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The applicability of the order of magnitude method [H. Struchtrup, “Stable transport

equations for rarefied gases at high orders in the Knudsen number”, Phys. Fluids 16,

3921–3934 (2004)] is extended to binary gas mixtures in order to derive various sets

of equations—having minimum number of moments at a given order of accuracy in

the Knudsen number—for binary mixtures of monatomic-inert-ideal gases interact-

ing with the Maxwell interaction potential. For simplicity, the equations are derived

in the linear regime up to third order accuracy in the Knudsen number. At zeroth

order, the method produces the Euler equations; at first order, it results into the

Fick, Navier–Stokes, and Fourier equations; at second order, it yields a set of 17 mo-

ment equations; and at third order it leads to the regularized 17-moment equations.

The transport coefficients in the Fick, Navier–Stokes, and Fourier equations obtained

through order of magnitude method are compared with those obtained through the

classical Chapman–Enskog expansion method. It is established that the different

temperatures of different constituents do not play a role up to second order accurate

theories in the Knudsen number, whereas they do contribute to third order accurate

theory in the Knudsen number. Furthermore, it is found empirically that the zeroth,

first and second order accurate equations are linearly stable for all binary gas mix-

tures; however, although the third order accurate regularized 17-moment equations

are linearly stable for most of the mixtures, they are linearly unstable for mixtures

having extreme difference in molecular masses.
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I. INTRODUCTION

It is well-established that the Navier–Stokes and Fourier equations break down in de-
scribing non-equilibrium processes in rarefied gases since they typically lie outside the hy-
drodynamic regime.1–4 The flow regime is, usually, identified by a dimensionless parameter,
the Knudsen number (Kn) which is defined as the ratio of mean free path of gas molecules
to a characteristic length scale pertaining to the problem. Processes in all flow regimes,
i.e., for all Knudsen numbers, can be well-described by the Boltzmann equation(s);1–5 nev-
ertheless, the direct numerical solutions6,7 of the Boltzmann equation(s) or the solutions
obtained with direct simulation Monte Carlo (DSMC) method5 are computationally very
expensive, particularly in the early transition regime (0.05 . Kn . 1). Since many pro-
cesses encountered in practical problems (such as processes in microscale flows) beset in this
regime, there is a crave for accurate and efficient models which are capable of computing
rarefied processes—particularly in the transition regime—with less computational cost.

These models, usually, emanate from the Boltzmann equation(s) through approximation
techniques in kinetic theory. The two classical and most avowed approximation techniques in
kinetic theory of single gases are the Chapman–Enskog expansion method1,3,8–11 and Grad’s
method of moments.12–14 Both methods can be found in standard textbooks, e.g., Refs. 2, 3,
8, 10, 15–17.

The Chapman–Enskog expansion method is applicable to processes, which are close to
equilibrium (Kn → 0). The method relies on an asymptotic analysis in powers of the
Knudsen number. In this method, the velocity distribution function of gas molecules is
expanded in powers of the Knudsen number. This expansion for the velocity distribution
function is then inserted into the Boltzmann equation and the coefficients of each power of
the Knudsen number are compared on both sides of the equation. The procedure leads to
the constitutive relations of different orders for the well-known conservation laws of fluid
dynamics. At zeroth order, the method gives the Euler equations; at first order, it yields the
classical Navier–Stokes and Fourier equations; at second order, it results into the Burnett
equations; at third order, it leads to the so-called super-Burnett equations, and so on. The
super-Burnett equations are already so involved that the full super-Burnett equations do
not seem to exist in present day literature. Besides complex structure due to the presence
of higher order derivatives, the Burnett equations are known to suffer from inherent (linear)
instabilities;18 consequently, their use is not recommended.

In Grad’s method of moments, the Boltzmann equation is supplanted by a system of first
order partial differential equations, referred to asmoment equations. Moment equations form
an infinite set of coupled first order partial differential equations, which is not closed. Grad’s
method of moments truncates this infinite set at a certain level. Moreover, to close the set at
this level, it approximates the velocity distribution function by an expansion in orthogonal
polynomials—usually, Hermite polynomials—in (peculiar) velocity, and the coefficients in
the expansion are obtained by satisfying the definition of the moments considered at that
level. The moment equations resulting from Grad’s method of moments (in case of single
gases) are always linearly stable.18 Unfortunately, the method does not, a priori, grant the
touchstone on which and how many moments need to be considered for describing a process
with a given Knudsen number. However, it can be stated empirically that the number of
moments considered ought to be increased with increasing Knudsen number.14,19 Further-
more, due to their hyperbolic nature, the well-known Grad’s 13-moment (G13) equations for
a single gas obtained via Grad’s method of moments manifest non-physical sub-shocks for
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flows with Mach numbers above 1.6514,20 and do not capture Knudsen boundary layers.21,22

Nevertheless, by considering more moments, Knudsen boundary layers can be captured21,23

and smooth shock structure can be obtained for higher Mach numbers.20

In order to surmount the deficiencies inherent to both Chapman–Enskog expansion
method and Grad’s method of moments, Struchtrup and Torrilhon 24—for single gases—
introduced a new method, often referred to as the regularized moment method, which regu-
larizes the original G13 equations for a single gas by means of a Chapman–Enskog expansion
of Grad’s 26-moment (G26) equations around a pseudo-equilibrium and leads to the regular-
ized 13-moment (R13) equations. The R13 equations retain the enviable features of both the
Chapman–Enskog expansion method and the Grad’s method of moments while avert their
shortcomings. The R13 equations are always linearly stable and engender smooth shock
structures for all Mach numbers.3,24

For single gases, Struchtrup 25 employed another method, termed as order of magnitude
method, and rederived the R13 equations. The order of magnitude method accounts for the
order of magnitude of all moments and of each term present in moment equations in powers
of the Knudsen number and was originally developed for studying “consistent order extended
thermodynamics (COET)” by Müller, Reitebuch, and Weiss 26 ; nonetheless, the approach of
applying the order of magnitude method in Ref. 25 is quite different from that in Ref. 26.
The method of Struchtrup 25 provides highly accurate equations and, concurrently, resolves
the issue of how many moments need to be considered for describing a process with certain
accuracy. The method has been applied initially to the Bhatnagar–Gross–Krook (BGK)
model27 as well as for the Maxwell interaction potential in Refs. 3 and 25 and, subsequently,
also to the hard-sphere interaction potential in Ref. 28. For the BGK model and Maxwell
and hard-sphere interaction potentials, the equations have been derived up to third order
accuracy in the Knudsen number by exploiting the order of magnitude method,25,28 where it
yields Euler equations at zeroth order, Navier–Stokes equations at first order, G13 equations
(without a non-linear term) for the BGK model and Maxwell interaction potential and a
variant of G13 equations for the hard-sphere interaction potential at second order, and a
variant of the original R13 equations24 at third order. However, for general interaction
potentials, the method has been employed to derive equations only up to second order
accuracy29 so far. Since their derivation, the R13 equations have been successfully employed
to describe several processes in rarefied gases, see e.g., Refs. 30–39.

Unlike single gases, kinetic theory for gaseous mixtures is still not very mature. The
PhD theses of Enskog 40 and Kolodner 41 can be regarded as the pioneering works on the
Chapman–Enskog expansion method and Grad’s method of moments, respectively, for gas
mixtures. Ref. 42 describes the detailed derivation of Grad’s moment system (especially,
considering 13 moments for each component) for gas mixtures; nevertheless, the explicit
expressions for the right-hand sides of these equations are computed by employing various
approximations. In Refs. 43 and 44, the authors consider the moment equations for gas
mixtures in the context of extended thermodynamics but use simplified models for comput-
ing the collision terms in these equations. Ref. 45 studies Grad’s method of moments in
a multi-component approach for plasma models by considering 13 moments for each con-
stituent. Ref. 46 discusses the higher order Grad-type moment equations too, however, it
does not include—for example—the third rank tensors. Furthermore, the Grad-type mo-
ment equations in both Refs. 45 and 46, see also the textbook 47, are derived based on
linearized Boltzmann collision operators. In addition to this, Refs. 43–47 derive the mo-
ment equations by assuming a single average temperature for the whole mixture, however,

3

http://dx.doi.org/10.1063/1.4945655


Regularized moment equations for binary gas mixtures

a multi-temperature description of gas mixtures, which considers different temperatures for
different constituents in the mixture, is imperative for many practical problems,48 especially
for problems arising in plasma physics. Although, Ref. 43 and the textbook 47 discuss
the multi-temperature approach, they promptly switch to the single temperature approach
owing to simplicity.

Similar to a single gas case where the derivation of the R13 equations for a single gas
requires G26 equations, the derivation of regularized moment equations for a gaseous mixture
also requires higher order moment equations, and owing to the unavailability of higher order
moment equations for gaseous mixtures until recently,49 the regularization for gas mixtures
has never been attempted before. In Ref. 49, two authors of the present paper have derived
the fully non-linear G26 equations for each constituent in a mixture of gases interacting with
the Maxwell interaction potential based on multi-temperature approach. Furthermore, the
first author of the present paper has also extended the derivation of the fully non-linear G26
equations for each constituent in a mixture of gases based on multi-temperature approach
to the hard-sphere interaction potential.50 It is worth pointing out that the computation
of Boltzmann collision integrals or production terms appearing in these equations is quite
involved, particularly with the multi-temperature approach, and a detailed computational
strategy for evaluation of the Boltzmann collision integrals associated with these equations
can be found in Refs. 50–52.

