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The applicability of the order of magnitude method [H."'Sgruchtrup, “Stable transport
equations for rarefied gases at high orders in th
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nudsen number”, Phys. Fluids 16,
3921-3934 (2004)] is extended to binary gas i
of equations—having minimum number ‘of moménts at a given order of accuracy in
the Knudsen number—for binary mﬁi‘r monatomic-inert-ideal gases interact-
ing with the Maxwell interactio p&ﬁia -“For simplicity, the equations are derived
in the linear regime up to th'rdg;&muracy in the Knudsen number. At zeroth

e\ﬁu}gr equations; at first order, it results into the

ures in order to derive various sets

order, the method produces
Fick, Navier—Stokes, and Xer quations; at second order, it yields a set of 17 mo-
ment equations; and ‘d&@r it leads to the regularized 17-moment equations.
The transport coefﬁci:%\the Fick, Navier—Stokes, and Fourier equations obtained
through order offmagnitude method are compared with those obtained through the
classical Chapinan-fnskog expansion method. It is established that the different
temperatze%}ent constituents do not play a role up to second order accurate
theories i Kntidsen number, whereas they do contribute to third order accurate
theor ir@%dsen number. Furthermore, it is found empirically that the zeroth,

first and“second order accurate equations are linearly stable for all binary gas mix-

turegMow ver, although the third order accurate regularized 17-moment equations
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Publishihg INTRODUCTION

It is well-established that the Navier—Stokes and Fourier equations break down in de-
scribing non-equilibrium processes in rarefied gases since they typically lie outside the hy-
drodynamic regime.!™ The flow regime is, usually, identified by a dimensionless parameter,
the Knudsen number (Kn) which is defined as the ratio of mean freg path of gas molecules
to a characteristic length scale pertaining to the problem. Promfes in all low regimes,
i.e., for all Knudsen numbers, can be well-described by the Bol mZNuation(s);lE’ nev-
ertheless, the direct numerical solutions®” of the Boltzmann q@ion(s or the solutions
obtained with direct simulation Monte Carlo (DSMC) method”are computationally very
expensive, particularly in the early transition regime (0.05 n <¢1). Since many pro-
cesses encountered in practical problems (such as processgs @nicr cale flows) beset in this
regime, there is a crave for accurate and efficient m dels jich“are capable of computing
rarefied processes—particularly in the transition regitne—withess computational cost.

These models, usually, emanate from the Boltzmannwequation(s) through approximation
techniques in kinetic theory. The two classical an mostﬂxzfowed approximation techniques in

kinetic theory of single gases are the ChapmansEnskog éxpansion method'*®* 1 and Grad’s
method of moments.’> '* Both methods cange fo d i1 standard textbooks, e.g., Refs. 2, 3,

8, 10, 15-17. \

The Chapman—Enskog expansion t}& applicable to processes, which are close to
equilibrium (Kn — 0). The methoc‘;%'e%: an asymptotic analysis in powers of the
Knudsen number. In this method, veloeity distribution function of gas molecules is
expanded in powers of the Knudgen mumiber. This expansion for the velocity distribution
function is then inserted into th% nn equation and the coefficients of each power of
the Knudsen number are co ed'en both sides of the equation. The procedure leads to
the constitutive relations of di &w'e}\orders for the well-known conservation laws of fluid
dynamics. At zeroth order,.the methed gives the Euler equations; at first order, it yields the
classical Navier—Stokes n%rier equations; at second order, it results into the Burnett
equations; at third ox¥der, i leads to the so-called super-Burnett equations, and so on. The
i ready so involved that the full super-Burnett equations do

super-Burnett equa’
not seem to exi?/%;)r\‘en/ day literature. Besides complex structure due to the presence
eri

of higher orde ives, the Burnett equations are known to suffer from inherent (linear)
instabilities;} c%eque tly, their use is not recommended.

In Grad’s method of moments, the Boltzmann equation is supplanted by a system of first

methdd of memeénts truncates this infinite set at a certain level. Moreover, to close the set at
thisde it approximates the velocity distribution function by an expansion in orthogonal
pelynomials—usually, Hermite polynomials—in (peculiar) velocity, and the coefficients in

D;&sion are obtained by satisfying the definition of the moments considered at that
e moment equations resulting from Grad’s method of moments (in case of single
ses} are always linearly stable.!® Unfortunately, the method does not, a priori, grant the
touchstone on which and how many moments need to be considered for describing a process
with a given Knudsen number. However, it can be stated empirically that the number of
moments considered ought to be increased with increasing Knudsen number.!*! Further-
more, due to their hyperbolic nature, the well-known Grad’s 13-moment (G13) equations for

a single gas obtained via Grad’s method of moments manifest non-physical sub-shocks for
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Publishifigrs with Mach numbers above 1.65'**" and do not capture Knudsen boundary layers.*"*>
Nevertheless, by considering more moments, Knudsen boundary layers can be captured?!?3
and smooth shock structure can be obtained for higher Mach numbers.?°

In order to surmount the deficiencies inherent to both Chapman—Enskog expansion
method and Grad’s method of moments, Struchtrup and Torrilhon?*—for single gases—
introduced a new method, often referred to as the regularized moment method, which regu-
larizes the original G13 equations for a single gas by means of a Chapman—FEnskog expansion
of Grad’s 26-moment (G26) equations around a pseudo-equilibrium an
ized 13-moment (R13) equations. The R13 equations retain th nable features of both the
Chapman—Enskog expansion method and the Grad’s method of mgoments while avert their
shortcomings. The R13 equations are always linearly st b%h\%ie ender smooth shock

""l-\

structures for all Mach numbers.324

For single gases, Struchtrup® employed another niethodstermed as order of magnitude
method, and rederived the R13 equations. The order'of maghitude method accounts for the
order of magnitude of all moments and of each tiﬁ présentdn moment equations in powers

of the Knudsen number and was originally developedforstudying “consistent order extended
thermodynamics (COET)” by Miiller, Reitebueh, and Weiss*®; nonetheless, the approach of

applying the order of magnitude method in{ Ref. 2§ 5 quite different from that in Ref. 26.
The method of Struchtrup?® provides hig% e equations and, concurrently, resolves
e cousi

the issue of how many moments need tg b idered for describing a process with certain

accuracy. The method has been appl%&ﬁ@;:r}-}y to the Bhatnagar—Gross—Krook (BGK)

model?” as well as for the Maxwell i ctiomypotential in Refs. 3 and 25 and, subsequently,

also to the hard-sphere interaction pcﬁi@ﬁ in Ref. 28. For the BGK model and Maxwell

and hard-sphere interaction pot&S\:;%b e equations have been derived up to third order
b

accuracy in the Knudsen nu xploiting the order of magnitude method,?>?® where it
yields Euler equations at zerr(ﬁf'\;i?,\l\favier—smkes equations at first order, G13 equations
(without a non-linear te for thesBGK model and Maxwell interaction potential and a
5 for the hard-sphere interaction potential at second order, and a
variant of the origi equations® at third order. However, for general interaction
potentials, the m dhas been employed to derive equations only up to second order
accuracy?? so fa{éinc
1

cif derivation, the R13 equations have been successfully employed

to describe seve }s%ekss s in rarefied gases, see e.g., Refs. 30-39.

Unlike sirgle gases, Kinetic theory for gaseous mixtures is still not very mature. The
PhD thesgé of Buskog?® and Kolodner*' can be regarded as the pioneering works on the
ChapmafiEnékog éxpansion method and Grad’s method of moments, respectively, for gas
mixtures., 49 describes the detailed derivation of Grad’s moment system (especially,
considering 43 moments for each component) for gas mixtures; nevertheless, the explicit
expressions for the right-hand sides of these equations are computed by employing various
approximations. In Refs. 43 and 44, the authors consider the moment equations for gas

1 rs%in the context of extended thermodynamics but use simplified models for comput-
ing, the collision terms in these equations. Ref. 45 studies Grad’s method of moments in

rm?Ri—component approach for plasma models by considering 13 moments for each con-
stituient. Ref. 46 discusses the higher order Grad-type moment equations too, however, it
does not include—for example—the third rank tensors. Furthermore, the Grad-type mo-
ment equations in both Refs. 45 and 46, see also the textbook 47, are derived based on
linearized Boltzmann collision operators. In addition to this, Refs. 43—47 derive the mo-
ment equations by assuming a single average temperature for the whole mixture, however,
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Publishiag ulti-temperature description of gas mixtures, which considers different temperatures for
difierent constituents in the mixture, is imperative for many practical problems,*® especially
for problems arising in plasma physics. Although, Ref. 43 and the textbook 47 discuss
the multi-temperature approach, they promptly switch to the single temperature approach
owing to simplicity.

Similar to a single gas case where the derivation of the R13 equations for a single gas
requires G26 equations, the derivation of regularized moment eql,lat{%u s for a gaseous mixture
also requires higher order moment equations, and owing to the u vahis{ity of higher order
moment equations for gaseous mixtures until recently,*’ the r
has never been attempted before. In Ref. 49, two authors of
the fully non-linear G26 equations for each constituent in
the Maxwell interaction potential based on multi-tempeta
first author of the present paper has also extended thederi
equations for each constituent in a mixture of gases{based gn“multi-temperature approach
to the hard-sphere interaction potential.®® It is wort oin%ng out that the computation
of Boltzmann collision integrals or production térms.appearing in these equations is quite
involved, particularly with the multi-temperature*approach, and a detailed computational
strategy for evaluation of the Boltzmann collisiolwintegrals associated with these equations

can be found in Refs. 50-52.

In this paper, we exploit the G26 qt%&us each constituent in a gas mixture as
detailed in Ref. 49, and derive varioms%&;}(‘)Q uations up to third order accuracy in the
Knudsen number by extending the applicability of the order of magnitude method to binary
gas mixtures. For simplicity, in this paper| we focus our attention only to processes in binary
interacting with the Mazwell interaction potential

mixtures of monatomic-inert-idea NQSN
and in the linear regime. TI&J%\:; 1 of similar systems of moment equations valid in

ularization' for gas mixtures
1e present paper have derived

ixture of'gases interacting with
trh approach. Furthermore, the

ion of the fully non-linear G26

the non-linear regime and, also,“their«derivation for other interaction potentials is beyond
the scope of the present paper and“will be considered elsewhere in the future. At zeroth
1
a%ﬁ

order accuracy, the methiod gives the (linearized) Euler equations for binary gas-mixtures; at
first order accuracy, i (linearized) Fick, Navier—Stokes, and Fourier equations; at
second order accurdey, iff leads to the (linearized) 17 moment equations; and at third order
accuracy, it results int e/fegularized 17-moment (R17) equations in linearized form. The
Fick, Navier—St k(%@(é urier laws obtained here are compared with those obtained via
the classical h@manf nskog expansion method. Furthermore, the linear stability of the
derived se uations is analyzed. However, the shock wave problems, H-theorem and

remainder of the paper is organized as follows. The conservation laws for a gas
mituresare stated and problem is formulated in Section II. The order of magnitude method
is;adumhrated in Section I1I. Grad-type 26-moment equations for each constituent in a binary
ure of gases interacting with the Maxwell interaction potential are presented in linear-

laensionless form in Section IV. The order of magnitude method is employed to determine

e Eagnitude of all non-equilibrium moments in Section V. The minimum moments to
deseribe a process with a certain accuracy in the Knudsen number are identified in Section VI.
In Section VII, moment equations with different orders of accuracy are derived, i.e., the Euler
equations, Fick, Navier—Stokes, and Fourier equations, second order accurate equations,
and, finally, the R17 equations for binary gas mixtures are derived. The linear stability of
these equation is analyzed in Section VIII. The final conclusion and discussion are given in

4
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II. PROBLEM DESCRIPTION

The conservation laws for a mixture of monatomic-inert-ideal gases in absence of any
external forces read!®1%49

are the total mass density, total pr ¢, total number density, total stress and total heat
flux of the mixture, respectively, with eing the Boltzmann constant, 7" being the average
temperature of the mixture and mlg one constituent in the mixture; moreover, p, =
mane is mass density of thedcenstituent o with m, being the molecular mass of species
a and n, being the numberM { species a, and u is the diffusion velocity of the

(see f. 49 for the deﬁmtlon) Egs. (1) are the mass balance
equations for individual species in the mixture, and Eqs. (2)—(4) are the mass balance,
momentum balance dnd rg balance equations for the mixture, respectively. In fact,
Eq. (2) is obtal simming Eqs. (1) over all a’s; note that the dlffusmn velocities in a
gas mixture are ot indepenlent and they are related via

