mniknk = 0, and mnkk = 0.

APPENDIX B: INTEGRATION CONSTANTS

1. Viscous slip and thermal creep problems

Integrating constants obtained from Equations (12a) and (12b), for the viscous slip problem,
simplify to

c1 =


π

2
aKn *

,

1
ς∗0α

∗ +
ς∗21

ς∗20

2θ2 Pr2 PrR

c0

+
-
, (B1)

c2 =


π

2
aKn

(
ς∗1
ς∗0

25PrR

c0

)
, (B2)

and for the thermal creep problem, they read

c1 = τKn
(
ϖ3

2
−

ς∗1
ς∗0

5
√

7πθ2 Pr PrR

c0

)
, (B3)

c2 =
5

2 Pr
τKn

(
1 − 25

Pr θ2

√
7πθ2 Pr PrR

c0

)
, (B4)

where we used abbreviations c0 =
25

Pr θ2

√
7πθ2 Pr PrR + 2θ2Pr2 PrRς

∗
0α
∗
(
13

ς∗2
ς∗0
− ς∗1

2

ς∗20

)
and α∗ = χ

2−χ .

2. Temperature jump problem

Similarly, the constants for temperature jump problem can be obtained from their boundary
conditions (12c) and (12d) as

c1 =
5

4 Pr


π

2
bKn *

,

1
α∗τ∗0

+
τ∗21

τ∗20

PrM

c0

+
-
, (B5)

c2 =
5

4 Pr


π

2
bKn

(
τ∗1
τ∗0

40PrM

3ϖ2c0

)
, (B6)

where c0 =
10
ϖ2


20πPrM
ϖ2
+ PrMτ

∗
0α
∗
(
26

τ∗2
τ∗0
− τ∗21

τ∗20

)
and α∗ = χ

2−χ .

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  142.104.86.97

On: Tue, 09 Feb 2016 18:59:57



027105-16 A. S. Rana and H. Struchtrup Phys. Fluids 28, 027105 (2016)

APPENDIX C: DETAILS REGARDING THE DERIVATION OF PHENOMENOLOGICAL
BOUNDARY CONDITIONS

The coupling between the cross terms of the same tensorial structure,21 i.e., scalars (qn, mnnn),
vectors (σ̄nk, R̄nk), and matrix mni j allows us to write Equation (11) as

Σ
LR13
W =

2
a=0

Σa = −
2

a=0

Ja · Fa. (C1)

Here, Σa is the contribution to the entropy production per unit surface area due to the corresponding
thermodynamic force (Fa) and flux (Ja) pairs of the same tensorial structure, i.e., a = 0, 1, 2 for
scalars, vectors, and rank 2 tensors, respectively. Here, we have thermodynamic forces

J0 = {qn, mnnn} ,J1 =
�
σ̄ni, R̄ni

	
, and J2 = mni j (C2)

and fluxes

F0 =


T + ϖ3 Pr

5
σnn +

2θ2 Pr2

25

(
Rnn +

∆

3

)
,

3τ1ϖ2σnn

8


, (C3a)

F1 =


Vi +

ϖ3

5
Pr q̄i +

ϖ2

2
m̄nni,

2θ2

25
Pr2 q̄i


, (C3b)

F2 =
ϖ2

4
σi j . (C3c)

The positivity of the entropy production in (C1) is guaranteed if we take

J0 = −τ · F0 and J1 = −ς · F1,

provided the matrices τ and ς are positive definite.
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