In this paper, we exploit the G26 equations for each constituent in a gas mixture as
detailed in Ref. 49, and derive various sets of equations up to third order accuracy in the
Knudsen number by extending the applicability of the order of magnitude method to binary
gas mixtures. For simplicity, in this paper, we focus our attention only to processes in binary
mixtures of monatomic-inert-ideal gases interacting with the Maxwell interaction potential
and in the linear regime. The derivation of similar systems of moment equations valid in
the non-linear regime and, also, their derivation for other interaction potentials is beyond
the scope of the present paper and will be considered elsewhere in the future. At zeroth
order accuracy, the method gives the (linearized) Euler equations for binary gas-mixtures; at
first order accuracy, it yields the (linearized) Fick, Navier–Stokes, and Fourier equations; at
second order accuracy, it leads to the (linearized) 17 moment equations; and at third order
accuracy, it results into the regularized 17-moment (R17) equations in linearized form. The
Fick, Navier–Stokes, and Fourier laws obtained here are compared with those obtained via
the classical Chapman–Enskog expansion method. Furthermore, the linear stability of the
derived sets of equations is analyzed. However, the shock wave problems, H-theorem and
boundary conditions for these equations are also out of scope of the present paper and will
be considered elsewhere in the future.

The remainder of the paper is organized as follows. The conservation laws for a gas
mixture are stated and problem is formulated in Section II. The order of magnitude method
is adumbrated in Section III. Grad-type 26-moment equations for each constituent in a binary
mixture of gases interacting with the Maxwell interaction potential are presented in linear-
dimensionless form in Section IV. The order of magnitude method is employed to determine
the magnitude of all non-equilibrium moments in SectionV. The minimum moments to
describe a process with a certain accuracy in the Knudsen number are identified in SectionVI.
In SectionVII, moment equations with different orders of accuracy are derived, i.e., the Euler
equations, Fick, Navier–Stokes, and Fourier equations, second order accurate equations,
and, finally, the R17 equations for binary gas mixtures are derived. The linear stability of
these equation is analyzed in SectionVIII. The final conclusion and discussion are given in
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SectionX.

II. PROBLEM DESCRIPTION

The conservation laws for a mixture of monatomic-inert-ideal gases in absence of any
external forces read1,8,10,49

∂ρα
∂t

+
∂

∂xi

(
ραvi + ραu

(α)
i

)
= 0 ∀ α, (1)

∂ρ

∂t
+

∂(ρvi)

∂xi

= 0, (2)

∂(ρvi)

∂t
+

∂

∂xj

(
ρvivj + σij + p δij

)
= 0, (3)

∂

∂t

(
3

2
p+

1

2
ρv2
)
+

∂

∂xi

[(
3

2
p+

1

2
ρv2
)
vi + qi +

(
σij + p δij

)
vj

]
= 0, (4)

where

ρ =
∑
α

ρα, p = kB nT = kB
∑
α

nαTα, n =
∑
α

nα, σij =
∑
α

σ
(α)
ij , and qi =

∑
α

q
(α)
i

are the total mass density, total pressure, total number density, total stress and total heat
flux of the mixture, respectively, with kB being the Boltzmann constant, T being the average
temperature of the mixture and α denoting one constituent in the mixture; moreover, ρα =
mαnα is mass density of the constituent α with mα being the molecular mass of species

α and nα being the number density of species α, and u
(α)
i is the diffusion velocity of the

α-constituent in the mixture (see Ref. 49 for the definition). Eqs. (1) are the mass balance
equations for individual species in the mixture, and Eqs. (2)–(4) are the mass balance,
momentum balance and energy balance equations for the mixture, respectively. In fact,
Eq. (2) is obtained by summing Eqs. (1) over all α’s; note that the diffusion velocities in a
gas mixture are not independent and they are related via∑

α

ραu
(α)
i = 0. (5)

Therefore, Eq. (1) for any one α can be dropped from the system of conservation laws (1)–(4)
or, equivalently, Eq. (2) can be dropped from the system when including Eq. (1) for all α’s.

Clearly, the system of conservation laws (1)–(4) is not closed, since it contains the un-

knowns: diffusion velocities u
(α)
i , stress σij and heat flux qi. Therefore, in order to close the

system of conservation laws (1)–(4), one must supply the constitutive equations for diffusion

velocities u
(α)
i , stress σij and heat flux qi. Here, we shall first determine the magnitudes of

diffusion velocities u
(α)
i , stress σij and heat flux qi in powers of the Knudsen number, and

then systematically obtain the closed systems of equations in such a way that the unknowns

u
(α)
i , σij and qi in the conservation laws (1)–(4) are known up to a certain order in powers

of the Knudsen number. We emphasize that in this paper, we shall focus only on binary
mixtures of gases interacting with the Maxwell interaction potential and only in the linear
regime.

5

http://dx.doi.org/10.1063/1.4945655


Regularized moment equations for binary gas mixtures

III. OUTLINE OF ORDER OF MAGNITUDE METHOD

The order of magnitude method for finding the proper equations with order of accuracy
λ0 in the Knudsen number comprises of the following three steps.3,25

1. Determination of order of magnitude λ of the moments:

The goal at this step is to determine the order of magnitude of moments in powers
of a smallness parameter (ε) which is usually the Knudsen number. To this end, a
(non-conserved) moment ϕ is expanded in powers of ε as

ϕ = ϕ0 + εϕ1 + ε2ϕ2 + . . .

It should be noticed that the above expansion performed on a moment ϕ is somewhat
similar to the classical Chapman–Enskog expansion, which is performed on the velocity
distribution function. However, unlike the approach of the classical Chapman–Enskog
expansion which aims at computing ϕi’s (i = 0, 1, 2, . . . ), the focus in this method
is just to determine the leading order of ϕ. The leading order of ϕ is determined by
inserting the above expansion into the complete set of moment equations. A moment
ϕ is said to be of leading order λ if ϕi = 0 for all i < λ and ϕλ ̸= 0. The leading order
of a moment is the order of magnitude of that moment.

2. Construction of a system of moment equations having minimum number of moments
at a given order of accuracy λ:

At this step, some of the originally chosen moments are combined linearly in order to
introduce new variables in the system. The new variables are constructed in such a
way that on replacing the original moments in the moment equations with the new
variables, the number of moments at a given order λ is minimum. This step not only
provides an unambiguous set of moments at order λ but also guarantees that the final
equations will be independent of the initial choice of moments.

3. Deletion of all terms in all equations that would lead to contributions of orders λ > λ0

in the conservation laws:

At this step, we adopt the following definition of the order of accuracy λ0.

Definition 1. A set of equations for binary gas mixtures is said to be accurate of order
λ0, when the diffusion velocities (of both the components), total stress and total heat
flux in the mixture are known up to order O(ελ0).

The adoption of this definition relies on the fact that all moment equations are strongly
coupled. This connotes that each term in any of the moment equations has some
influence on all other equations, particularly on the conservation laws. The influence
of each term can be weighted by some power in the Knudsen number, and is related—
but not equal to—the order of magnitude of the moments present in that term. A
theory of order λ0 considers only those terms—in all the equations—whose leading
order of influence in the conservation laws is λ ≤ λ0, and the terms not fulfilling this
condition are simply ignored. In order to apply this condition, it suffices to start with
the conservation laws, and add the relevant terms step-by-step, order-by-order. We
start with order O(ε0) equations (Euler), then add the relevant terms to obtain order
O(ε1) equations (Fick, Navier–Stokes, and Fourier equations) and so on.
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IV. LINEAR-DIMENSIONLESS EQUATIONS

Since we shall derive the equations valid in the linear regime, it is more convenient to
use the linear-dimensionless variables. For linearization and non-dimensionlization of the
variables, the reader is referred to Refs. 49 and 50.