& 3 paul™ =0, (5)

Therefor for any one « can be dropped from the system of conservation laws (1)- (4)
lent ) can be dropped from the system when including Eq. (1) for all a’s.
ly, system of conservatlon laws (1)—(4) is not closed, since it contains the un-

a-constituent in the mix

sion velocities u; (@) , stress 0;; and heat flux ¢;. Therefore, in order to close the

em 03 conservation laws (1) (4), one must supply the constitutive equations for diffusion
Ve#)(n 1 u(-a), stress 0;; and heat flux ¢;. Here, we shall first determine the magnitudes of
usion velocities u

7
Ea), stress o;; and heat flux ¢; in powers of the Knudsen number, and

then systematically obtain the closed systems of equations in such a way that the unknowns

u§“), o;; and ¢; in the conservation laws (1)-(4) are known up to a certain order in powers

of the Knudsen number. We emphasize that in this paper, we shall focus only on binary
mixtures of gases interacting with the Maxwell interaction potential and only in the linear

regime.
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Publishiiid. OUTLINE OF ORDER OF MAGNITUDE METHOD

The order of magnitude method for finding the proper equations with order of accuracy
Ao in the Knudsen number comprises of the following three steps.>2°

1. Determination of order of magnitude A of the moments:

The goal at this step is to determine the order of magnitlige/ of moments in powers
of a smallness parameter (¢) which is usually the Knudserf*ntmber. To this end, a
(non-conserved) moment ¢ is expanded in powers of ¢ as 3

¢:¢0+€¢1+62¢2+..\

It should be noticed that the above expansion perferm n a moment ¢ is somewhat
similar to the classical Chapman—Enskog expansion, which is performed on the velocity
distribution function. However, unlike the appreach of{the classical Chapman—FEnskog

expansion which aims at computing ¢;’s (#7= 07d,2,4..), the focus in this method
is just to determine the leading order of Theﬁading order of ¢ is determined by

inserting the above expansion into the cbmplete set of moment equations. A moment
¢ is said to be of leading order A if ¢;4= 0 all7 < A and ¢x # 0. The leading order
of a moment is the order of magnitude ofithat' moment.

2. Construction of a system of mom tions having minimum number of moments
at a given order of accuracy
At this step, some of the ori gina\rcmﬁen moments are combined linearly in order to

introduce new variables in‘% yvstem. The new variables are constructed in such a
way that on replacing riginal moments in the moment equations with the new
variables, the number o&&‘%ﬁ;s at a given order A is minimum. This step not only
provides an unambjiguous set 6f moments at order A but also guarantees that the final
equations will bedndependent of the initial choice of moments.

Il equations that would lead to contributions of orders A > g

adopt the following definition of the order of accuracy Ag.

. A set of equations for binary gas mixtures is said to be accurate of order
diffusion velocities (of both the components), total stress and total heat

}‘;e\ adoption of this definition relies on the fact that all moment equations are strongly
e’ led: This connotes that each term in any of the moment equations has some
infglL ce on all other equations, particularly on the conservation laws. The influence
of éach term can be weighted by some power in the Knudsen number, and is related—
S not equal to—the order of magnitude of the moments present in that term. A
“theory of order )y considers only those terms—in all the equations—whose leading
order of influence in the conservation laws is A < \g, and the terms not fulfilling this
condition are simply ignored. In order to apply this condition, it suffices to start with
the conservation laws, and add the relevant terms step-by-step, order-by-order. We
start with order O(&") equations (Euler), then add the relevant terms to obtain order

O(e') equations (Fick, Navier-Stokes, and Fourier equations) and so on.
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Publishifg. LINEAR-DIMENSIONLESS EQUATIONS

Since we shall derive the equations valid in the linear regime, it is more convenient to
use the linear-dimensionless variables. For linearization and non-dimensionlization of the
variables, the reader is referred to Refs. 49 and 50.

A. Conservation laws Qﬂ\
The conservation laws for a binary mixture of gases « dw r-dimensionless form

read f
RO
Oong, 00 od; "
*a (E * a@) WC‘{K@) ©)
ong  0v; 3&@_
%B(ﬁf +3\§D\¥O’ (7)

— (X310 + Agxgis ) S (11aX, + 115x5) 7 = 0, (8)
ot %7 01

~

o Ohy  x2 00\ x5 oa”

— = 0. 10
8@1 (9.(2'1 My 6@'1 g3 8331 ( )

), the abbreviations

While writing %}’&“1

Sy = x5 = Yo = X0 + Xp (11)
y Vo5 V%
have Peen use '{ere v, 18 a velocity scale, and 02 = kgT,/m, and 05 = ksl /mg are the

groun state}temperatures of - and [-species in energy units with m, and mg being the
olecula sses of species @ and . Moreover, in Egs. (6)—(10),

) e

mg
fo=——"— and pg=—"— (12)
Y ~ Mo + Mg Ma + Mg
aréythe mass ratios of a- and [-constituents in the mixture, respectively, and these notations

for the mass ratios are adopted following the textbook 9;

o] o o n/%
x; = — and Xp= - (13)
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Publishiw&gh no = ng + nj are the mole fractions of a- and [-constituents in the ground state,
wopectively;

A

A A - ° 4 Xz ~
T=xTn+x5Ts, 65=x06" +x3607 and hy=—2h® + Lp?  (14)

are the dimensionless perturbations in average temperature, totzlffress and total reduced
heat flux of the mixture from their respective ground state valuestw
(

NN\

being the dimensionless perturbations to the reduced h t@xes species a and [3,6:47:50
respectively; ¢ and 2 denote the dimensionless time and difiensionless space, respectively:
and all other quantities with hats denote the dimensi nless peturbations from their respec-
tive ground state values. Here, the total stress (0;;) and the total reduced heat flux (h;) are

scaled as C

n Oij

<~
o QN
%5 T Q\ﬁ knoTov,’
see Ref. 50. It should be noted that .Eﬁan e obtained from Egs. (6) and (7), thus
Egs. (6)—(8) are not independent.

B. Grad-type moment equag\\&

In the light of definition 1, o\gal is to obtain various sets of equations in such a way
that ﬁga), gi; and h; in h.%serv tion laws (6)—(10) are known up to a certain order in

(15)

/

=

powers of the Knudsen‘uumbex. To this end, we require the extended Grad-type moment
equations in linear-ditnensienless form, which, for the Maxwell interaction potential, have
been derived in defail il Ref*49 (Egs. (4.3)—(4.10) of Ref. 49 for both the constituents).

Here, we shall %di ectly but rename the Knudsen number from Kn to € in them,
9

variables T, T}, 0, ¢\, ﬁ:;a), ﬁij(ﬁ ). we shall write them in the

new field v T, AT, ﬁE“), ﬁgﬁ), f%gj(o‘), R;}ﬁ), where iALZ(O‘), ﬁgﬁ) are given by Egs. (15),
< SR Sl 1o B il 1) (16)

i ij ij iJ ij
—
and S

. ~ ~ ~
g‘s AT =T, —1Tp (17)
‘b?he imensionless perturbation in the temperature difference from its ground state value.
vertheless, the equations for the new field variables can be obtained from Eqs. (4.3)(4.10)
of Ref. 49 for both the constituents in a straightforward way by combining them linearly,
and therefore, the details are omitted here for the sake of conciseness. The advantages of
using the new field variables—in case of the Maxwell interaction potential—are: (i) it will
be seen below that although Ta, Tg and T are the zeroth order quantities, AT will be a
second order quantity; consequently, it will not play a role for the theories up to second

8


http://dx.doi.org/10.1063/1.4945655

! I ﬁeg ularized mynentserpabionscdpted B Rhys Jlnidsigligkes e to see the version of record. |

Publishig@er in the Knudsen number, (ii) the use of A and h\” decouples the right-hand sides of
their governing equations from the diffusion velocities @' and ﬂgﬂ ) (see Egs. (23) and (24)

below), and (#i7) the use of REJO‘) and RZ(]B ) decouples the right-hand sides of their governing

equations from the individual stresses 65;0 and 61(? ) (see Egs. (27) and (28) below). It is

emphasized that even if one does not change (jfa), (j,fﬁ ), ﬁ;}a) and ﬁzl A {0 the new variables

at this point, they will automatically be combined linearly at the{gécond step of the order
of magnitude method in order to produce exactly the same result NW.

{
N

The system of linear-dimensionless extended Gradstype moment equations for a mixture
of gases a and (3, which is equivalent to the system o I%4.3%(4.10) of Ref. 49 for both
the constituents, in the new field variables inch@izth%in 1vidual mass balance equations

rd (

(6) and (7), the energy balance equation for tb\tLu- 10), and the moment equations

~(8) .
2 2 (99 L 9s
«\ Bz, T o

Lo (@ Ha.(8)
96" on
2 ij Ula
% ( 93, | o
[ 1 %
o [ (8 %8 .(a)
— (B) _ 28 4 19
(6] ai_l P}/IEQXa <U"L %aul )7 ( )
o' 1 (ah®  aa!? 1 0y
I I ek i) = 2AT 20
* 3@-) %/3(3@1- M ca o @)
) - () 7 (o) ()
0 Oy, éah@ +28u<i
i Oix 50k | Oiy
{xgga&g@ + x5 (53&§;> - 5@}?) } , (21)

+2

. ~ (B8 7 (8) ~(B)
0y amz(jlg 4 6h<z’ au(i

i)

{X%QB@(]@) + Xg (’735§f) - ’74571(}1))} ; (22)
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Publishing OhL®) 1 ORY o6l L dA, LB oT L0 JOAT
Ho—— + 5= n ——— t oot sXp
1 (2 . . .
o o (@) o (@) )
_ _€—Q{§xa§2ahi + x5 (55@ — G6h )} (23)

oY) . 10R 967 L 104 50T
% = f— — —
“Toi 20z | 0% 60 | 208

1 n .
= )20 h® Lo ( %
c { Xﬁ Bl +Xa V5l

om  30RY a6l L (3 n
5 t7 a;ﬁ(,;] 9 agg(; =~Ca {Engamﬁ +x§ (0l — o) b, (25)

om'®  30RY) 95\ 1 3\9""
ijk (i (ij ° 5 ° 7
; 3 5 _ o %G 26
»3 o + 7 ai’@ + 812'].3) 6@ ijk + Xq (’}/777’1, ( )
\
B o A(a) ° ()
P s o o
-\ L [T o0 26) 1 o (o 50
e} {EXBQBRM *Xa (%’R”’ (28)
1 2 o N o A A
--q {gXaQaAa + X5 (511Aa — 512AB) } J (29)
]_ 2 o N o A A

In Eq8, (18)(30), the coefficients 01,09, ..., d12 and v1, 79, ..., 712 depend only on the mass

rdtios fiq s, and they are given in appendix A for better readability. Again, the field
variablesywith hats denote the dimensionless perturbations from their respective ground

@%at es; Q= x, Q0 + x3 (s, where
~

0 Tk
Qa = Q(Téz) and Qﬁ = 9(21872) (31)

10
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Publishimg: ngr) are the standard Omega integrals;'?49:50:52 finally,

5
16\/7_Tno<x 032 4 x Q(ﬁﬁ )

14

(32)

is the Knudsen number; here, ¢ is the mean free path and L is ?e relevant macroscopic

length scale.

S N\

C. Assumption about parameters x
In the linear-dimensionless conservation laws (6)—(1 ‘) ad-type moment equa-

tions (18)-(30), we find the parameters: fin, pg, X3, ﬂ, %y, x5 and
parameters (i, and pg are the mass ratios of the constituent are given by Egs.
and x3 are the mole fractions of the constituents WEfer d st te and are given by E

2, and Qg are the ratios of Omega integrals, which

and are given by Egs. (31); s, and 3 are s e inverse Mach numbers

€. The

(12)7
gs. (13);

related to collision cross sections,

for each

component in the mixture and are given b: nally, € is the Knudsen number and is
given by Eq. (32);. We assume that the pa\!}g\erﬁs_na, 85 Xois X3y $2ay 23, 5, and 5 are of
Kn

order O(1) in comparison to order of the

umber, i.e., O(e), otherwise one would

have to consider the influence of these p mbefs in powers of the Knudsen number while
performing the order of magnitude d this would render the procedure extremely

molecular masses. We shall also ction VIII that without considering the i

cumbersome. The assumption ely\excludes mixtures having large differ
of these parameters in powers{o g‘\K

ences in
influence

dsen number (i.e., by assuming that p,, g, X2, X3

Qq, Qp, 2, and 3 are of orde in comparison to order of the Knudsen number), the
resulting R17 equations ould be linearly unstable for mixtures having extreme differences

in molecular masses.