A. Conservation laws

The conservation laws for a binary mixture of gases α and β in linear-dimensionless form
read

κα

(
∂n̂α

∂t̂
+

∂v̂i
∂x̂i

)
+

∂û
(α)
i

∂x̂i

= 0, (6)

κβ

(
∂n̂β

∂t̂
+

∂v̂i
∂x̂i

)
+

∂û
(β)
i

∂x̂i

= 0, (7)

∂

∂t̂

(
µαx

◦
αn̂α + µβx

◦
βn̂β

)
+
(
µαx

◦
α + µβx

◦
β

)∂v̂i
∂x̂i

= 0, (8)

κ
∂v̂i

∂t̂
+

∂σ̂ij

∂x̂j

+
∂

∂x̂i

(
x◦αn̂α + x◦βn̂β

)
+

∂T̂

∂x̂i

= 0, (9)

3

2

∂T̂

∂t̂
+

∂v̂i
∂x̂i

+
∂ĥi

∂x̂i

+
x◦α
κα

∂û
(α)
i

∂x̂i

+
x◦β
κβ

∂û
(β)
i

∂x̂i

= 0. (10)

While writing Eqs. (6)–(10), the abbreviations

κα =
v◦√
θ◦α

, κβ =
v◦√
θ◦β

, κ = x◦ακ2
α + x◦βκ2

β (11)

have been used; here v◦ is a velocity scale, and θ◦α = kBT◦/mα and θ◦β = kBT◦/mβ are the
ground state temperatures of α- and β-species in energy units with mα and mβ being the
molecular masses of species α and β. Moreover, in Eqs. (6)–(10),

µα =
mα

mα +mβ

and µβ =
mβ

mα +mβ

(12)

are the mass ratios of α- and β-constituents in the mixture, respectively, and these notations
for the mass ratios are adopted following the textbook 9;

x◦α =
n◦
α

n◦
and x◦β =

n◦
β

n◦
(13)
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with n◦ = n◦
α + n◦

β are the mole fractions of α- and β-constituents in the ground state,
respectively;

T̂ = x◦α T̂α + x◦β T̂β, σ̂ij = x◦α σ̂
(α)
ij + x◦β σ̂

(β)
ij and ĥi =

x◦α
κα

ĥ
(α)
i +

x◦β
κβ

ĥ
(β)
i (14)

are the dimensionless perturbations in average temperature, total stress and total reduced
heat flux of the mixture from their respective ground state values with

ĥ
(α)
i = q̂

(α)
i − 5

2
û
(α)
i and ĥ

(β)
i = q̂

(β)
i − 5

2
û
(β)
i (15)

being the dimensionless perturbations to the reduced heat fluxes of species α and β,46,47,50

respectively; t̂ and x̂ denote the dimensionless time and dimensionless space, respectively;
and all other quantities with hats denote the dimensionless perturbations from their respec-
tive ground state values. Here, the total stress (σij) and the total reduced heat flux (hi) are
scaled as

σ̂ij =
σij

k n◦T◦
and ĥi =

hi

k n◦T◦v◦
,

see Ref. 50. It should be noted that Eq. (8) can be obtained from Eqs. (6) and (7), thus
Eqs. (6)–(8) are not independent.

B. Grad-type moment equations

In the light of definition 1, our goal is to obtain various sets of equations in such a way

that û
(α)
i , σ̂ij and ĥi in the conservation laws (6)–(10) are known up to a certain order in

powers of the Knudsen number. To this end, we require the extended Grad-type moment
equations in linear-dimensionless form, which, for the Maxwell interaction potential, have
been derived in detail in Ref. 49 (Eqs. (4.3)–(4.10) of Ref. 49 for both the constituents).
Here, we shall use them directly but rename the Knudsen number from Kn to ε in them,

and instead of the field variables T̂α, T̂β, q̂
(α)
i , q̂

(β)
i , û

1(α)
ij , û

1(β)
ij , we shall write them in the

new field variables, T̂ , ∆T̂ , ĥ
(α)
i , ĥ

(β)
i , R̂

1(α)
ij , R̂

1(β)
ij , where ĥ

(α)
i , ĥ

(β)
i are given by Eqs. (15),

R̂
(α)
ij = û

1(α)
ij − 7 σ̂

(α)
ij , R̂

(β)
ij = û

1(β)
ij − 7 σ̂

(β)
ij , (16)

and

∆T̂ = T̂α − T̂β (17)

is the dimensionless perturbation in the temperature difference from its ground state value.
Nevertheless, the equations for the new field variables can be obtained from Eqs. (4.3)–(4.10)
of Ref. 49 for both the constituents in a straightforward way by combining them linearly,
and therefore, the details are omitted here for the sake of conciseness. The advantages of
using the new field variables—in case of the Maxwell interaction potential—are: (i) it will

be seen below that although T̂α, T̂β and T̂ are the zeroth order quantities, ∆T̂ will be a
second order quantity; consequently, it will not play a role for the theories up to second
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order in the Knudsen number, (ii) the use of ĥ
(α)
i and ĥ

(β)
i decouples the right-hand sides of

their governing equations from the diffusion velocities û
(α)
i and û

(β)
i (see Eqs. (23) and (24)

below), and (iii) the use of R̂
(α)
ij and R̂

(β)
ij decouples the right-hand sides of their governing

equations from the individual stresses σ̂
(α)
ij and σ̂

(β)
ij (see Eqs. (27) and (28) below). It is

emphasized that even if one does not change q̂
(α)
i , q̂

(β)
i , û

1(α)
ij and û

1(β)
ij to the new variables

at this point, they will automatically be combined linearly at the second step of the order
of magnitude method in order to produce exactly the same results as below.

The system of linear-dimensionless extended Grad-type moment equations for a mixture
of gases α and β, which is equivalent to the system of Eqs. (4.3)–(4.10) of Ref. 49 for both
the constituents, in the new field variables includes the individual mass balance equations
(6) and (7), the energy balance equation for the mixture (10), and the moment equations

κα
∂û

(α)
i

∂t̂
+

x◦β
κ

[
κ2

β

(
∂σ̂

(α)
ij

∂x̂j

+
∂n̂α

∂x̂i

)
− κ2

α

(
∂σ̂

(β)
ij

∂x̂j

+
∂n̂β

∂x̂i

)]

−
x◦β
κ
(κ2

α − κ2
β)

∂T̂

∂x̂i

+ x◦β
∂∆T̂

∂x̂i

= −δ1
1

εΩ
x◦β

(
û
(α)
i − κα

κβ

û
(β)
i

)
, (18)

κβ
∂û

(β)
i

∂t̂
+

x◦α
κ

[
κ2

α

(
∂σ̂

(β)
ij

∂x̂j

+
∂n̂β

∂x̂i

)
− κ2

β

(
∂σ̂

(α)
ij

∂x̂j

+
∂n̂α

∂x̂i

)]

− x◦α
κ
(κ2

β − κ2
α)

∂T̂

∂x̂i

− x◦α
∂∆T̂

∂x̂i

= −γ1
1

εΩ
x◦α

(
û
(β)
i − κβ

κα

û
(α)
i

)
, (19)

3

2

∂∆T̂

∂t̂
+

1

κα

(
∂ĥ

(α)
i

∂x̂i

+
∂û

(α)
i

∂x̂i

)
− 1

κβ

(
∂ĥ

(β)
i

∂x̂i

+
∂û

(β)
i

∂x̂i

)
= − 1

εΩ

δ2
κα

∆T̂ , (20)

κα

(
∂σ̂

(α)
ij

∂t̂
+ 2

∂v̂⟨i
∂x̂j⟩

)
+

∂m̂
(α)
ijk

∂x̂k

+
4

5

∂ĥ
(α)
⟨i

∂x̂j⟩
+ 2

∂û
(α)
⟨i

∂x̂j⟩

= − 1

εΩ

{
x◦αΩασ̂

(α)
ij + x◦β

(
δ3σ̂

(α)
ij − δ4σ̂

(β)
ij

)}
, (21)

κβ

(
∂σ̂

(β)
ij

∂t̂
+ 2

∂v̂⟨i
∂x̂j⟩

)
+

∂m̂
(β)
ijk

∂x̂k

+
4

5

∂ĥ
(β)
⟨i

∂x̂j⟩
+ 2

∂û
(β)
⟨i

∂x̂j⟩

= − 1

εΩ

{
x◦βΩβσ̂

(β)
ij + x◦α

(
γ3σ̂

(β)
ij − γ4σ̂

(α)
ij

)}
, (22)
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κα
∂ĥ

(α)
i

∂t̂
+

1

2

∂R̂
(α)
ij

∂x̂j

+
∂σ̂

(α)
ij

∂x̂j

+
1

6

∂∆̂α

∂x̂i

+
5

2

∂T̂

∂x̂i

+
5

2
x◦β

∂∆T̂

∂x̂i

= − 1

εΩ

{
2

3
x◦αΩαĥ

(α)
i + x◦β

(
δ5ĥ

(α)
i − δ6ĥ

(β)
i

)}
, (23)

κβ
∂ĥ

(β)
i

∂t̂
+

1

2

∂R̂
(β)
ij

∂x̂j

+
∂σ̂

(β)
ij

∂x̂j

+
1

6

∂∆̂β

∂x̂i

+
5

2

∂T̂

∂x̂i

− 5

2
x◦α

∂∆T̂

∂x̂i

= − 1

εΩ

{
2

3
x◦βΩβĥ

(β)
i + x◦α

(
γ5ĥ

(β)
i − γ6ĥ

(α)
i

)}
, (24)

κα

∂m̂
(α)
ijk

∂t̂
+

3

7

∂R̂
(α)
⟨ij

∂x̂k⟩
+ 3

∂σ̂
(α)
⟨ij

∂x̂k⟩
= − 1

εΩ

{
3

2
x◦αΩαm̂

(α)
ijk + x◦β

(
δ7m̂

(α)
ijk − δ8m̂

(β)
ijk

)}
, (25)

κβ

∂m̂
(β)
ijk

∂t̂
+

3

7

∂R̂
(β)
⟨ij

∂x̂k⟩
+ 3

∂σ̂
(β)
⟨ij

∂x̂k⟩
= − 1

εΩ

{
3

2
x◦βΩβm̂

(β)
ijk + x◦α

(
γ7m̂

(β)
ijk − γ8m̂

(α)
ijk

)}
, (26)

κα

∂R̂
(α)
ij

∂t̂
+ 2

∂m̂
(α)
ijk

∂x̂k

+
28

5

∂ĥ
(α)
⟨i

∂x̂j⟩
= − 1

εΩ

{
7

6
x◦αΩαR̂

(α)
ij + x◦β

(
δ9R̂

(α)
ij − δ10R̂

(β)
ij

)}
, (27)

κβ

∂R̂
(β)
ij

∂t̂
+ 2

∂m̂
(β)
ijk

∂x̂k

+
28

5

∂ĥ
(β)
⟨i

∂x̂j⟩
= − 1

εΩ

{
7

6
x◦βΩβR̂

(β)
ij + x◦α

(
γ9R̂

(β)
ij − γ10R̂

(α)
ij

)}
, (28)

κα
∂∆̂α

∂t̂
+ 8

∂ĥ
(α)
i

∂x̂i

= − 1

εΩ

{
2

3
x◦αΩα∆̂α + x◦β

(
δ11∆̂α − δ12∆̂β

)}
, (29)

κβ
∂∆̂β

∂t̂
+ 8

∂ĥ
(β)
i

∂x̂i

= − 1

εΩ

{
2

3
x◦βΩβ∆̂β + x◦α

(
γ11∆̂β − γ12∆̂α

)}
. (30)

In Eqs. (18)–(30), the coefficients δ1, δ2, . . . , δ12 and γ1, γ2, . . . , γ12 depend only on the mass
ratios µα and µβ, and they are given in appendix A for better readability. Again, the field
variables with hats denote the dimensionless perturbations from their respective ground
state values; Ω = x◦α Ωα + x◦β Ωβ, where

Ωα =
Ω

(2,2)
αα

Ω
(2,2)
αβ

and Ωβ =
Ω

(2,2)
ββ

Ω
(2,2)
αβ

(31)
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and Ω
(l,r)
ij are the standard Omega integrals;10,49,50,52 finally,

ε =
ℓ

L
with ℓ =

5

16
√
π n◦

(
x◦α Ω

(2,2)
αα + x◦β Ω

(2,2)
ββ

) (32)

is the Knudsen number; here, ℓ is the mean free path and L is the relevant macroscopic
length scale.

C. Assumption about parameters

In the linear-dimensionless conservation laws (6)–(10) and in Grad-type moment equa-
tions (18)–(30), we find the parameters: µα, µβ, x◦α, x◦β, Ωα, Ωβ, κα, κβ and ε. The
parameters µα and µβ are the mass ratios of the constituents and are given by Eqs. (12); x◦α
and x◦β are the mole fractions of the constituents in ground state and are given by Eqs. (13);
Ωα and Ωβ are the ratios of Omega integrals, which are related to collision cross sections,
and are given by Eqs. (31); κα and κβ are somewhat like inverse Mach numbers for each
component in the mixture and are given by (11); finally, ε is the Knudsen number and is
given by Eq. (32)1. We assume that the parameters µα, µβ, x

◦
α, x

◦
β, Ωα, Ωβ, κα and κβ are of

order O(1) in comparison to order of the Knudsen number, i.e., O(ε), otherwise one would
have to consider the influence of these parameters in powers of the Knudsen number while
performing the order of magnitude method and this would render the procedure extremely
cumbersome. The assumption immediately excludes mixtures having large differences in
molecular masses. We shall also see in SectionVIII that without considering the influence
of these parameters in powers of the Knudsen number (i.e., by assuming that µα, µβ, x

◦
α, x

◦
β,

Ωα, Ωβ, κα and κβ are of order O(1) in comparison to order of the Knudsen number), the
resulting R17 equations would be linearly unstable for mixtures having extreme differences
in molecular masses.

V. THE ORDER OF MAGNITUDE OF MOMENTS

We shall now determine the orders of magnitude to the moments and then construct new
sets of moments in such a way that we have minimum number of variables at each order.

In order to examine the order of magnitude of moments, we expand the non-conserved
quantities (Ψ) in powers of the Knudsen number (ε) as

Ψ = Ψ|0 + ε Ψ|1 + ε2Ψ|2 + . . . ,

where Ψ ∈
{
∆T̂ , û

(α)
i , û

(β)
i , σ̂

(α)
ij , σ̂

(β)
ij , ĥ

(α)
i , ĥ

(β)
i , m̂

(α)
ijk , m̂

(β)
ijk , R̂

(α)
ij , R̂

(β)
ij , ∆̂α, ∆̂β

}
, and the quan-

tities Ψ|0, Ψ|1, Ψ|2, . . . are of order O(ε0). We substitute the above expansions in Eqs. (20)–
(30) and compare the coefficients of each power of ε.

Comparing coefficients of ε−1 on both sides of Eqs. (20)–(30) one readily finds that Ψ|0 = 0
for all Ψ because there are no terms of order O(ε−1) on the left-hand sides of the balance
equations for these quantities. This concludes that the leading orders of all the non-conserved
quantities are at least one.

Comparing coefficients of ε0 on both sides of Eqs. (20)–(30), it turns out that û
(α)
i|1 , û

(β)
i|1 ,

11
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σ̂
(α)
ij|1, σ̂

(β)
ij|1, ĥ

(α)
i|1 , ĥ

(β)
i|1 do not vanish whereas

∆T̂|1 = m̂
(α)
ijk|1 = m̂

(β)
ijk|1 = R̂

(α)
ij|1 = R̂

(β)
ij|1 = ∆̂α|1 = ∆̂β|1 = 0, (33)

see appendix B for details. In other words, the leading orders of the diffusion velocities,
stresses and heat fluxes of the both the constituents are one while the leading orders of
temperature difference and other higher moments for both the constituents are at least two.

Comparing the coefficients of ε1 on both sides of Eqs. (20) and (25)–(30), it turns out

that none of ∆T̂|2, m̂
(α)
ijk|2, m̂

(β)
ijk|2, R̂

(α)
ij|2, R̂

(β)
ij|2, ∆̂α|2, and ∆̂β|2 vanish, see appendix B again

for details. Therefore, the leading orders of all these quantities are two.
We shall not go further as the above is sufficient for obtaining the third order accurate

(regularized) moment equations.

VI. MINIMUM NUMBER OF MOMENTS AT A GIVEN ORDER

A. Minimum number of moments of O(ε)

We have established in Section III that û
(α)
i , û

(β)
i , σ̂

(α)
ij , σ̂

(β)
ij , ĥ

(α)
i , ĥ

(β)
i are the moments of

order O(ε). In order to have minimum number of moments of order O(ε), let us first write
down their leading order contributions (by solving Eqs. (B2)–(B4) of appendix B along with
relation (5) in linear-dimensionless form for the binary mixture), which read

û
(α)
i|1 = −x◦β

Ω

δ1

κ2
β

κ2

[
κ2

β

∂n̂α

∂x̂i

− κ2
α

∂n̂β

∂x̂i

− (κ2
α − κ2

β)
∂T̂

∂x̂i

]
, û

(β)
i|1 = −κα

κβ

x◦α
x◦β

û
(α)
i|1 , (34)

σ̂
(α)
ij|1 = −2ηα

∂v̂⟨i
∂x̂j⟩

where ηα =
Ω{κα(x

◦
βΩβ + x◦αγ3) + κβx

◦
βδ4}

(x◦αΩα + x◦βδ3)(x
◦
βΩβ + x◦αγ3)− x◦αx

◦
βγ4δ4

,

σ̂
(β)
ij|1 = −2ηβ

∂v̂⟨i
∂x̂j⟩

where ηβ =
Ω{κβ(x

◦
αΩα + x◦βδ3) + καx

◦
αγ4}

(x◦αΩα + x◦βδ3)(x
◦
βΩβ + x◦αγ3)− x◦αx

◦
βγ4δ4

,

 (35)

ĥ
(α)
i|1 = −κα

∂T̂

∂x̂i

where κα =
5
2
Ω
{(

2
3
x◦βΩβ + x◦αγ5

)
+ x◦βδ6

}(
2
3
x◦αΩα + x◦βδ5

) (
2
3
x◦βΩβ + x◦αγ5

)
− x◦αx

◦
βγ6δ6

,

ĥ
(β)
i|1 = −κβ

∂T̂

∂x̂i

where κβ =
5
2
Ω
{(

2
3
x◦αΩα + x◦βδ5

)
+ x◦αγ6

}(
2
3
x◦αΩα + x◦βδ5

) (
2
3
x◦βΩβ + x◦αγ5

)
− x◦αx

◦
βγ6δ6

.

 (36)

Eqs. (34) are the Fick’s law of diffusion (in linearized form) for the mixture; Eqs. (35)
represent the laws somewhat similar to Navier–Stokes law for each component in the mixture;
and Eqs. (36) represent the laws somewhat similar to Fourier’s law for each components in
the mixture.

As the diffusion velocities û
(α)
i and û

(β)
i depend on each other, one can use any one of

them in the moment equations. Moreover, the other first order quantities—the stresses σ̂
(α)
ij

and σ̂
(β)
ij , and the reduced heat fluxes ĥ

(α)
i and ĥ

(β)
i —are linearly combined as below in order
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to have minimum number of moments of order O(ε). We introduce

σ̂ij = x◦ασ̂
(α)
ij + x◦βσ̂

(β)
ij , ∆σ̂ij = κ1σ̂

(α)
ij − κ2σ̂

(β)
ij ,

ĥi =
x◦α
κα

ĥ
(α)
i +

x◦β
κβ

ĥ
(β)
i , ∆ĥi = κ3ĥ

(α)
i − κ4ĥ

(β)
i ,

 (37)

where σ̂ij and ĥi are the (dimensionless) total stress and the (dimensionless) total reduced
heat flux in the mixture, respectively, and

κ1 = κβ(x
◦
αΩα + x◦βδ3) + καx

◦
αγ4, κ2 = κα(x

◦
βΩβ + x◦αγ3) + κβx

◦
βδ4,

κ3 =

(
2

3
x◦αΩα + x◦βδ5

)
+ x◦αγ6, κ4 =

(
2

3
x◦βΩβ + x◦αγ5

)
+ x◦βδ6,

 (38)

so that the leading orders of the total stress σ̂ij and the total reduced heat flux ĥi are one

while the leading orders of ∆σ̂ij and ∆ĥi are two.