V. THE ORDER F MAGNITUDE OF MOMENTS

We shall W%le the orders of magnitude to the moments and then construct new

sets of mome such a way that we have minimum number of variables at each

order.

In ordér torexamine the order of magnitude of moments, we expand the non-conserved

quantltleq in powers of the Knudsen number (¢) as

U =W+l +Ws+...,

f-\

re ¥ {AT () AZ( ) 6@ 60 [ [ m@) 58 ple) R Aa,Ag} and the quan-

’ zg? zy? 7 7 2]k7 zgk’ i 0 TG

es . W1, Y, ... are of order O(e”). We substitute the above expansions in Egs. (20)—

zmd compare the coefﬁClentS of each power of ¢.

omparing coefficients of e~ on both sides of Egs. (20)—(30) one readily finds that %o = 0

for all ¥ because there are no terms of order O(¢7!) on the left-hand sides of the

balance

equations for these quantities. This concludes that the leading orders of all the non-conserved

quantities are at least one.
Comparing coefficients of €° on both sides of Egs. (20)—(30), it turns out that @

11
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|1, Zﬁ), hz‘1 do not vanish whereas
= A (a ~ (B) H(a) H(8)
ATy = mijk)u = Mijen = i = Rz(all Bap = Apn =0, (33)

see appendix B for details. In other words, the leading orders of the diffusion velocities,
stresses and heat fluxes of the both the constituents are one while the leading orders of
for details. Therefore, the leading orders of all these quantities aresgwo.

temperature difference and other higher moments for both the congtifuents are at least two.
that none of AT|2, @ @B R RO Aap, and Amg
We shall not go further as the above is sufficient for E-sjni the third order accurate
—~

Comparing the coefficients of €' on both sides of Eqgs. (20) u%( - (30), it turns out
ikl2 Mijriz L2 Mg 1ish, see appendix B again
(regularized) moment equations.

VI. MINIMUM NUMBER OF MOMENC‘S&Q& IVEN ORDER

A. Minimum number of moments of

We have established in SectionIII that Mﬁim i w ), Z- h(ﬁ ) are the moments of
order O(g). In order to have minimum ﬂ%ﬁ( oments of order (9( ), let us first write
down their leading order contributions ( %s% Egs. (B2)—(B4) of appendix B along with

relation (5) in linear-dimensionless e binary mlxture) which read

ana 2 8T

% — 9 dg . Q{%a(X%QB +x573) + %ﬁx%54}
ij|ll U 1eTe ) 7)o = S O . — 7
! ‘ (x8 Q2 + x303) (x382 + x373) — X2X57a04

35
0 _ o MO 525 (50 + x305) + #axu) (35)
il e 1 50 + x303) (X500 + X573) — Xox57ad04”
- 5 2,0 o o
MO 4, where f, = 22 { (5532 + x075) + X306
1|L\ ﬁfcl (%XZQQ + XZ;55) (%X%Qﬁ + Xz’}/g)) — XZX%’YG(SG (36)
oT 20 2XEQQ + x305) + x¢
I i 03 ) i)

kg = .
g (%nga + X%(Sg,) (%X%Qg + Xg%) — X3 X37606
? are the Fick’s law of diffusion (in linearized form) for the mixture; Eqs. (35)
esent the laws somewhat similar to Navier—Stokes law for each component in the mixture;
and Eqgs. (36) represent the laws somewhat similar to Fourier’s law for each components in
the mixture.
~(a)

As the diffusion velocities @, ° and @l(-ﬁ ) depend on each other, one can use any one of

them in the moment equations. Moreover, the other first order quantities—the stresses &g?‘)

and 67 and the reduced heat fluxes ﬁg“) and fLZ(’B )—are linearly combined as below in order

zg’

12
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6ij = 015" + x50, Abiy = moly) — o)), (37)
oo Saj@ X5 ;s . 37
hi = X_ahz(‘a) + _ﬁhz(ﬂ), Ah; = fighz(‘a) - I€4hz(ﬂ)7

%Oé %B

where ¢;; and h; are the (dimensionless) total stress and the (dirz ionless) total reduced
heat flux in the mixture, respectively, and 3\

K1 = 25(Xg 2 + X303) + 2aX0 V4, Ky = 20 (XUt XaQz) + 25X304,
2 o (o] o 2 (o) (o] (38)
k3 = | Xo 2 + X305 | + X376, Ky = | %5085 X, + X306,

_—
so that the leading orders of the total stress d;; and%@l reduced heat flux iLZ are one
while the leading orders of Ag;; and Ah; are twt

Thus, the minimum moments of order O(e)“age an@ne of the two diffusion velocities of

the constituents, let us say a§a), the total steess 0;;%and the total reduced heat flux hs.

r
fluxes of the individual components 0
getting the minimum number of mo ?‘hs of ‘or
~
6_(&) _ /4325'2']' + X%A(&Q\‘\ 5_(5) . Kl&ij — XgAé’ij
K X g : K X0 Ko + XGK1
% ] (39)

h(a) %a(,lizufgibi + OAiLi) B(B) B %/B(Kg%ojLz‘ — XZAiLi)

’ Ii% XGK3 o ’ k XQ,Ka30g + X33

V.

£
imum Adumber of moments of O(c?)

) Qv—@
ﬂ
We h stablished in SectionIII that the order O(¢2) quantities are AT AGjj, Ah,,
)

mj ! RE;‘), REJB ) A, and Aﬁ. Notice from the leading order contributions of AT, AG;

m;;
}ﬁé i (cf. Egs. (B9), (D8)s and (D9)s) that AT, Ad;; and Ah; can neither be linearly
mbined among themselves nor with any other moments in order to produce a quantity of

order higher than order O(¢?). However, the other moments in the list—mgf,z, fngf,z, ng)’

From Egs. (37), one can obtain th ions for the stresses and the reduced heat
te%‘he other variables. These will be needed in
der O(&?), and they read as follows.

Rﬁf ) A, and Ag—can be linearly combined to produce some quantities of order O(e?®). To
this end, let us first write down the leading order contributions of T?Li;lk), mﬁfg, ]:ZE?), ]:ng ) , A,

and Az (by solving Eqs. (B10), (B11) and (B12) of appendix B and using Eqs. (39)), which

13
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g = —C,Q?%ZI, g = —Cﬁf)%gl,\
Ry =P = -, 0
Aalz = —C(Aa) 8821, AB|2 = —C(AB) 8%',/\\

For better readability, the coefficients 07(7?), c,(f), cgg‘), cf), o

pendix C. The quantities, mﬁj’,ﬁ, mff,g, ]:?g.l), I%Z(f ), A, an @are w linearly combined as

below in order to have minimum number of moments_of o rb'(?2). We introduce

f
; Xo o) X8 o (9) ) W)w NOR
Mgk = %_amijk T ;ﬁmijk’ Ack — ik — 6Tk

A
A

) anl c(f) are given in ap-

~ XO ,\( ) X% A(ﬁ) Al (Q) A(IB)
Rz] — %_313%? + ?R R”E H?R" RSRij y P (41>

1) ij
8
TR \ﬁ( . .
A= Aa -+ —Aﬁ = K}gAa - HlOA,B;

ture, and \\
3 3 )
Ry = K1 (—XO Qa —+ X%(57) —% KRg — K2 <§X%Q,B + XZ’Y7) -+ Hlxgég,

7 o (o] 7 (o] (e] (¢]

K7 = K3 (gXaQa + X3y | 64X, Y105 kg = Ky <6X59ﬁ + Xa%) + K3x3010,
2
3

~”

(42)

&

Q
Q

o 2 o o o
11 4 + KaX 712, K10 = R4 gxggﬁ + X ) Tt 53Xg512’
J

Ko = K3 ( Xc?’
so that the leadi % of Myjk, Rij and A are two while the leading orders of Amji, ARZ-J-
and AA aie three. Thus, the minimum moments of order O(g?) are AT, A6y, Ah;, My,
R;; and N6ti(?, gain, that the total higher order moments (m;;, R;j, A) are scaled as

-
A Mijk S R;; - A
b Ly T kn T2 a kn.Tov2

From Eqgs. (41), one can obtain the expressions for the higher moments of the individual
components in terms of the other variables. These will be needed later and they read as

14
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A () %a(/%%gmijk + X%Aﬁ%jk) B %ﬁ<’i5%amijk _ XZAmzjk) A
ok Xg K62 + Xghs o Mgk = XoK6g + X3R5
) _ %i(liszgl%ij + X%ARij) 20 _ %%(Iﬁ%iﬁiij - XZARU) (13)
K X0 /ig%% + Xjhrg ’ K Xg/ig}f% 7{%117%3 ’
A - P (/ﬁo%BA + XBAA> A A
Xa/ﬁo%ﬁ + Xﬁlig%a

VII. MOMENT EQUATIONS WITH )\ .OR R)&CCURACY

A. New system of equations \ ‘)
In the following, we shall write the %ﬁﬂ’laws Eqs (10)) and Eqgs. (18)—(30)

in new variables u( , Oijy DO, hi, Ahz,gb%kgn ijks RU, ARZ], A AA using Eqs. (37) and

(41). Tt is emphasmed however, th ge of variables is requlred only for deriving
the third order accurate equatio we are interested in, and it may not be required
to change all the variables for SX ation of zeroth, ﬁrst and second order accurate
equations. Additionally, we te ach moment by assigning its magnitude in powers
of = (“in gray colour”) in the new, eq tlons These gray coloured =’s are included just for
finding the terms of corr rder while comparing the powers of € on both sides (see below)
and, of course, the val o‘f-‘% coloured ¢ is essentially 1.

The Conservatlo aw)s in new variables read
8na 00, o0
e—=0 44
i +a:cl) oz (4
0v;
uax N + ,u,gxﬁng) + (paxg, + uﬁxﬁ)(y =0, (45)

6@Z 6@] 6ﬁa 8715 OT
9 . 4
&5 S R TR PR S (46)
\

30T L0, Oh, . 9al
201 " 0&  0m Vo,

—0. (47)

Note that the mass balance equation for the S-constituent (7) is not included in this system
as it can be obtained from Egs. (44) and (45). The other equations in the new variables

15
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oal L Oy 0Ny LOAT
Mo — £— € — Xpe®——
of ez, % Tan, P o
_ x| @, e [ 500 2 Og
s | TS e e T s,
3 ,0AT Ohi | 0Ah: R
2" i §4~8AZ S5E 9%, S6< 0 —‘&
8&13 Zﬁmijk n 4 aiL(Z i 9 aagza) 1 “ hoo) 61)(
f— + = —€ € =—— cof +2€
o Oin | 5 0y o 01y e | W\ AT as

Y ©Ody Dy, ) D)) 9 )
0V .
e 3 (5&” + 2 A“) + me%c}ij] , (51)
al'j>

-1 1
i Tz, i 2 on, 6 0m 2% g
. oT
Q = _g_Q [’Zﬂg) vhz +5/€aAZ> +W6€2Ahz s (52)
{ 4
) L 0AGy; 1 L OR;; L LOAR;;
o, T2 ar, 27 oy
LOAA 5 OAT 1 . oT
;‘3— — 62— = — Ch’L g Ahz
R A o) w7< “”a@) + @
(53)
ONG ;. 1 ‘ 0615 A
2 (tg 2 A (ij 3A A
e _ - g ' m€ = £ A 17 )
13 O e [wg < Mgk + €6 0$k>) T m]k}
(54)

16


http://dx.doi.org/10.1063/1.4945655

! I Fs%eg ularized mynentserpabionscdpted B Rhys Jlnidsigligkes e to see the version of record. |

Publishing LA 3 LORu; 3 LOARy; LOAG
& —— + %2 o3 56238 o + 3Gut T ————
ot 7 a'Ek) 7 8Ik) 81‘@
1 5 . 06 (i D h
— ~=a [wn <52mijk + (e 89%;5) + wugﬁAmijk} , (55)
oR 5 Ok OAM i
v2 AU 9 2 v] 2 Vi ]
P + 26 i 26 i
1 S dhy;
= —— R, €= 56
-0 [wm ( j +eCr ai,, (56)
JOAR; L O, S OAN
302y g 29T D ij
“5 285 52 + 2629 R, +
1 - L@h@
= —— 2 Ry; € o7
q |7 ( J+\ 5% (57)
L OA NN 1 A Oh, -
2 2 i i 3
e — + 8¢ore = &= e“A € PAA 58
i + 8627 07 + &Ca 85@) + @i ) (58)
dAA N \\1 2 4 Oh; -
u%—A + 8§31€ — x wWi9 SZA + €(A€ — + WQ():ASAA s (59)
0%; e 0z;
where ‘\
5 () Xo X Xa X%

o 473(5776 and k= 5;5 <%_§ %—%) = _a/fa + %_ﬂﬁﬁ (60)
are the dim ess viScosity and the dimensionless heat conductivity, respectively, of the
mixture, ther coefficients are given in appendix C. The balance equation for diffusion
velocity 6f thé S-coustituent (19) is also not included in the above system, since it can be
obtained.fro thé balance equation for diffusion velocity of the a-constituent (18).

er accuracy: Clearly, the conservation laws (44)—(47) do not form a closed

a. \\" 0§l

sefof equations for n,, ng, 0;, T because they contain the additional variables aﬁa), Oij, hi.
s

=

hallispeak of a theory with A*" order accuracy, when dga), 0;; and h; are accurately

NI~

B. Zeroth order accuracy: Euler equations

to order O(e").