Thus, the minimum moments of order O(ε) are any one of the two diffusion velocities of

the constituents, let us say û
(α)
i , the total stress σ̂ij and the total reduced heat flux ĥi.

From Eqs. (37), one can obtain the expressions for the stresses and the reduced heat
fluxes of the individual components in terms of the other variables. These will be needed in
getting the minimum number of moments of order O(ε2), and they read as follows.

σ̂
(α)
ij =

κ2σ̂ij + x◦β∆σ̂ij

x◦ακ2 + x◦βκ1

, σ̂
(β)
ij =

κ1σ̂ij − x◦α∆σ̂ij

x◦ακ2 + x◦βκ1

,

ĥ
(α)
i =

κα(κ4κβĥi + x◦β∆ĥi)

x◦ακ4κβ + x◦βκ3κα

, ĥ
(β)
i =

κβ(κ3καĥi − x◦α∆ĥi)

x◦ακ4κβ + x◦βκ3κα

.

 (39)

B. Minimum number of moments of O(ε2)

We have established in Section III that the order O(ε2) quantities are ∆T̂ , ∆σ̂ij, ∆ĥi,

m̂
(α)
ijk , m̂

(β)
ijk , R̂

(α)
ij , R̂

(β)
ij , ∆̂α and ∆̂β. Notice from the leading order contributions of ∆T̂ , ∆σ̂ij

and ∆ĥi (cf. Eqs. (B9), (D8)2 and (D9)2) that ∆T̂ , ∆σ̂ij and ∆ĥi can neither be linearly
combined among themselves nor with any other moments in order to produce a quantity of

order higher than order O(ε2). However, the other moments in the list—m̂
(α)
ijk , m̂

(β)
ijk , R̂

(α)
ij ,

R̂
(β)
ij , ∆̂α and ∆̂β—can be linearly combined to produce some quantities of order O(ε3). To

this end, let us first write down the leading order contributions of m̂
(α)
ijk , m̂

(β)
ijk , R̂

(α)
ij , R̂

(β)
ij , ∆̂α

and ∆̂β (by solving Eqs. (B10), (B11) and (B12) of appendix B and using Eqs. (39)), which
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read

m̂
(α)
ijk|2 = −c(α)m

∂σ̂⟨ij|1

∂x̂k⟩
, m̂

(β)
ijk|2 = −c(β)m

∂σ̂⟨ij|1

∂x̂k⟩
,

R̂
(α)
ij|2 = −c

(α)
R

∂ĥ⟨i|1

∂x̂j⟩
, R̂

(β)
ij|2 = −c

(β)
R

∂ĥ⟨i|1

∂x̂j⟩
,

∆̂α|2 = −c
(α)
∆

∂ĥi|1

∂x̂i

, ∆̂β|2 = −c
(β)
∆

∂ĥi|1

∂x̂i

.


(40)

For better readability, the coefficients c
(α)
m , c

(β)
m , c

(α)
R , c

(β)
R , c

(α)
∆ and c

(β)
∆ are given in ap-

pendix C. The quantities, m̂
(α)
ijk , m̂

(β)
ijk , R̂

(α)
ij , R̂

(β)
ij , ∆̂α and ∆̂β are now linearly combined as

below in order to have minimum number of moments of order O(ε2). We introduce

m̂ijk =
x◦α
κα

m̂
(α)
ijk +

x◦β
κβ

m̂
(β)
ijk , ∆m̂ijk = κ5m̂

(α)
ijk − κ6m̂

(β)
ijk ,

R̂ij =
x◦α
κ2

α

R̂
(α)
ij +

x◦β
κ2

β

R̂
(β)
ij , ∆R̂ij = κ7R̂

(α)
ij − κ8R̂

(β)
ij ,

∆̂ =
x◦α
κ2

α

∆̂α +
x◦β
κ2

β

∆̂β, ∆∆̂ = κ9∆̂α − κ10∆̂β,


(41)

where m̂ijk, R̂ij and ∆̂ are the respective (dimensionless) total higher moments in the mix-
ture, and

κ5 = κ1

(
3

2
x◦αΩα + x◦βδ7

)
+ κ2x

◦
αγ8, κ6 = κ2

(
3

2
x◦βΩβ + x◦αγ7

)
+ κ1x

◦
βδ8,

κ7 = κ3

(
7

6
x◦αΩα + x◦βδ9

)
+ κ4x

◦
αγ10, κ8 = κ4

(
7

6
x◦βΩβ + x◦αγ9

)
+ κ3x

◦
βδ10,

κ9 = κ3

(
2

3
x◦αΩα + x◦βδ11

)
+ κ4x

◦
αγ12, κ10 = κ4

(
2

3
x◦βΩβ + x◦αγ11

)
+ κ3x

◦
βδ12,


(42)

so that the leading orders of m̂ijk, R̂ij and ∆̂ are two while the leading orders of ∆m̂ijk, ∆R̂ij

and ∆∆̂ are three. Thus, the minimum moments of order O(ε2) are ∆T̂ , ∆σ̂ij, ∆ĥi, m̂ijk,

R̂ij and ∆̂. Notice, again, that the total higher order moments (mijk, Rij, ∆) are scaled as

m̂ijk =
mijk

k n◦T◦v◦
, R̂ij =

Rij

k n◦T◦v2◦
and ∆̂ =

∆

k n◦T◦v2◦
.

From Eqs. (41), one can obtain the expressions for the higher moments of the individual
components in terms of the other variables. These will be needed later and they read as
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follows.

m̂
(α)
ijk =

κα(κ6κβm̂ijk + x◦β∆m̂ijk)

x◦ακ6κβ + x◦βκ5κα

, m̂
(β)
ijk =

κβ(κ5καm̂ijk − x◦α∆m̂ijk)

x◦ακ6κβ + x◦βκ5κα

,

R̂
(α)
ij =

κ2
α(κ8κ2

βR̂ij + x◦β∆R̂ij)

x◦ακ8κ2
β + x◦βκ7κ2

α

, R̂
(β)
ij =

κ2
β(κ7κ2

αR̂ij − x◦α∆R̂ij)

x◦ακ8κ2
β + x◦βκ7κ2

α

,

∆̂α =
κ2

α(κ10κ2
β∆̂ + x◦β∆∆̂)

x◦ακ10κ2
β + x◦βκ9κ2

α

, ∆̂β =
κ2

β(κ9κ2
α∆̂− x◦α∆∆̂)

x◦ακ10κ2
β + x◦βκ9κ2

α

.


(43)

VII. MOMENT EQUATIONS WITH λth ORDER ACCURACY

A. New system of equations

In the following, we shall write the conservation laws (Eqs. (6)–(10)) and Eqs. (18)–(30)

in new variables û
(α)
i , σ̂ij, ∆σ̂ij, ĥi, ∆ĥi, m̂ijk, ∆m̂ijk, R̂ij, ∆R̂ij, ∆̂, ∆∆̂ using Eqs. (37) and

(41). It is emphasized, however, that this change of variables is required only for deriving
the third order accurate equations, which we are interested in, and it may not be required
to change all the variables for the derivation of zeroth, first and second order accurate
equations. Additionally, we shall write each moment by assigning its magnitude in powers
of ε (“in gray colour”) in the new equations. These gray coloured ε’s are included just for
finding the terms of correct order while comparing the powers of ε on both sides (see below)
and, of course, the value of gray coloured ε is essentially 1.

The conservation laws (Eqs. (6)–(10)) in new variables read

κα

(
∂n̂α

∂t̂
+

∂v̂i
∂x̂i

)
+ ε

∂û
(α)
i

∂x̂i

= 0, (44)

∂

∂t̂

(
µαx

◦
αn̂α + µβx

◦
βn̂β

)
+
(
µαx

◦
α + µβx

◦
β

)∂v̂i
∂x̂i

= 0, (45)

κ
∂v̂i

∂t̂
+ ε

∂σ̂ij

∂x̂j

+ x◦α
∂n̂α

∂x̂i

+ x◦β
∂n̂β

∂x̂i

+
∂T̂

∂x̂i

= 0, (46)

3

2

∂T̂

∂t̂
+

∂v̂i
∂x̂i

+ ε
∂ĥi

∂x̂i

+ ς1ε
∂û

(α)
i

∂x̂i

= 0. (47)

Note that the mass balance equation for the β-constituent (7) is not included in this system
as it can be obtained from Eqs. (44) and (45). The other equations in the new variables
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read

καε
∂û

(α)
i

∂t̂
+ ς2ε

∂σ̂ij

∂x̂j

+ ς3ε
2∂∆σ̂ij

∂x̂j

+ x◦βε
2∂∆T̂

∂x̂i

= −δ1
1

εΩ

κ
κ2
β

[
εû

(α)
i + x◦β

εΩ

δ1

κ2
β

κ2

(
κ2

β

∂n̂α

∂x̂i

− κ2
α

∂n̂β

∂x̂i

− (κ2
α − κ2

β)
∂T̂

∂x̂i

)]
, (48)

3

2
ε2
∂∆T̂

∂t̂
+ ς4ε

∂ĥi

∂x̂i

+ ς5ε
2∂∆ĥi

∂x̂i

+ ς6ε
∂û

(α)
i

∂x̂i

= − 1

εΩ

δ2
κα

ε2∆T̂ , (49)

ε
∂σ̂ij

∂t̂
+ ε2

∂m̂ijk

∂x̂k

+
4

5
ε
∂ĥ⟨i

∂x̂j⟩
+ 2ς1ε

∂û
(α)
⟨i

∂x̂j⟩
= − 1

εΩ

[
ϖ1

(
εσ̂ij + 2εη

∂v̂⟨i
∂x̂j⟩

)
+ϖ2ε

2∆σ̂ij

]
,

(50)

ε2
∂∆σ̂ij

∂t̂
+ ς7ε

2∂m̂ijk

∂x̂k

+ ς8ε
3∂∆m̂ijk

∂x̂k

+
4

5
ς9ε

∂ĥ⟨i

∂x̂j⟩
+

4

5
ς10ε

2∂∆ĥ⟨i

∂x̂j⟩
+ 2ς11ε

∂û
(α)
⟨i

∂x̂j⟩

= − 1

εΩ

[
ϖ3

(
εσ̂ij + 2εη

∂v̂⟨i
∂x̂j⟩

)
+ϖ4ε

2∆σ̂ij

]
, (51)

ε
∂ĥi

∂t̂
+ ς12ε

∂σ̂ij

∂x̂j

+ ς13ε
2∂∆σ̂ij

∂x̂j

+
1

2
ε2
∂R̂ij

∂x̂j

+
1

6
ε2
∂∆̂

∂x̂i

+
5

2
ς14ε

2∂∆T̂

∂x̂i

= − 1

εΩ

[
ϖ5

(
εĥi + εκ

∂T̂

∂x̂i

)
+ϖ6ε

2∆ĥi

]
, (52)

ε2
∂∆ĥi

∂t̂
+ ς15ε

∂σ̂ij

∂x̂j

+ ς16ε
2∂∆σ̂ij

∂x̂j

+
1

2
ς17ε

2∂R̂ij

∂x̂j

+
1

2
ς18ε

3∂∆R̂ij

∂x̂j

+
1

6
ς19ε

2∂∆̂

∂x̂i

+
1

6
ς20ε

3∂∆∆̂

∂x̂i

+
5

2
ς21ε

2∂∆T̂

∂x̂i

= − 1

εΩ

[
ϖ7

(
εĥi + εκ

∂T̂

∂x̂i

)
+ϖ8ε

2∆ĥi

]
.

(53)

ε2
∂m̂ijk

∂t̂
+

3

7
ε2
∂R̂⟨ij

∂x̂k⟩
+ 3ς13ε

2∂∆σ̂⟨ij

∂x̂k⟩
= − 1

εΩ

[
ϖ9

(
ε2m̂ijk + εζmε

∂σ̂⟨ij

∂x̂k⟩

)
+ϖ10ε

3∆m̂ijk

]
,

(54)
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ε3
∂∆m̂ijk

∂t̂
+

3

7
ς22ε

2∂R̂⟨ij

∂x̂k⟩
+

3

7
ς23ε

3∂∆R̂⟨ij

∂x̂k⟩
+ 3ς24ε

2∂∆σ̂⟨ij

∂x̂k⟩

= − 1

εΩ

[
ϖ11

(
ε2m̂ijk + εζmε

∂σ̂⟨ij

∂x̂k⟩

)
+ϖ12ε

3∆m̂ijk

]
, (55)

ε2
∂R̂ij

∂t̂
+ 2ς25ε

2∂m̂ijk

∂x̂k

+ 2ς26ε
3∂∆m̂ijk

∂x̂k

+
28

5
ς27ε

2∂∆ĥ⟨i

∂x̂j⟩

= − 1

εΩ

[
ϖ13

(
ε2R̂ij + εζRε

∂ĥ⟨i

∂x̂j⟩

)
+ϖ14ε

3∆R̂ij

]
, (56)

ε3
∂∆R̂ij

∂t̂
+ 2ς28ε

2∂m̂ijk

∂x̂k

+ 2ς29ε
3∂∆m̂ijk

∂x̂k

+
28

5
ς30ε

2∂∆ĥ⟨i

∂x̂j⟩

= − 1

εΩ

[
ϖ15

(
ε2R̂ij + εζRε

∂ĥ⟨i

∂x̂j⟩

)
+ϖ16ε

3∆R̂ij

]
, (57)

ε2
∂∆̂

∂t̂
+ 8ς27ε

2∂∆ĥi

∂x̂i

= − 1

εΩ

[
ϖ17

(
ε2∆̂ + εζ∆ε

∂ĥi

∂x̂i

)
+ϖ18ε

3∆∆̂

]
, (58)

ε3
∂∆∆̂

∂t̂
+ 8ς31ε

2∂∆ĥi

∂x̂i

= − 1

εΩ

[
ϖ19

(
ε2∆̂ + εζ∆ε

∂ĥi

∂x̂i

)
+ϖ20ε

3∆∆̂

]
, (59)

where

η =
Ω

ϖ1

= x◦αηα + x◦βηβ and κ =
5

2

Ω

ϖ5

(
x◦α
κ2

α

+
x◦β
κ2

β

)
=

x◦α
κα

κα +
x◦β
κβ

κβ (60)

are the dimensionless viscosity and the dimensionless heat conductivity, respectively, of the
mixture, and all other coefficients are given in appendix C. The balance equation for diffusion
velocity of the β-constituent (19) is also not included in the above system, since it can be
obtained from the balance equation for diffusion velocity of the α-constituent (18).

a. λth order accuracy: Clearly, the conservation laws (44)–(47) do not form a closed

set of equations for n̂α, n̂β, v̂i, T̂ because they contain the additional variables û
(α)
i , σ̂ij, ĥi.

We shall speak of a theory with λth order accuracy, when û
(α)
i , σ̂ij and ĥi are accurately

known up to order O(ελ).

B. Zeroth order accuracy: Euler equations

The equations with zeroth order accuracy result by setting the first order quantities to
zero, i.e., by ignoring the terms with the factor ε in the conservation laws (44)–(47). This
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yields the (linearized) Euler equations for a binary mixture of gases α and β:

∂n̂α

∂t̂
+

∂v̂i
∂x̂i

= 0,

∂

∂t̂

(
µαx

◦
αn̂α + µβx

◦
βn̂β

)
+
(
µαx

◦
α + µβx

◦
β

)∂v̂i
∂x̂i

= 0,

κ
∂v̂i

∂t̂
+ x◦α

∂n̂α

∂x̂i

+ x◦β
∂n̂β

∂x̂i

+
∂T̂

∂x̂i

= 0,

3

2

∂T̂

∂t̂
+

∂v̂i
∂x̂i

= 0.


(61)

C. First order accuracy: Fick, Navier–Stokes, and Fourier equations

For first order accuracy, one needs to include all the terms with factors ε0 and ε1. That
means all the terms in the conservation laws (44)–(47) are retained, and therefore the con-
servation laws at this order (on setting gray coloured ε to 1) read

κα

(
∂n̂α

∂t̂
+

∂v̂i
∂x̂i

)
+

∂û
(α)
i

∂x̂i

= 0,

∂

∂t̂

(
µαx

◦
αn̂α + µβx

◦
βn̂β

)
+
(
µαx

◦
α + µβx

◦
β

)∂v̂i
∂x̂i

= 0,

κ
∂v̂i

∂t̂
+

∂σ̂ij

∂x̂j

+ x◦α
∂n̂α

∂x̂i

+ x◦β
∂n̂β

∂x̂i

+
∂T̂

∂x̂i

= 0,

3

2

∂T̂

∂t̂
+

∂v̂i
∂x̂i

+
∂ĥi

∂x̂i

+ ς1
∂û

(α)
i

∂x̂i

= 0,


(62)

where we need to find û
(α)
i , σ̂ij and ĥi accurately up to first order, i.e., to their leading

orders. For the leading orders of these quantities, only the terms up to order O(ε0) in the
balance equations for these quantities (Eqs. (48), (50) and (52)) need to be considered and,
obviously, there are no terms of order O(ε0) on the left-hand sides of Eqs. (48), (50) and

(52). Thus, we readily obtain the first order accurate û
(α)
i , σ̂ij and ĥi, which—on setting

gray coloured ε to 1—are the laws of Fick, Navier–Stokes, and Fourier:

û
(α)
i = −x◦β

εΩ

δ1

κ2
β

κ2

(
κ2

β

∂n̂α

∂x̂i

− κ2
α

∂n̂β

∂x̂i

− (κ2
α − κ2

β)
∂T̂

∂x̂i

)
,

σ̂ij = −2εη
∂v̂⟨i
∂x̂j⟩

,

ĥi = −εκ
∂T̂

∂x̂i

.