The equations with zeroth order accuracy result by setting the first order quantities to
zero, i.e., by ignoring the terms with the factor € in the conservation laws (44)—(47). This

17
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One ~ 0; )

o Ton
d o o o oy 90;
a—f(,uaxana + ugxﬂng) + (,uaxa + Nﬁxﬁ)é_fﬁi =0,
0 00 00 OT Sy (61
#or TXe0m Tz, T i Y
30 9

—— +& =)
2 i ‘R

C. First order accuracy: Fick, Navier—Stokes apg\@fer equations

For first order accuracy, one needs to include all th terrbe with factors € and !. That
means all the terms in the conservation laws (44(%7) are retained, and therefore the con-
servation laws at this order (on setting gray célou ;}) 1) read

P
a = A i - 07
) _\ 00,
(Haxg, + Nﬁxﬁ)a_A =0,
(62)
o, GO OT
X =
“0%:  Pox;, 01
0, O 0i” _
o3 oz, Vom, )

64 and h; accurately up to first order, i.e., to their leading
orders. For the le d? of these quantities, only the terms up to order O(g%) in the
balance equationd for thegeduantities (Egs. (48), (50) and (52)) need to be considered and,

obviously, there are'mg terms of order O(g°) on the left-hand sides of Eqgs. (48), (50) and
(52). Thus, 'egadily btain the first order accurate af.‘“), d;; and h;, which—on setting

gray coloufed =@ 1—are the laws of Fick, Navier-Stokes, and Fourier:

(o) _ 059%2’( o 0N, o Ong 2 2 8T> )

where we need to

4 ” 4 =
A 8!)32 o @IZ

i = —X/s(s—l; — (o5 — %5)8_501-

(%Z ' J

Equations (62) along with constitutive relations (63) form the system of (linearized) Fick,
Navier—Stokes, and Fourier equations for a binary mixture of gases o and 3, where n and &
are the dimensionless viscosity and dimensionless heat conductivity, respectively, and they
are given by Egs. (60).

18
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Publishing‘ Ve have also compared the transport coefficients obtained here with those obtained
viirough the classical Chapman-Enskog expansion method in Ref. 8 and found that the
dimensionless viscosity obtained here match with that obtained via the classical Chapman—
Enskog expansion method in Ref. 8. In order to have more insight into the other transport
coefficients, let us compare the expression for diffusion velocity and (reduced) heat flux
obtained here with those obtained through the classical Chapman—FEnskog expansion method
in Ref. 8. The diffusion velocity of component « given by Eq. (63); igfthe linear-dimensionless
form of the diffusion velocity of component o' \

2

J

uga)

mgDeag d” — (64)

B NP ! Da 8:1:

when the underlined term in Eq. (64) vanishes, and the (reduc d‘%heat flux given by Eq. (63)3
is the linear-dimensionless form of the total heat flux® ™

k p? 1 DID\NOT 5
g = —(/\* += L ) + ST (n ot Bujﬂ)) nkT—L—D! d (65)
N Papp Mams Dag &UZ PaPp
-
when the underlined terms in Eq. (65) vadi }Nﬂe D,p, DI and D!, are the diffusion,
thermal diffusion and diffusion-thermal ¢ espectlvely,
61
O
p Ox;
is the so-called generalized dlffui\% o0 of the constituent v € {«, 8}; and \* is the
ur

thermal conductivity of the r\xﬁ\

Comparing the di en&b form of Eq. (64) with Eq. (63)1, the (ground state) diffusion
coefficient turns 0 b’e

3 QL 1 kT,
_ 2 £ = D3, (67)
51 22 a1 \Jlalts \| Ma +mg

well agin R 8./éimilar1y, on comparing the dimensionless form of Eq. (65) with Eq. (63)s3,
i that the diffusion-thermal coefficient D! also vanishes at this order and the
therma on(hmtlwty of the binary gas mlxture is /\* = (eLknov,) k. Notice that the zero

gasumixtires of Maxwell molecules is also attributed to Maxwell interaction potential, see
142), (8.147) and (8.155) of Ref. 10. Thus, diffusion in the binary gas mixtures

M\)(WGH molecules occurs due to molar concentration gradients and pressure gradient
but, not explicitly due to the temperature gradient at first order, even though the tem-
perature gradient does appear through the pressure gradient term. This means that the
cross-effects of thermal diffusion and diffusion-thermal are not present in binary gas mix-
tures of Maxwell molecules at first order. Nevertheless, our results do satisfy the Onsager’s
reciprocity relations:**** D¢ 5 = D§, and D} = D/, = 0.
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At this order, we need to find 11 @) , 0y; and hl, appearing in h( servation laws Wlth
second order accuracy. Therefore, one needs to consider all t avin factors el and el

in the balance equations of these quantities (i.e., in Eqgs. (48), and (52)), we have (on
setting gray coloured ¢ to 1)

(@) O6Q%§( oL 2 0Ng oT

o0 06;; 1
u, —|—X55—1?

i — 5
oi 0z 159%%

. 2 - () .
S - 2 - — i 2 I P17 69
oi 5oz, o, ﬁ\w i+ 2engs (69)

where AO’Z] and Ah are neede \De@cond order accurate. The second order accurate Ad;;
and Ah; follow from thelr respective, balance equations (Egs. (51) and (53)) on considering

terms up to order O(e e (on setting gray coloured = to 1)

j

. N
5ii + 2 - = 2 , 71
(0] + €na£j>> = <5§9 axj> L2, 6:13j> > (71)
. oT eQ 96y
h; - — Y 72
( + 81{8331) ws o15 0z (72)

where the s ersefipt ‘(2)” denotes the second order accurate contributions. Thus, we deduce
en th‘Sl the temperature difference AT is a quantity of leading order two, it is not
a relevant quantity for a second order accurate theory.

In this way, the system of (linearized) second order accurate equations consists of the
conservation laws (62) and the governing equations for aﬁ“), &;; and h; (Egs. (68)-(70))—
a total of 17 equations in three dimensions (3D)—and it is closed with the second order
accurate contributions of Ad;; and Ah,, given by Eqs. (71) and (72). The (linearized)
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Oia | 00; | ol 0\
Ko | — N N = U,
(975 8302 8%1
ov;

a o~ o~
a—f(,uaxana + ,ugxﬁng) + (,uax + /Lgxﬂ)
8@1 86'1] i ° 8na 6n5

S T P e
§8_T_|_ 90; _|_a_i1i_|_
200 0% 0Oy

aA )
A~

(73)

o 0 90y Lo o e [ fon, o O
Hoy—— = —— U Xp——— | » ” — ,
0 08.7:]- cQ B8 22 A A 0%,

\ A
——ag | by + en— 76
0’ ( ‘ 8:1:1) (76)
The coefficients ag, as, .. aﬁ are iven in appendix C. Notice that even the second order
accurate equations (Eq; ) cannot explain the cross-effects of thermal diffusion and
dlffusmn thermal sinc 1e is tlll no temperature gradient term in the governing equa,tlon
for u u ) and no pres re ﬁr n er density gradient terms in the governing equations for hi.

E. Thir accuracy regularized moment equations

1. I'n,te edz?te result: 25 equations

is or)er we need to find u , 6lj and lAzl, appearing in the conservation laws with
t 1rd or ccuracy. Therefore, one need to consider all terms having factors €7, &t and g2
1e b ance equations of these quantities (i.e., in Eqgs. (48), (50) and (52)), we get (on

ting“gray coloured ¢ to 1)
S
oa™ . a&ij . aA% o OAT
Ho—5 n -
of | or, YTor, 7o
1 Q% , O oT

_ _5 - A(_a) 5 8 - 2 2\ 77

1€Q %% U, ,B 61 202 Mo 8(1}@ (%a %ﬁ)&%@ ) ( )
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Publishing! s55.. o8m... 40h, PYe) . .
] ijk (i (i R Dy )
] 5 2 ) ij+2 Adyj |, 78
oi Dk ' 50n, 0, | 0 {wl (Uﬂ+ S”asm) e UJ} (78)

~

Ohi 00y A6y  1ORy 10A 5 OAT
of Poz, " *¥Tos; T 20% 60 g”aA

1 . oT
ws (hi + 5/@(%) w% (79)

eQ
Now, we have the additional variables AT, AG;, Ah;, RU in the system. The
variables Ad;; and Ah; not only appear on the left-han k’a f Egs. (77)—(79) where only

their leading order contributions are required but alsoon t rlght hand sides of Egs. (78)
and (79) where they are required up to order O(e?). 1erefor>5 e need to include the terms
(51) and (53)), which gives (on

up to order O(¢?) in the balance equations for t
setting gray coloured = to 1)

. A ()
aA?ij oy 11au<i
ot O;)
00,
,U<' ) + W4A6'ij:| s (80)

aABi+ . > Rij 8A+5 OAT
5 §15mj = 97 So1—(—— 07

T N
A'> + ?DgAhl

(81)

Fortunately, all other ({dltydnal variables— AT Mijk Rw and A—appear only on the left-

o) &ZJ, iLZ, Ad;; and

hand sides of E . Therefore, for the third order accurate 4,
Ah;, only thg'se nd order accurate contributions of AT Mijkes Rzy and A are needed and
these follow fr helr respective balance equations (Egs. (49) (54), (56), (58), respectively)

by consid€ring only the terms up to order O(e), we have (on setting gray coloured = to 1)

/
o~ N

. o [ Ohi 90
b AT__€Q5_2<§48_(2‘1'+§6 0, )7

o . . (82)

) 06u; Ohy - Oh;

\ 5 Mijr = —¢€ Gm 6:2:25’ Rij = —€ CR8§U<~>’ A=—e(a 97
J 7

~

us, the system of third order accurate equations consists of the conservation laws (62)
and the governing equations for ﬁ(a), Gijs hi, Ag;; and Ah; (Egs. (77)—(81))—a total of 25
equations in 3D—and the system is closed with the second order accurate contributions of
AT Mk, RZ] and A given by Egs. (82).
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PublishiRg Further reduction

As one can notice, Egs. (80) and (81) have been included in the system of third order
accurate equations just because Ag;; and Ah; are present on the riglit-hand sides of Eqgs. (78)
and (79). Nevertheless, the explicit third order accurate expres ions Ac;; and Ah; can
be obtained by using ideas somewhat similar to the Chapman g expansion, also used
in?®, so that we shall only have 17 equations in 3D and th th1 order accurate values of
Ao;; and Ah can be included in the closures.

For finding the third order accurate Ad;; a it s ces to conmder their second
order accurate contributions on the left-hand sides o f Eq ) and ( In other words,
Egs. (80) and (81)—on setting gray coloured ca be rewrltten as

! -
oG L O h% OAR( s ol
= S —G =S < S <
97 1075 p 11 9%,
0y
9, ) + w4AUU] , (83)
RN . i1 OA L0 ONT
oi C15 i §198A §21 By
oT .
h; — Ah; 84
+ ai@&') M (84)
From Egs. (71) andé(72)¢ we have
(2) / 5 NCIANR
NG} Obi\ Q4 0 Ohy o 0Ouy,
AU —— (3'2'3' + 287] A<l - —<Z + 2{11 —~ <AZ
of £ ol 9%, 59z, 0 9, o
" (85)

o (o, o _@ 0 96
/Lw—gaf ’ 04 158$] ot

; we want to evaluate the time derivatives of the second order accurate Ad;; and Ah;, it is

natugal té use the second order accurate balance equations for aﬁ“), g;; and h; (Egs. (68), (75)
for replacing the time derivatives in the underlined terms in Eqgs. (85). Moreover,

¢ underbraced terms in Egs. (85) are order O(g?) contributions to the total stress and
thé total reduced heat flux and it suffices to use only the precise values of order O(g?)
contributions of these quantities in Eqgs. (85). The precise values of order O(¢?) contributions
to the total stress and the total reduced heat flux can be obtained by performing Chapman—
Enskog like expansion either on the second order accurate balance equations (Egs. (68),

(75) and (76)) or on the full system of moment equations (Egs. (48)-(59)) and we get
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Publishifrg Egs. (D12) and (D14))

~ aﬁ(z 2 82 R R ~ 3
Oij + en——— = —& (blna + 62715 + bgT) + 0(6 ),
A oT Q (2 0% o By
hi = &'~ — 2na O(e%).
+€R8i‘i : g (3 0%;01; e 581E] ij>) 5O

The values of the coefficients by, by, b3y are given in appendi A\che second order
accurate underbraced terms in Egs. (85), we can use 6;; = — 63) in the right-hand side
J

of Eq. (86)2 and it will not affect the accuracy. Thus, we ha

stress with its second order accurate bala equation (69) and the time derivatives of

number densities, velocity and temperaturesysing«the conservation laws with ) = ﬂgﬂ ) =

gi;j = h; =0 (i.e., using Euler equations et
+2 ~ b - —
( 877(9 ) ( ! * b(i_ 3 c 8.%<ZQATJ> 8@’
9 h+6/@8T 292 &78(}(” + x5 + 1)
ot oz; 3(16 0%; 0T a T pTh > (88)
1 ah“ +a Gl + L, (6 4+ 2en 20
“2 0w, ™\ T s, )1

The temperatu W in Eq (88)5 is replaced by the reduced heat flux by using h; &~
i cha

e will not affect the accuracy. However, the elimination of gradients
nsmes requires the following argument. Similar to above, without affecting

J

of the nu
the accuracy, #v

(a 59 %ﬁ ,0Ng 5 0ng , 5. 0T - T
k ﬁ 51 %2 %'8 8:%, C 8i‘z B (%a B %ﬂ)ﬁ_i‘z and hZ _Eﬁ&vi
1&

; 0*n 0*n

2( 2 @ 2 B
e = — — = ~~ — . 89
exgsz%; i) e ”ﬁ)na@ﬁ : (%ﬁa@ia@) %aa:i;@a:zﬂ) (&)
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Publishing cover, we again use h; ~ —ang—z_ in Eq. (87); to obtain

g + 2o ) =t (Bt + baig ) e 90
(U] * 57]3xj>) c a!f?(i(ﬂj) 1 + 2715 te KR al’j> ( )
On solving Eq. (89) with Eq. (90), one obtains /
~ ~ () ~
*n 1 16, 5% Oy \ 1 0hy;
2 o 1 (i 2 (i
~ —e———bpo—— b — _
© 0i.0i; (51%§+62%§)[ X052 0k +eibs )2(% *3) k0 ),
00y
— (&ij + 2577#) ; )\ (91)
) -~
G ! Lo, 0 -{; (% —»3) +b o L O
19 ~ E——— — )4 —
00ij  (b1se2 + bosd) | x5 Qs Diggn. BFT T 1 Oy

— 2| 6y + 2¢ %
P\ 8w, ) |

\:_) (92)
The relation \\

0 & X\Ta—ic)

(%:j i i \_ 8:2’18:/%] 852'] ’

is also used for replacing the ra&\%ﬁ“) number densities and temperature in Eqgs. (88).
Furthermore, the right-hand g%}. (88); is simplified by using an expression obtained

)

by taking the deviatoric gradient of Eq. (87)s. After all replacements and some algebra, we

finally get
1 0 06 i
—e0® L (57 g, q ) 02K
ag 2 \ K Oty Oy
1 o |- oT
_ G2 (5Q g+ %> — | h +er— |, (93)
Ay \ K I;) Oy

- - ()
k\ 0 Ohy as K\ 0 Ouy,
A o ac _fY 2

(a5 277) 01 O ;) Har” (a5 > vy 0%

— ) (642 , 4
(o130 3, (70 2035, o9

mr’ethe coefficient ¢39 is also given in appendix C. Therefore, Egs. (85) on using Egs. (68),

-
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Publishiti@ ), (76), (93) and (94) yield

INGD Q[ 4wyl ¢ 0 06
GINLLN PC TN E N L P B ke
ot W4 |: + 5§9 + ag »x K Ba%¢ + K gai’}k ai‘j>

9 R . A

(o) 059%,8 zana 2(9715‘ 5 oT

+Xg——— (%ﬁaﬂ% — 7= (o — 5) 5

(67

» <1 O
+ 251—2£ -
Mo G Wy 01

g 4 w3 1 n
+ {5g9+ s (5/{ y5¢ (95)
O 1)
(97? ng S15 . 5 5
ay wr K
+ = |:§15 ] (Ctg) 277):| (96)

On using Eqgs. (71), (72), (95) and (96), Eqs: 4) provide the third order accurate
expressions for Ag;; and Ah;:

e (%huk

Ty ! 8:i"k

4@4 0 8&;9@
5wg§10§15 ai’k 8:2“]

Ong T
. %3‘8:%@ b=y )
)

: 0@, ) w0, ws \277 07, 605 2 0%,
ﬂ A
3 az wry K 4Gsi6] O Ohy
- % — S5 — | 85— o~ -z PR
- 8 s g 2n 5 wy | 0%; 0y
b Q) [ag { wr ( 5 ) } m@} o oaf’
— — § S5 — — | G5 — — -2 Py Py
\ v wg a 277 Ty 61’]' 81‘]>
-

eQd |y wr K wy| O (. 00y
S SR (PO QL | iy (I 08
wg Lﬂs {% ag (a5 277)} §16W4] 0; (U] - 6778% 58)

Now, inserting the second order accurate value of Ag;; from Eq. (71) into Eq. (77), we obtain
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Publishi‘ri‘g third order accurate balance equation for the diffusion velocity of the a-constituent

o | 0y 0, Dy o o} L0 Ohy AT
Ao~ ~ a~ L ~ ~ ~ A~ X ~
at 2 a.Tj 78.”,17]' 8£Ej 6.I'J> 0:13]- 61'J> A 0:131

a(a)+xoef2%§<28ﬁa 00y 28T>

4 — X — N — Ay)——
50z, aa:ﬁi/a 6)8:@-

The coefficients a7, ag and ag are given in appendix C. Inserti g?@qd order accurate
value of Ag;; from Eq. (71) and the third order accurate gva of Ag;; and Ah, from

Egs. (97) and (98), respectively, into Egs. (78) and (79), we obtain third order accurate
balance equations for the total stress and the total redugéd heat :

, (99)

(100)
‘%7 8 j 6 wsg S19 (93?'1 2 o1 wsg %21 (9.531
7 K 6 i
a 9 . .
K 'S w
<a5 - = } PR <§13 — a6
a 2n w ws
7 K w3 We N v
_ ) _~5 2
(a5 277)} = (§13 ws%)} oz, (Uj * 5nfﬁj))
) . (101)

£ "Regularized 17-moment equations

QO ~——

The system of regularized 17-moment (R17) equations for binary gas mixtures consists of

the conservation laws (62) and the governing equations for 4, dij, hi (Egs. (99)-(101))—
a total of 17 equations in 3D—and the system is closed with the second order accurate
contributions of AT, my;i,, R;; and A, given by Egs. (82). We write the system of regularized
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Publishii(fg: noment equations in the closed form below—using Eqgs. (82) for the unknowns and the

1 iao—@j _ 218616(1 lBQ&ij
relation 52~ Tow — 5 Dax iy, + 3 PR It reads

Oha | OO\ i _ )
“\ of Oy or;
a o ~ o A o o 861
8_£(Iuozxana + ,U/Bxﬁnﬁ) + (Maxa + Mﬁxﬁ) 8_@ e\

> 102

O 06y L Oh, O N (102)
= X X

of = oi; Y01 P o

30T  00;  Oh;

2 of * o0z;

, (103)

dok ) P 5i; 1 0
. _— = —q Ai- 2 N 5 104
T D iy 0 en\ T T gy, (104)

‘lﬁ Egs. (103)—(105) is used for distinguishing terms of different order in e, the single
crline denotes the terms of order O(e) and the double underlines denote the terms of
order O(g?). For zeroth order accuracy, obviously, the conservation laws (102) are closed
by setting ﬁl@ , 045 and h; to zero, which leads to the Euler equations for binary gas mix-
tures (61). For first order accuracy in the Knudsen number, it suffices to consider the
non-underlined terms in Egs. (103)—(105), i.e., the terms on the left-hand sides of these

equations are set to zero, which leads to the laws of Fick, Navier—Stokes, and Fourier (63).
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Publishi.ﬁ(gr second order accuracy, one also needs to consider the single-underlined terms along
witn right-hand sides in Egs. (103)—(105), which indeed leads to the second order accurate
equations (73)—(76). For third order accuracy, the double underlined terms should also be
considered, and then the third order accurate equations are the full R17 equations. Thus, the
zeroth, first and second order accurate equations for the binary gas mixtures are inherently
contained in the third order accurate R17 equations for binary gas mixtures. Notice that the
R17 equations (Egs. (102)—(105)) do contain the cross-coupling t?él(lgh double underlined
terms, for instance, the temperature gradient in the governing.equation for a§“) appears

through the reduced heat flux terms on the left-hand side of Ed. (m‘ﬁ), and—similarly—the

pressure or number density gradients in the governing equafion hi appear through the
diffusion velocity terms on the left-hand side of Eq. (105). TN trast to first and sec-
ond order accurate equations, the R17 equations can be eXpected to‘explain the cross-effects
of thermal diffusion and diffusion-thermal in the binazy.ga jixtires of Maxwell molecules.

Interestingly, in the limiting case when the binary mixture*reduces to just a single gas,
the R17 equations for binary gas mixtures (Egs. &2) 05]» reduce to the well-known R13
ril
t

equations (in linear form) of Struchtrup and Tofrilhen?' and of Struchtrup®® for Maxwell
molecules. The limiting case arises when eith. maha fraction of any component in the
mixture is zero (i.e., xg, = 0 or x3 = 0) or hk%e ‘eemponent is replaced with the other
(i.e., B — aor a — f3). In all the possible oﬂiﬁzse it suffices to consider the mass balance
equation for the mixture (102), and, therefoge, can ignore Eq. (102);. Moreover, the
coefficient ¢; in Eq. (102)4 vanishes thatweansage do not need the balance equation for the
diffusion velocity (103) in the systediany e, this agrees with the fact that there should
not be any term/equation of the 6"hxﬂa,],ocity in the single gas case because there is no
diffusion in single gases. Furthe re, @wing to same reason, the reduced heat flux h; in

the mixture changes to the al heatflux ¢; in single gas case. In all these limiting cases,
all the coefficients except a%in Egs. (104) and (105) immediately reduce to the

coefficients in R13 equations for well molecules, i.e., they reduce to
4 2 12
ﬂ2:al4:g, az=Mpp=tgg='a=0, az=a;=1, ﬂ62015:§, a17:€, a9 = 2.

For x; = 0 or 8= «
the case of x%= M a;g and agy themselves are non-zero, but together with ﬂga) they

let the whole ()

as vanish, i.e., a T = Qg
, 1.€., A18U 20U;
the comp, ner}ts

7

the mixture vanish.

= 0, since the diffusion velocities for both

VIII. LI1\R;3 R STABILITY OF THE EQUATIONS

—

In or<5elr to scrutinize the linear stability of the above sets of equations, we consider them
in dimension and assume plane wave solutions of the form
NS U = Uyexp{i(i —&f)}. (106)
In Eq. (106), U is the vector containing all field variables in a set of equations; U, con-
tains the complex amplitudes of the corresponding field variables; 7 is the imaginary unit;

W = w/(kv,) is the dimensionless frequency of the wave with k being the wavenum-
ber, w being the complex frequency of the wave, and the velocity scale v, is taken as
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Publishipg._ \/k T/ (maxg, + mpexj) . The length scale L is taken as the inverse of wavenumber, i.e.,

L = 1/k so that the Knudsen number is ¢ = ¢ k. Owing to this length scale, the Knudsen
number now enacts as a dimensionless wavenumber. Insertion of plane wave solution (106)
into each system of moment equations yields algebraic equation of the form

A&, €, o, X, Qay Q3) U = 0. (107)

For non-trivial solutions of Eq. (107), the determinant of matrix w}g{:{ .4, Q) must
vanish. This condition det{A(@, e, tta,x3, 24, 25)} = 0 give§ the dispersion relation—a
relation between w and k (@ and e here). For temporal stahilitysanalysis, it is customary
to assume a perturbation with real wavenumber k£ and SM ispersion relation for
complex modes w;(k) = Re(w;) 4+ Im(w;), where j = 1, . N with N being the number
of equations in the system considered. Here, we assumge 5‘3“5‘ Re(w;) + ¢ Im(w;). The
growth rate of the amplitude of perturbation is det@rmined by the signs of the imaginary
part of w; for all j. From Eq. (106), it is clear that for lingarlystable solutions, the imaginary
part of w; must be non-positive for all j. g.