(63)

Equations (62) along with constitutive relations (63) form the system of (linearized) Fick,
Navier–Stokes, and Fourier equations for a binary mixture of gases α and β, where η and κ
are the dimensionless viscosity and dimensionless heat conductivity, respectively, and they
are given by Eqs. (60).
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We have also compared the transport coefficients obtained here with those obtained
through the classical Chapman–Enskog expansion method in Ref. 8 and found that the
dimensionless viscosity obtained here match with that obtained via the classical Chapman–
Enskog expansion method in Ref. 8. In order to have more insight into the other transport
coefficients, let us compare the expression for diffusion velocity and (reduced) heat flux
obtained here with those obtained through the classical Chapman–Enskog expansion method
in Ref. 8. The diffusion velocity of component α given by Eq. (63)1 is the linear-dimensionless
form of the diffusion velocity of component α8,10

u
(α)
i =

n2

nαρ
mβDαβ d

(β)
i − 1

ρα
DT

α

∂ lnT

∂xi

(64)

when the underlined term in Eq. (64) vanishes, and the (reduced) heat flux given by Eq. (63)3
is the linear-dimensionless form of the total heat flux8

qi = −
(
λ∗ +

k

n

ρ2

ραρβ

1

mαmβ

DT
αD

′
α

Dαβ

)
∂T

∂xi

+
5

2
kT
(
nαu

(α)
i + nβu

(β)
i

)
− nkT

ρ

ραρβ
D′

α d
(α)
i (65)

when the underlined terms in Eq. (65) vanish. Here, Dαβ, D
T
α and D′

α are the diffusion,
thermal diffusion and diffusion-thermal coefficients, respectively;

d
(γ)
i =

∂

∂xi

(
nγ

n

)
+

(
nγ

n
− ργ

ρ

)
∂ ln p

∂xi

(66)

is the so-called generalized diffusion force10 of the constituent γ ∈ {α, β}; and λ∗ is the
thermal conductivity of the mixture.

Comparing the dimensionless form of Eq. (64) with Eq. (63)1, the (ground state) diffusion
coefficient turns out to be

D◦
αβ =

εΩL
√
θ◦α

δ1
=

3

2
√
2

εΩL

a1

1
√
µαµβ

√
k T◦

mα +mβ

= D◦
βα (67)

and the thermal diffusion coefficient DT
α vanishes at this order both in our computation as

well as in Ref. 8. Similarly, on comparing the dimensionless form of Eq. (65) with Eq. (63)3,
it turns out that the diffusion-thermal coefficient D′

α also vanishes at this order and the
thermal conductivity of the binary gas mixture is λ∗ = (εLkn◦v◦)κ. Notice that the zero
thermal diffusion coefficient—at first order in the Chapman–Enskog expansion—in binary
gas mixtures of Maxwell molecules is also attributed to Maxwell interaction potential, see
Eqs. (8.142), (8.147) and (8.155) of Ref. 10. Thus, diffusion in the binary gas mixtures
of Maxwell molecules occurs due to molar concentration gradients and pressure gradient
but not explicitly due to the temperature gradient at first order, even though the tem-
perature gradient does appear through the pressure gradient term. This means that the
cross-effects of thermal diffusion and diffusion-thermal are not present in binary gas mix-
tures of Maxwell molecules at first order. Nevertheless, our results do satisfy the Onsager’s
reciprocity relations:53,54 D◦

αβ = D◦
βα and DT

α = D′
α = 0.
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D. Second order accuracy: 17 moment equations

At this order, we need to find û
(α)
i , σ̂ij and ĥi, appearing in the conservation laws, with

second order accuracy. Therefore, one needs to consider all terms having factors ε0 and ε1

in the balance equations of these quantities (i.e., in Eqs. (48), (50) and (52)), we have (on
setting gray coloured ε to 1)

κα
∂û

(α)
i

∂t̂
+ ς2

∂σ̂ij

∂x̂j

= −δ1
1

εΩ

κ
κ2

β

[
û
(α)
i + x◦β

εΩ

δ1

κ2
β

κ2

(
κ2

β

∂n̂α

∂x̂i

− κ2
α

∂n̂β

∂x̂i

− (κ2
α − κ2

β)
∂T̂

∂x̂i

)]
,

(68)

∂σ̂ij

∂t̂
+

4

5

∂ĥ⟨i

∂x̂j⟩
+ 2ς1

∂û
(α)
⟨i

∂x̂j⟩
= − 1

εΩ

[
ϖ1

(
σ̂ij + 2εη

∂v̂⟨i
∂x̂j⟩

)
+ϖ2∆σ̂ij

]
, (69)

∂ĥi

∂t̂
+ ς12

∂σ̂ij

∂x̂j

= − 1

εΩ

[
ϖ5

(
ĥi + εκ

∂T̂

∂x̂i

)
+ϖ6∆ĥi

]
, (70)

where ∆σ̂ij and ∆ĥi are needed to be second order accurate. The second order accurate ∆σ̂ij

and ∆ĥi follow from their respective balance equations (Eqs. (51) and (53)) on considering
terms up to order O(ε), we have (on setting gray coloured ε to 1)

∆σ̂ij ≈∆σ̂
(2)
ij = −ϖ3

ϖ4

(
σ̂ij + 2εη

∂v̂⟨i
∂x̂j⟩

)
− εΩ

ϖ4

(
4

5
ς9
∂ĥ⟨i

∂x̂j⟩
+ 2ς11

∂û
(α)
⟨i

∂x̂j⟩

)
, (71)

∆ĥi ≈∆ĥ
(2)
i = −ϖ7

ϖ8

(
ĥi + εκ

∂T̂

∂x̂i

)
− εΩ

ϖ8

ς15
∂σ̂ij

∂x̂j

. (72)

where the superscript ‘(2)’ denotes the second order accurate contributions. Thus, we deduce

that even though the temperature difference ∆T̂ is a quantity of leading order two, it is not
a relevant quantity for a second order accurate theory.

In this way, the system of (linearized) second order accurate equations consists of the

conservation laws (62) and the governing equations for û
(α)
i , σ̂ij and ĥi (Eqs. (68)–(70))—

a total of 17 equations in three dimensions (3D)—and it is closed with the second order

accurate contributions of ∆σ̂ij and ∆ĥi, given by Eqs. (71) and (72). The (linearized)
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second order accurate equations in the closed form read

κα

(
∂n̂α

∂t̂
+

∂v̂i
∂x̂i

)
+

∂û
(α)
i

∂x̂i

= 0,

∂

∂t̂

(
µαx

◦
αn̂α + µβx

◦
βn̂β

)
+
(
µαx

◦
α + µβx

◦
β

)∂v̂i
∂x̂i

= 0,

κ
∂v̂i

∂t̂
+

∂σ̂ij

∂x̂j

+ x◦α
∂n̂α

∂x̂i

+ x◦β
∂n̂β

∂x̂i

+
∂T̂

∂x̂i

= 0,

3

2

∂T̂

∂t̂
+

∂v̂i
∂x̂i

+
∂ĥi

∂x̂i

+ ς1
∂û

(α)
i

∂x̂i

= 0,


(73)

κα
∂û

(α)
i

∂t̂
+ a0

∂σ̂ij

∂x̂j

= − 1

εΩ
a1

[
û
(α)
i + x◦β

εΩ

δ1

κ2
β

κ2

(
κ2

β

∂n̂α

∂x̂i

− κ2
α

∂n̂β

∂x̂i

− (κ2
α − κ2

β)
∂T̂

∂x̂i

)]
,

(74)

∂σ̂ij

∂t̂
+ a2

∂ĥ⟨i

∂x̂j⟩
+ a3

∂û
(α)
⟨i

∂x̂j⟩
= − 1

εΩ
a4

(
σ̂ij + 2εη

∂v̂⟨i
∂x̂j⟩

)
, (75)

∂ĥi

∂t̂
+ a5

∂σ̂ij

∂x̂j

= − 1

εΩ
a6

(
ĥi + εκ

∂T̂

∂x̂i

)
. (76)

The coefficients a0, a2, . . . , a6 are given in appendix C. Notice that even the second order
accurate equations (Eqs. (73)–(76)) cannot explain the cross-effects of thermal diffusion and
diffusion-thermal since there is still no temperature gradient term in the governing equation

for û
(α)
i and no pressure or number density gradient terms in the governing equations for ĥi.