It is trivial to check that for the zeroth 6érde acc‘sarate equations, i.e., for the Euler
equations (61), Im(w) = 0 as long as the Qiﬂ:b‘ér 1s real. Thus, the Euler equations
ixtues.

(61) are always linearly stable for all gas owever, for the other sets of equations,

owing to the large number of parameters, 1 easy to check the stability for all gas

mixtures. Nevertheless, we have analyze (hetimear stability by considering several different

permissible values of the parameters; i partiqular, we have analyzed the linear stability for

three binary mixtures of noble gases: ~argon (Ne—Ar), helium—argon (He—Ar), helium—
R

xenon (He-Xe). The molecular cs apd diameters (for hard spheres) of these gases are
listed in Table I. The diametér % gases (for hard spheres) are calculated using the
exact expression of viscosity %e gas given in Ref. 55 and the experimental data on
the viscosities of single gases at temperature 300 K given in Ref. 56. It can be noted that
the computation of par@meters €2, and (23 for the Maxwell interaction potential is not so
.omputation requires explicit viscosity formulas for a single gas as

formulas for singlé gases and‘binary gas mixtures can be obtained by performing Chapman—
Enskog expansi aﬁ.ﬁ(;"\]o the respective Boltzmann equation(s) or on the respective Grad’s
moment equafions, onlydimited viscosity data from experiments is available in the literature
(only for sdctions 0.25, 0.5 and 0.75 in Ref. 56). Therefore, we compute 2, and g
through f Omega integrals for hard spheres, i.e., through the relation QZ(?’Q) =
(d; + dg)2/4vawhefe i, j € {a, B} and d; is the molecular diameter gas 7 so that they can be
used for any gralue of mole fraction, not necessarily 0.25, 0.5 and 0.75. Indeed, Gupta®® has
alseuco uteh 2, and Qg for the Maxwell interaction potential and for mole fractions 0.25,
085, 0.75¢ and found that the values of {2, and €23 for the Maxwell interaction potential are

notwyery different from those for the hard-sphere interaction potential (or for hard spheres),
Table 5.1 of Ref. 50.

After scrutinizing the linear stability by considering several different permissible values of
théparameters, we have found empirically that the first order accurate equations (Egs. (62)
and (63))—i.e., Fick, Navier-Stokes, and Fourier equations—as well as the second order
accurate equations (Egs. (73)—(76)) are linearly stable for all binary gas mixtures. As an
example, we plot the imaginary part of dimensionless frequency, Im(w), over the Knudsen
number, €, for He-—Xe mixture with xg;, = 0.75 in Figure 1, in which Figure 1(a) illustrates the
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Publishing TABLE I. Mass and diameters of some noble gases
Gas Mass (in atomic units) Diameter (in nanometres)
He 4.0026 0.2166
Ne 20.1791 0.2564

Ar 39.948 0.3606

Xe 131.293 /\ 0.4821

n

(a) Q h (b)

Modes

Modes )

from — from

first Q sec-
L

or- ond

der ( o
ac-

cu- ac-

rate ‘\\ cu-

equa- \ rate
tions C — equa-
(Egs. (62) S tions

and ~ (Egs. (73)-

(63) \\ (76))
FIG. 1. Dispersion modes in Heg(zf;\%we with x§;, = 0.75 obtained with (a) first order accurate

(Fick, Navier—Stokes, and Fourier) equations (Egs. (62) and (63)), and (b) second order accurate

equations (Egs. (73)—(76)). \

dispersion modes ined with the first order accurate (Fick, Navier-Stokes, and Fourier)
equations (Egs. an 6{)1) while Figure 1(b) depicts the dispersion modes obtained with
the second order actugate equations (Egs. (73)—(76)). Figure 1(a) delineates four modes
where two m d?boinci ¢ with each other for small Knudsen numbers (for ¢ < 0.323), while
' distinct modes for large Knudsen numbers. Similarly, Figure 1(b) displays

der

and twoano incide. For large Knudsen numbers some of the modes coincide with each
other It cangbe*seen from Figure 1 that the imaginary part of the dimensionless frequency
T inSsalways non-positive resulting into stability for both first and second order accurate
equations.

he R17 equations (Egs. (102)—(105)), on the other hand, turn out to be stable for the
ixtures with small or moderate mass differences but, unfortunately, unstable for the mix-
fes with large mass differences. We have analyzed the linear stability for three mixtures:
NesAr, He-Ar, He-Xe and found that the R17 equations are linearly stable for Ne—-Ar and
He—Ar mixtures with any mole fraction of the components while they are unstable for He-Xe
mixture. As an example, Figure 2 illustrates the dispersion modes from the R17 equations
for the three mixtures (a) Ne-Ar, (b) He-Ar and (c¢) He—Xe with mole fraction of each gas
in each mixture being 0.5. Each sub-figure of Figure 2 displays seven modes, where some of
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Publishi‘ri‘g modes coincide with each other. It is also clear from Figure 2 that the R17 equations are
10t stable for He—Xe mixture since it is the mixture with large mass difference but they are
stable for the other two mixtures. In order to have more insight into region of instability,
we plot the zero contours of maximum value of Im(w) in Figure 3 which illustrates them
in (x2, (o) plane for fixed values of €2, and Qg: (a) Q, = 1, Q3 = 1 and (b) Q, = 0.5,
Qs = 1.5. The Knudsen number (¢) varies from 0.001 to 5000. The, white color represents
the regions in which the R17 equations are stable while the gray gror portrays the regions
in which they are unstable. Of course, in the limiting cases of u NWMQ ~ 1, the R17
equations reduce to the linearized R13 equations for a single gag and become linearly stable.

(a) (b) Q} ()
Ne- He- - He—
(U

Ar Ar Xe

FIG. 2. Dispersion modes in different binary &mixilres computed with R17 equations
r €,

(Egs. (102)-(105)): (a) Ne-Ar (x}, = 0.5), (b) HQKCO 0.5) and (c) He-Xe (xf, = 0.5).
AN

~RPE
Il

o —~
ISECS

.5
and \ and
1 1.5

wn (dimensionless) damping for different mole fractions (x{,) and
different mass ratios (fiq) fixed values of Q4 and Q3: (a) Q, =1, Qg =1 and (b) Q, = 0.5,
Q3 = 1.5. The K éuLI?aer (e) varies from 0.001 to 5000. The white color represents the

regions in which R1 ations are stable while the gray color portrays the regions in which

they are unsta IP3

It cané@e rom Figure 3 that for plausible values of €2, and (g, the R17 equations

seem to be stableffor the mixtures with mass ratios 0.1 < p, < 0.9 for any mole fractions.

ONE-DIMENSIONAL APPLICATION OF THE R17 EQUATIONS

-
-

n order to solve boundary value problems with the moment equations derived in Sec-

on VH, these equations must be supplemented with proper boundary conditions. However,
as ‘mentioned before, the derivation of proper boundary conditions for the R17 equations
equations is beyond the scope of the present paper and will be considered elsewhere in the
future. Therefore, in this section, we consider a very simple one-dimensional flow problem of
binary gas mixture in steady state, which we can study with the R17 equations analytically
without boundary conditions. The R17 equations (considering the flow in z-direction) for
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Publishitigs problem simplifies to

(108)

di Tdp eqt|" ’
(109)
2. d (o dT dr
Y T ER— ~
3 7di di di
2 d?o, d?6 4,
— 50146 di’Q ai5& d{sz (110)
d}x<§>; 1 s a7
6 \Gdg IR Sl (111)
dz e} dz
Egs. (108)—(111) a system of first order ordinary differential equations, whose solution

turns out to be

,&oz JA: _627 :Cg, &wx(:i"):c Ax+c e Ax,\
— Q
_@wmﬁ@_“5 UL
Qe
) 1 5 o, T(A) (Clo—a7)5 4 +%§ R (A) (112)
&) =l —c1—01—2—T(2) — | ————01— + —=| 0(2),
- /:7 YY) 1%% a; 1%% n
A Tro. . A A
.y 5 ng(&) = cg — - [xa N (2) +T(2) + Um(:c)],
ﬁ J

here<ey, ¢, . . ., cg are the integration constants—and can be computed through boundary
‘hdi-bions—and

1
A== i

Al Q [%am +ai; — 20 {%(C‘O —ag) + a5 — alﬁ)}]

(113)
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PublishiNg1 ice that the solution (112) is a combination of bulk solution and Knudsen boundary
layers—which are given by the superposition of exponential functions and are well-known
rarefaction effect. The bulk solution follows from the first order accurate equations (i.e.,
when single and double underlined terms in Egs. (109)—(111) are zero) and reads

C3 )

A

_x’

A

ﬂg(ca)(fc) =c1, 0,(%) = o,

(114)

Thus, in the bulk of the problem domain, the numbel dénsities of the constituents and the
temperature of mixture have linear profiles, the stress nishéy, and the diffusion velocities of
the constituents, the mean flow velocity and the giluce at flux are constants. Needless
to say, the first order accurate equations cannot fureithe well-known Knudsen boundary
layers (which are typically superposition of expouentialdunctions). Furthermore, it may be
noted that—for this problem—the Knudsen boundary layers in the solution appear only
through the stress (see Egs. (112)), whoseé'governing equation does not contain single un-
derlined terms (see Egs. (110)). This hnsﬁa:c the second order accurate equations also
lead to same solution as that obtain itheth

wit e first order accurate equations for this simple
problem. In other words, for this sim 7@1‘&1‘3 m, even the second order accurate equations
cannot capture the Knudsen boundary layers. Nevertheless, the—third order accurate—R17
equations do capture the Knu se& ry layers (see Egs. (112)).

X. CONCLUSION

N.Q DISCUSSION
In this paper, theApplicakility of order of magnitude method has been extended to binary
gas mixtures in orde of deriye various sets of equations for binary mixtures of monatomic-
inert-ideal gases(fl eracti gvith the Maxwell interaction potential up to third accuracy in
the Knudsen '1§Nr simplicity, the equations have been derived only in linear regime.
To zeroth o C%CUI"&C , the method has resulted into the Euler equations; to first order
i d to the Fick, Navier—Stokes, and Fourier equations; at second order, it has
nt equations; and at third order it has ensued the R17 equations. The
#h, co ciénts in Fick, Navier-Stokes, and Fourier equations obtained through the
order ‘of magunitude method have been compared and matched with those obtained through
theclassical Chapman—Enskog expansion. It has been established that the temperature
difference does not play any role up to second order accurate theories in the Knudsen num-
ber 10\(;Sver, it does become important for a third order theory in the Knudsen number.
thermore, it has also been found that the cross-effects of thermal diffusion and diffusion-
érmal in binary gas mixtures of Maxwell molecules cannot be captured by the first and
second order accurate equations; nonetheless, the R17 equations can be expected to capture
these effects due to cross-coupling terms present in the respective equations. The linear
stability of the derived equations has been analyzed and it has been found empirically that
the Euler equations, Navier—Stokes, and Fourier equations, and second order accurate 17
moment equations are linearly stable for any binary gas mixture whereas the R17 equations
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Publishi:mrgr unstable for mixtures having extreme differences in molecular masses, although they are
iinecarly stable for other mixtures. Finally, a one-dimensional steady state flow problem of
binary gas mixtures of Maxwell molecules has been investigated through the various sets of
derived equations, and it has been shown that the first and second order accurate equations
cannot describe the Knudsen boundary layers for this simple problem but the R17 equations
do so.

Indeed, on investigating closely, we have found that the third orgér accurate 25 equations
(Egs. (62) and (77)—(82)) at intermediate step themselves are not. stable for any of the three
mixtures above but the R17 equations have, luckily, turned gut be tinearly stable for
mixtures with small and moderate mass differences. We have ngticed that if we include
the equation for temperature difference with these 25 equ;‘i%n‘%l intermediate step, the
resulting 26 equations become linearly stable at least for thie three nlixtures considered above.
However, the R17 equations supplemented with the equatien'for<he temperature difference
are still unstable for these mixtures. Thus, the lindhr stabi of equations also depends
on the choice of moments. We have also scrutinized the cassg of single temperature theory.
In this case, the third order accurate 25 equatigf;s-b(Eq “(62) and (77)—(82)) are linearly
stable at least for the three mixtures considere ovey However, the R17 equations are
again unstable for He—Xe mixture, although theéy areilifiearly stable for Ne-Ar and He—Ar
mixtures.

It is worth pointing out that for mixtures with extreme differences in molecular masses,

one of the two mass ratios is obviouslyﬁx 11, and in fact, it can well be of the order of

[\

Knudsen number or even smaller. Therefore, while applying the order of magnitude method
for mixtures with extreme differenc }7@ cular masses, one has to take care of mass
ratios since one of them would tribute to some power of the Knudsen number in each
term wherever it appears. Atﬁ@- t. it is very complicated to deal with this issue and

one would need to rederive t equations for mixtures with extreme mass differences
separately by considering this iss
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Appéndix A*Coefficients in linear-dimensionless Grad’s moment equations
- :
0 = —ayy/
S ~ 1 3 a1/ Mg,
8y = 2V/2 a1 fio/i5,

V2
03 = ——(da1pia + 3ps)\/ 15,

3
V2
0g = ?(4601 — 3) fhar/115)
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. 9
Publishing b5 = \3/_(304“& + 2o s + allvbﬁ)\/,“
4v/2 e
0g = 5 (2&1 - 1)/1404/115 ey

V2
Y —{6(11;@ + Ypapis + (bag — 3(11),&/23}1//Lﬂ, /

3
V2
dg = ?(5a3 + 3a1 — 9) tattg/ Ha, .)
V2 2 2
dg = 5 [3;@; + 2,%{4@1,% + 4o + (3as + an— H IR
2V/2
510 = 3 (3&3 + da; — 7)/10“&5\/ s )"‘\
.ﬂ
8v/2
o1 = Tua(ama + fatts + alug) 5
8v/2 -
(512 = 3 (2@1 - 1)/110““,3\/ ) \
f -
2\/_ \\
Y1 al\/,u_on \

Yo = 2\/5011,“5\/,“0”
N
4a1/“Lﬁ + %\ 2
40/1 %
@ 245 ta + Q1115)/ P
6 Q

N,B,ua VB

alug + st + (5az — 3a1)u§}\/ua,

oo

2
s 755 (5az + 3a1 = pspar/1is,
_— \/—
)79 =3 [3ua + 2u5{4a1u5 + 4pgpia + (3as + a; — 3)ui}] NI

R 2v2
b Y10 = T(ga?) + 5CL1 - 7):“,%;“04\/ Mo,

8v/2
S - Y1 = Tuﬁ(am% + ptta + 1p2)\

8v2
Y12 = T<2al - 1):“%:“/01\/ Mo,
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PublishiAgpendix B: Leading orders of higher moments

Comparing coefficients of € on both sides of Egs. (20) and (18 <%,one obtains:
Aﬂl = 07 ‘)

N =

(B8) _ 2B ~(a)
7|1 7, i1 )

N~

(8) (a)

2%/36@@ :—l{ OQﬁ : + X (73(3' —")/45‘-- )},
Zn Q<§zl - (i =i
-

x5 (dhS) — 3R ) ¢

i1

° ° ~ (B) - (@)
ZXBQﬁmiij + Xa (77mijk\1 - 78mz‘jk|1> )

N
L [T o0 @) o oo (s Pl A
b 0=— {EXQQQR;Q + x5 (R — 10BN ) ¢

F B+ ()~ )

1 (2 N A A
0= — {—XO QQAQH + X% (511Aa|1 - 512A5|1> )

‘X%QﬁAb’ll + xq (711A3|1 - ’leAau)
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PublishiBgs. (B1)-(B7) on using the relation p,u, + psus = 0 in dimensionless form imply that

Uy ﬂgﬁ), afﬁ)l, Afﬁ)l, hl(ﬁ), h(’B ) do not vanish, whereas

~

= Aa\l =

>

ATy =) =mld) = R — RY)

ijk|1 igk|l — “higlt T TGt T Bl = 0. (BS)

Thus, the leading orders of the diffusion velocities, stresses and heat fluxes of both the
constituents are one while the leading orders of temperature di nce and other higher

moments for both the constituents are at least two. &
Q\
Q

~

)

Comparing the coefficients of ! on both sides of qD 20) and (25)—(30), one obtains

1 83;'){) . 8@1(3)
Mo (93?2 8:2‘1

1 4y
= _ﬁ%_ATlQ’ (B9)

8(7(a)
zg|1 ~ (B)
(B10)
z]|1 (o)
8
x LR, + x5 (8RS ~ 510Rf]|)2>}
(B11)
<z'|1 I ©) A(8) A(@)
y. axj> T Q {f@”‘ﬂﬁﬁRwl2 (ngW - 7103@'!2) ’
ﬂ /
on') 1(2
-\b 8 ax“ — Q {3}(&9 Aa|2 + Xﬂ (511Aa‘2 - 512A5|2>}
5 (g) (B12)
6hl|1 _ 1

2 N o A A
~ 8 GRS —5 {ngQgAﬁp + Xy (/YIIAMQ - 712A0l|2)} :

From Egs. (B10)-(B12), it is clear that mfj‘,j|2, mgf,gp, lew Rfﬁé, Aa|2, and A5|2 do not

vanish and therefore the leading orders of these quantities are two. Also, one can verify
from Eq. (B9)—by inserting the values of al |1 ) Agﬁ), hgloi) and hgﬁ) from Egs. (34) and (36)—

that Aﬂg is also non-zero. Therefore, the leading order of Aﬂg is two as well.
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PublishiAgpendix C: Coefficients in other equations

The coefficients in Egs. (40) are as follows.

() 30 ( XBQB + Xa’77 + /€1X
oY = ,
m (XZKQ + Xglﬁll) I (%XZQ + X,357) X,BQB + X, = x9 058’78_ (Cl)
m o o o o
(xg k2 + X3h1) i (%XaQa + X557 2X,396 )a%;\}ﬁxg(;s%s_
—
(o) _ 28 a2 (5 °Q(+ o) F FaX3010 )
Cp = —
& 5 (xGrars + xprsra) | (5X08 +X/3 ( Wxa% —X X5510%0 7 (©2)
@ 28 T 53(5 ’}@59 + KaXg Y10
C = —_— .
R 5 (xSkass + X%/fg%a) I (%XZQQ x 6&‘5‘95 + ngg) — xgx%ém'ylo_ )
@ _ 50 o5 ) \@(3%(%95 + XZ”VH) + K3X3012 )
a = 8 (Xglﬁ;%g + X%Fég%a) (% .&7‘*’}5’%11) (%X%Qﬁ + X(O{Yll) - XZX%§12’)/12 ’
-~ > o (C3)
@) SQ Ko N ( Xo {2 + Xfé511) + KaXg 712
C =
A X a1t + Xﬁfig% % + X5511 (%X%Q,B + Xg’yll) — XgXZ;&lg’}/lg_ )
The coefficients (,,, (g a A are follows.
3Q<1_2 = Zag@ 75 X5 oo,
<z
C = —Qﬁ = Xa o) ic(") (C4)
B oy 2 B %B R
S x5 X3
Ca = 802 — —0‘20(5) + —gc(Ao‘)
w17 “, %5 )
e'fﬁc1en s are as follows.
_2 . X% (Koaeh — K13e) B X5 R — Ry
%% ’ %(X Ko +X3K1) ’ X% Ko + X%Hl’ XS Ky + Xgli3%a7
# 1 P K1Ke#p — Kaks X Xg K2 + XGK1
g{ 9 - 9 g = o ? = o o )
R X8 Ky + XGH3%a Xoﬁxaafg ’ XQK6p + XGH5 % X K675 + XGhs5 %0
K1K435 — Kak3a Xo k2 + XgR1 X0 ko2 + X%/ﬁ%%
= —= g =
* X0 Kyp + X%ch%a’ X0 Ky + Xg/ig,%a’ 1 X%%a%g ’
XQ Koa0h 4 XGh136) Xo X3 < 1 1 ) . O< 1 1 )
Si2 = T SB= T o o\ =), u=XXg\ =5 — =3 |
2 22 35 (xQ Ry + X3Hk1) (xo 2 +xGhr1) \ 22 23 oTB\ 52 3
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o o]
XoKa¥a + Xghang o 2o 23(Kgkzxg — KrkaHa)
17 =
XQKg oty + XGh7 2

Publishing _ raks»s — Kikara 6 =
S15 — 16 —
o 22(X0 kg + X1 o325 (X Ry + XGK1)

o (o)
X4 + Xgh3#a o5 (K10K3 25 — KokaHa) :
= ) 20 —

(o] (o]
X, Kaxg + Xgh3¥a

18 = 5 y  S19 =
o o 2 o 2 o 2 o 2 o 2
Xohg¥ + Xk oty Xo k10765 + Xgho 1, Xo K107 + Xgho g,
XoRaro + XpR33s 2o 5(Ksks 3 — KekrHa) Xo k65 + XjK50
Go1 = 5 Goo = S 3 5 2 3 g23 ° ) ° 9
] Xohgxg + Xghyog, Xohgxg + Xghyot,
o o o 3 o
X K6 Mo + Xghks Xo 673 4—}(8@5}%
g24 = 5 p §25 = 5 3 5 } ¥,
o705 (X0 e + X3h1) 225 (XoKg 5h5%a)

Xa X5 1 1
S26 = 75 5 o T a2 Sr=
(X Kess + Xghsota) \ 5 7

KeK7g — KskgHo Xo Kg + X%FL, A

S28 = y  S20 = - )
XS K673 + x%/%%a X0 Ke>g + Xﬁ% XoKaxg + X%ff:a%a
X° /14%2 + X%m3%3
633 =

(o] [¢]
X8 + Xghy

Xg‘lﬂlo + X%I‘fg 5
C32 = 2X503 % -

31 = )
Xokarg + X%/{g%a

The coefficients w;’s are as follows. \(
Xg 751 K2 (x5 20 + X503) — H1X554}4\2;§&}{"61 X580 + X073) — KoXgYa)

2 %B(X Kqxg + XIBI{3%a)

w1 =
_ (a8 + X553)(X/39ﬂ + Xcﬂg) 5&4
ZU:@@MM@mme$§° —%ﬂ%%+ﬁ%ﬂmmM
2 %a%gwg + Xﬁl-il

X°Xf§{ K1 — Ka) +é o Va )
%a%[g 9 —I—}K ’

o /{1%/3{&} - xﬁ /{1X554} — Koo {R1 (X508 + X03) — KaXga}
3 Ko 73 (X0 K + X3H1)
lﬁ/Xﬁj: o T X303) + X004} + rareaXp { (X582 + X573) + X374}
20,23 (X8 Ko + Xﬁlﬁl)
?\2 2 0,0
Jé@kxl+%wwr%Mm&—mw)
- \) o 205(X5 K + XGHK1)
Sw'gv— X5, {ra (3x2Q0 + X§55) - /ﬁ?gX%dﬁ} + x§¢7 {rs (%X%Qg +X3Y5) — KaX2Y6 }
2023 (XS kg2 + X%/ﬁ)g%a)
(x5 + x35e2) { (3% + x305) (3x3Q5 + x375) — X0x30676 |
o 75 (XQ Kastp + XGK352,)

= (k1 — ko)W

Wy =

Y

Y
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Publishing,v _ XoX5 [%[2_} {360 (320 + X%55) + 35x306 ) — 22 {55 (%x%QB +x375) + %ax;fyﬁ}}
o 2 %%(XO Ka¥ + X3H3 o)

xoxG{ sa325( K325 — Kasta) + (x0565 + x522) (34306 — %a%6) }
22 35 (XQ Kartg + XGH3 %)

Y

K3 {/44 ( °Q0, + X5(55> — /igxﬁéﬁ} — Ky {/13 X582 +(M /€4Xa’76}
= Xo ke + Xﬂmg%a N
_ (rags — rarea) { (3xa8 + x305) (5358 + x275) — X850
.

XS K23 + X;ngza

| sap(Rarg — Kyity)
- Ws, .
(x¢,5¢5 + x53¢2)
K37X% { #a X%05) + 56X006 | +aiartaXg 23905 + X275) + X3V
e (o (a0 350) + e} e (350 +x000) + )
i st 25(X0 %kt,wya)
o 23(Xo K] + XGK3) + Xox3(Kass — 54&%5&_,— 0/Y6)

20 523(XS Ky + XW

o — x2 %ﬁ {/fﬁ ( oQa + x/357) (Q + Xﬂ% {Fa5 ( sx38s + Xa’77) — /i6xa78}
z&ﬁ%zg + Xﬁﬁ5%a>
 (xoK23e5 + XGH1507) i(%m 207) (3x3Q8 + x377) — x0x3057s |

- \\ K625 + XGH5 7o)
% [ {a (3 5% + X3 7) 4 25x008 } — 222 {505 (3x3Q8 + x077) + 2axis )]

i =

10 = ) %2%[3 Xokexg + Xﬁfig)%a)
XOX%{%QJ'{K5ﬁ2 ik #a) + (Xehazh + X5r156) (9126505 — Fasas) }
\/ fﬁ/@% %ﬁ Xo K63 +X,8/€5%a) s

/{5,%@ o Qo + X657) - /‘65X558} — KgHqy {/-c5 ( x5 + x;’y7) - /fﬁx;’yg}
Xokexs + Xﬂﬁg,%a

_.(,%5 ﬁ/ Rek1%a) gﬂa + X%57) (%X%Qﬁ + xg;w) — ng%dgfyg}

N 5 Xo ke + XjK5

_ B(’f5’f2%ﬂ — K6K1%0)

5 x° 52%5 + XgK1505 )
} - K5 35X {%a (5 xo Q0 + X%57) + %5X358} + RgHaXp, {%g(%xgﬁﬁ + ng) + %QX%’Yg}
12 2o 03(XS K65 + X%/i5%a)

Y

w11 =

Wo,

o 23(XoR1RG + XhRak3) + XoXG(Rshastg — Keki1a) (F1280s — Ka%as)

)
R1Kaa23(XS K3 + X%/‘ig)%a)
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Publishing

Tely3 =

Xz%g {58 (%X&Qa + X%ég) - H7X%510} + X%%i {/i7 (%X%Qg + Xg’yg) — HSXZ’le}
o305 (XQ K205 + XGH722)

B (XZ@%% + X%Hg%g) {(%XZQQ + X%5g) (%X%Qg + XZ’YQ) — szé&o%o}

W15 =

W16 =

Wit =

wig =

)

o35 (XQ Kg oG + XGh722)

_ xax [ {om (§%a% 1 X300) + #ixati0} — 4 {45 (555 ﬁﬁ xo09) + X}

3335 (X0 kg 25 + XGh72) \
X Xﬁ{% %6(57/44%5 — Rgk3#a) + (X2 /£4%ﬂ + Xﬁlﬁlg% %%‘3%10 — a’}/lo

K3ka 72 %3(x /18%5 + Xgh7 2 \

Mo A3 |:I§}7%ﬁ{lig ( Q + Xﬁég) — H7Xﬁ(510} /8% mﬂﬂ + Xa’Yg) - /{8Xa710}]

%a%ﬁ(/{7/€4%5 — I'iglf,g%a) {( Q + Xﬁ(Sg)’ %Xﬁ )(Cﬁg XEX%510710}
(x° lﬁgkﬁ + M

w13,

22
s 5 (Krkass — Kgha o)

(x0 K432} + XGH35¢3)

K735X {%2 (7 oQy + X%59) + lg& ° + Kg M0 X {%g (%X%Q@ + Xgﬁg) + %ix%%o}

Ky + X5ﬁ7%2)
20 75(X0 Kakass + X5K4H?@fa\§)¢%@i7li4%ﬁ - /4853%&)(&3%5510 — K4362710)

Kwaﬁgxﬁ + Xgh72) ’
X, {r10 (3x202 ﬁj‘\x /<&9XZ>512} + X320 {ro (%X%Qg +X3711) — K1oXo712 )

25 (XQK10505 + XGHg22)
(XZI@;%% + )ég?i) 2500 + X%én) (%X%Qﬁ + Xgﬁn) — XZX%&H%Q}
A r5(x8 k1075 + Xghg 2 )

XaXp Vﬂ\{N ofda +x5011) + 28x0012 ) — 5 {35 (350 +x2711) + saxiyia)]

-

Y

%3%B(X Klo%ﬁ + X3 ko225 2)
x( V RoKa%g — K10K3%a) + (X0 /@4%ﬂ + XgHz, )(53%?3512 — Ry 712)}

_‘\/ K3k oty 35 (X0 K10565 + XGHo22) ’

[& Hg%ﬁ{fﬁo( X0 4 x3011) — Kox3012 } — K107 Ko (Bx3Qs + x3711) — K10X0712

'\

22
 a5t5(Kokas — Ki0K3a)

o 2 o 2
(XgK105¢5 + XGHos2)

%a%ﬁ /{9%4%5 — 510"13%01) {(%XZQQ + Xz’éll) (%X%QB + XEPYH) — XZX%(Slg’)/lQ}

2
(¢ K10765 + XGkos2)

Wi,
(X8 Ra2e} + XGh35¢3)
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PUbllShl[]_g Hg%ﬁX% {%3 ( oo+ Xﬂ(sn) + %ﬁX 512} + K10¥aX, {%B ( Qg + Xa’}/n) + x X5712}
- o 25(X K10565 + XGHo22)

2 2 2 2
Ho 203 (XoRak10s + X5Rakg¥a) + XoX5(Kokasts — K10K3%a ) (K335012 — K423 V12)

2 o
R3K4%a 3 (Xgliw%ﬁ + XGro72)

The coefficients ag, a, . .., ay are as follows. /
>
g = G2, aq :51—2 @ 1__§9
o
TwWa 1
a3 =2(¢— —sn |, ag = —(W1W4 3)7) 5 = S12 — —§157
Wy
1 \""“ §3§11
ag = — (wsws — wetwr), ar = —§37 a
ws
4 G369 §
ag = ——— a1 = QX322 , a;; = Qx5
? 5 w4, 0 s ai ;) A 0652
L
To g 4 w3 1 Ui q3 w7
a2 = — {—{—Cg‘i‘—— (5——ﬂ2%+ — 7 S0
wy |y | D a4 2 \ K g

7 11Ws

a3y Wi
wa [ 62611 1 5 [4 5 G32 4 610515 2
Ay = 0= |27 + = ¢ SRR 5——a2%+—> -= 20122 ¢,
Wy Wy X, W | D K K 5 g 5 Wy
1 w
Q15 = (1 B ﬁq) G \

3
We wr w3 We
01 = 04— {§15 - ‘—%) } + — <§13 - —§16) )
w a 2 T4 wsg
w 4 ¢ w 1
= — + -2 G13 — —6§16 +-(1- —§17 CRs
(ovj 5 Ty wsg 2 ws
IS w
<a5 - > } + paa <§13 — —6§16)] )
27] Wy wsg

w
1-— Gglg) CA‘)
w

\A,Bp ix D: Burnett equations: second order contributions to 4;; and h;
~

o obtain the precise values of second order contributions to &;; and iLi, let us perform
the Chapman-Enskog like expansion on the new system of moment equations (48)—(59). We
again expand the non-conserved quantities (¥) in powers of the Knudsen number (¢) as

U=Uo+e¥+Ws+...,
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PUD“Shlm’g( re ¥ € {ﬁéa)7 AT, 61-]-, A&ij, }AZZ', A}Alz, mijk, Amijk, Rija ARU, A, AA} and the quantities
Yo, Y1, ¥, ... are of order O(%). Now, we shall substitute the above expansions in the
new system of moment equations (48)—(59) and compare the coefficients of each power of €.

Comparing coefficients of e~ on both sides of Eqs. (48)— (59) it immediately follows that
Wo = 0 for all W € {a\®, AT, 615, Ay, by, Ay, gy, A, Rij, A? A AAY.

hfsh\that
0

Comparing coefficients of € on both sides of Egs. (48)—(59)

N Q %5 8na B 28ﬁ5 B )
= X5 s < P05~ T om
00y : (D1)
i = 2 e, i =
Tij|1 naxj 1
Aﬂl AO'”H = Ah7,|1 = m1]k|1 = ’L]|]. = A|1 mij = ARzg|l = AAH = 0.
Comparing coefficients of ! on both sides of ﬁ\&l?w it follows that
) oT o 00
2UNp 2 @
~ — \¥x, — Hy)—= G ~ ~
« ot ( a 6) 8t> 772837]'(9273‘)]
0 0v 0 0vy
A (D2)
0; 0% 01 ; 0
0? . . A
2 972 ( éna - %271/3 — (%2 — %é)T) , (D3)
I <w15ij\2 + w2A5ij|2> ;
(D4)
1 . .
=70 (wsaij\z + W4A0ij|2) ;
1 . .
o) (Wship + WGAhm) ;
: (D3)
“Q <w7hi|2 + wSAhi|2> )
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Mijkl2 = —Cm 852;;'1’ Rijo = —Cr 8:E<j>1’ Ajp = —(a oz, (D6)
and

From Egs. (D4) and (D5), we have

R Q dGijn
Oiila = — w 2
" (wrws — wows) |+ Of
Q 00;;
Aé’iﬂg = w3 z‘l
(g — waws) ot

’ Q Ohyis, = o
hi|2 = - 8N (w8§12 - w6§15) - )
(w5w8 - WG”(IJ7) 83;]-
(D9)

- Q h 96,
Ahi|2 = % (w7§12 - w5§15) J“] .

(w5w8 — We a.’f?]

=
From Egs. (D1)y 3 on using mom&m d energy balance equations (Egs. (46) and (47))
i

with az(,a) =0,;,=¢=0 (i.e.,% e Euler equations), we have
g o

A <Z T] 62

M —— = 2~ o+ x50+ T), D1
Wj) ot %3£(Z(9ij> (Xan + Xﬁnﬁ + ) ( O)
or 2 9
—ho— = : D11
A/Hafci of ~ 3" &0 (D11)
o .
Gz = — (647t + Basi + 05T (D12)

Therefore, E -88) d (D9) on using (D1) yield
/ 0% i)

&Y
b ) Abij = %;@) (bma + bsig + bGT), (D13)

S‘\ o2

hjja = —bz

o iy
0i; 0y’

Uj

070

— 2nbs

(D14)
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Ahl - b = -~ = ) D15
12 98$i8$]' P10 (9&:]- 8303) ( )
where
20 n Q 2 Q
[] = o L ° _ e — o . LB
1 (101 — wawy) {Xaw4% Xg(w4<1 w2§11)51 22 a Xg03 5 a2 [
20 Q %2%2 9] }fi}fz
by = X5 w4ﬁ + (@461 — @as11) — 26 = J + a3+ 2[3 )
(w104 — watw3) » 01 ¢ ay f » 0,

b 2Q n 2 ( Y
= wy— — k(g — @ Xg(0aS —
3 (w1w4 _w2w3) 4% 5 4 269 BlV451 S11

Q (2 Q 3 S
:—{—n—agfﬁ-i-xgag(%i—%é)——g}, -~
ay VA (51 Vs
= X0 w3 — — Xy (w3 — —
T T U g |
20 O o
bs = XE w3ﬁ + (w3s1 4@t *626 )
(w104 — wat3) > >
20 no 2 \ . Q 5
0 o {7 ARSI e T A
2 Q 2
b — 2 _ a3
! 3 (w5w8 - w6w7) s 6 S o

R
73 (wsws — wety, w‘%
Q
/ }w w5g15).

bio = 7
(wsws — w%
Therefore, if thefcongervation laws for mixture are closed with up to second order corrections
in the diffusi ‘leom (of one constituent), total stress and total reduced heat flux, i.e.,
with

a
. Q : x Qas
= — w — = -,
8 (wwsws — wetor) 8\\1 g

’ai ) 4871/(3 + 62115[;), a-ij = 6(3'ij|1 + 52&Z~j|2, }ALZ = €}AZZ‘|1 + 62}Ali|2, (Dlﬁ)
,ﬁ
W G‘ES A(a), &j|1, ili‘l, QALZ(FQ), &ij|2 and Ble are given by Eqs (Dl)l’g’g, <D2), (D12) (D14), we

e entialy get the (linear) Burnett order equations for a binary gas mixture made up of

ﬂ%x molecules.
~
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