E. Third order accuracy: regularized moment equations

1. Intermediate result: 25 equations

At this order, we need to find û
(α)
i , σ̂ij and ĥi, appearing in the conservation laws, with

third order accuracy. Therefore, one need to consider all terms having factors ε0, ε1 and ε2

in the balance equations of these quantities (i.e., in Eqs. (48), (50) and (52)), we get (on
setting gray coloured ε to 1)

κα
∂û

(α)
i

∂t̂
+ ς2

∂σ̂ij

∂x̂j

+ ς3
∂∆σ̂ij

∂x̂j

+ x◦β
∂∆T̂

∂x̂i

= −δ1
1

εΩ

κ
κ2

β

[
û
(α)
i + x◦β

εΩ

δ1

κ2
β

κ2

(
κ2

β

∂n̂α

∂x̂i

− κ2
α

∂n̂β

∂x̂i

− (κ2
α − κ2

β)
∂T̂

∂x̂i

)]
, (77)
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∂σ̂ij

∂t̂
+

∂m̂ijk

∂x̂k

+
4

5

∂ĥ⟨i

∂x̂j⟩
+ 2ς1

∂û
(α)
⟨i

∂x̂j⟩
= − 1
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Now, we have the additional variables ∆T̂ , ∆σ̂ij, ∆ĥi, m̂ijk, R̂ij and ∆̂ in the system. The

variables ∆σ̂ij and ∆ĥi not only appear on the left-hand sides of Eqs. (77)–(79) where only
their leading order contributions are required but also on the right-hand sides of Eqs. (78)
and (79) where they are required up to order O(ε3). Therefore, we need to include the terms
up to order O(ε2) in the balance equations for them (Eqs. (51) and (53)), which gives (on
setting gray coloured ε to 1)
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Fortunately, all other additional variables—∆T̂ , m̂ijk, R̂ij and ∆̂—appear only on the left-

hand sides of Eqs. (77)–(81). Therefore, for the third order accurate û
(α)
i , σ̂ij, ĥi, ∆σ̂ij and

∆ĥi, only the second order accurate contributions of ∆T̂ , m̂ijk, R̂ij and ∆̂ are needed and
these follow from their respective balance equations (Eqs. (49), (54), (56), (58), respectively)
by considering only the terms up to order O(ε), we have (on setting gray coloured ε to 1)
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 (82)

Thus, the system of third order accurate equations consists of the conservation laws (62)

and the governing equations for û
(α)
i , σ̂ij, ĥi, ∆σ̂ij and ∆ĥi (Eqs. (77)–(81))—a total of 25

equations in 3D—and the system is closed with the second order accurate contributions of
∆T̂ , m̂ijk, R̂ij and ∆̂, given by Eqs. (82).
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2. Further reduction

As one can notice, Eqs. (80) and (81) have been included in the system of third order

accurate equations just because ∆σ̂ij and ∆ĥi are present on the right-hand sides of Eqs. (78)

and (79). Nevertheless, the explicit third order accurate expressions for ∆σ̂ij and ∆ĥi can
be obtained by using ideas somewhat similar to the Chapman–Enskog expansion, also used
in28, so that we shall only have 17 equations in 3D and the third order accurate values of
∆σ̂ij and ∆ĥi can be included in the closures.

For finding the third order accurate ∆σ̂ij and ∆ĥi, it suffices to consider their second
order accurate contributions on the left-hand sides of Eqs. (80) and (81). In other words,
Eqs. (80) and (81)—on setting gray coloured ε to 1—can be rewritten as
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∂ĥ⟨i

∂x̂j⟩
+

4

5
ς10

∂∆ĥ
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From Eqs. (71) and (72), we have
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
(85)

As we want to evaluate the time derivatives of the second order accurate ∆σ̂ij and ∆ĥi, it is

natural to use the second order accurate balance equations for û
(α)
i , σ̂ij and ĥi (Eqs. (68), (75)

and (76)) for replacing the time derivatives in the underlined terms in Eqs. (85). Moreover,
the underbraced terms in Eqs. (85) are order O(ε2) contributions to the total stress and
the total reduced heat flux and it suffices to use only the precise values of order O(ε2)
contributions of these quantities in Eqs. (85). The precise values of order O(ε2) contributions
to the total stress and the total reduced heat flux can be obtained by performing Chapman–
Enskog like expansion either on the second order accurate balance equations (Eqs. (68),
(75) and (76)) or on the full system of moment equations (Eqs. (48)–(59)) and we get
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(cf. Eqs. (D12) and (D14))
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The values of the coefficients b1, b2, b3 are given in appendix D. For the second order

accurate underbraced terms in Eqs. (85), we can use σ̂ij ≈ −2εη
∂v̂⟨i
∂x̂j⟩

in the right-hand side

of Eq. (86)2 and it will not affect the accuracy. Thus, we have
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 (87)

Now, we apply the time derivative and immediately replace the time derivative of the total
stress with its second order accurate balance equation (69) and the time derivatives of

number densities, velocity and temperature using the conservation laws with û
(α)
i = û

(β)
i =

σ̂ij = ĥi = 0 (i.e., using Euler equations (61)) to get
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(88)

The temperature gradient in Eq. (88)2 is replaced by the reduced heat flux by using ĥi ≈
−εκ ∂T̂

∂x̂i
; again, this change will not affect the accuracy. However, the elimination of gradients

of the number densities requires the following argument. Similar to above, without affecting
the accuracy, we use
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Moreover, we again use ĥi ≈ −εκ ∂T̂
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in Eq. (87)1 to obtain(
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On solving Eq. (89) with Eq. (90), one obtains
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The relation
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(·),

is also used for replacing the gradients of number densities and temperature in Eqs. (88).
Furthermore, the right-hand side of Eq. (88)1 is simplified by using an expression obtained
by taking the deviatoric gradient of Eq. (87)2. After all replacements and some algebra, we
finally get
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∂ĥ⟨i

∂x̂j⟩
+ εΩ

a3
a6

(
a5 −

κ

2η

)
∂

∂x̂j

∂û
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where the coefficient ς32 is also given in appendix C. Therefore, Eqs. (85) on using Eqs. (68),
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(75), (76), (93) and (94) yield
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On using Eqs. (71), (72), (95) and (96), Eqs. (83) and (84) provide the third order accurate

expressions for ∆σ̂ij and ∆ĥi:
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û
(α)
⟨i + x◦β

εΩ

δ1

κ2
β

κ2

(
κ2

β

∂n̂α

∂x̂⟨i
− κ2

α

∂n̂β

∂x̂⟨i
− (κ2

α − κ2
β)

∂T̂

∂x̂⟨i

)]

− εΩ

ϖ4

[
a6
ϖ4

{
4

5
ς9 +

ϖ3

a4

1

κ

(
5
η

κ
− a2κ +

ς32
κ

)}
− 4

5

ϖ7

ϖ8

ς10

]
∂

∂x̂j⟩

(
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Now, inserting the second order accurate value of ∆σ̂ij from Eq. (71) into Eq. (77), we obtain
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the third order accurate balance equation for the diffusion velocity of the α-constituent
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The coefficients a7, a8 and a9 are given in appendix C. Inserting the second order accurate
value of ∆σ̂ij from Eq. (71) and the third order accurate values of ∆σ̂ij and ∆ĥi from
Eqs. (97) and (98), respectively, into Eqs. (78) and (79), we obtain the third order accurate
balance equations for the total stress and the total reduced heat flux:
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, (100)
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)
. (101)

3. Regularized 17-moment equations

The system of regularized 17-moment (R17) equations for binary gas mixtures consists of

the conservation laws (62) and the governing equations for û
(α)
i , σ̂ij, ĥi (Eqs. (99)–(101))—

a total of 17 equations in 3D—and the system is closed with the second order accurate
contributions of ∆T̂ , m̂ijk, R̂ij and ∆̂, given by Eqs. (82). We write the system of regularized
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17-moment equations in the closed form below—using Eqs. (82) for the unknowns and the

relation ∂
∂x̂k
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= 2
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k
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(102)
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, (103)
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ĥ⟨i + εκ

∂T̂

∂x̂⟨i

)

− a13
∂

∂x̂j⟩

[
û
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, (104)
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)
. (105)

The coefficients a0, a1, . . . , a20 in the R17 equations are also given in appendix C. The under-
lining in Eqs. (103)–(105) is used for distinguishing terms of different order in ε, the single
underline denotes the terms of order O(ε) and the double underlines denote the terms of
order O(ε2). For zeroth order accuracy, obviously, the conservation laws (102) are closed

by setting û
(α)
i , σ̂ij and ĥi to zero, which leads to the Euler equations for binary gas mix-

tures (61). For first order accuracy in the Knudsen number, it suffices to consider the
non-underlined terms in Eqs. (103)–(105), i.e., the terms on the left-hand sides of these
equations are set to zero, which leads to the laws of Fick, Navier–Stokes, and Fourier (63).
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For second order accuracy, one also needs to consider the single-underlined terms along
with right-hand sides in Eqs. (103)–(105), which indeed leads to the second order accurate
equations (73)–(76). For third order accuracy, the double underlined terms should also be
considered, and then the third order accurate equations are the full R17 equations. Thus, the
zeroth, first and second order accurate equations for the binary gas mixtures are inherently
contained in the third order accurate R17 equations for binary gas mixtures. Notice that the
R17 equations (Eqs. (102)–(105)) do contain the cross-coupling through double underlined

terms, for instance, the temperature gradient in the governing equation for û
(α)
i appears

through the reduced heat flux terms on the left-hand side of Eq. (103), and—similarly—the

pressure or number density gradients in the governing equation for ĥi appear through the
diffusion velocity terms on the left-hand side of Eq. (105). Thus, in contrast to first and sec-
ond order accurate equations, the R17 equations can be expected to explain the cross-effects
of thermal diffusion and diffusion-thermal in the binary gas mixtures of Maxwell molecules.

Interestingly, in the limiting case when the binary mixture reduces to just a single gas,
the R17 equations for binary gas mixtures (Eqs. (102)–(105)) reduce to the well-known R13
equations (in linear form) of Struchtrup and Torrilhon 24 and of Struchtrup 25 for Maxwell
molecules. The limiting case arises when either the mole fraction of any component in the
mixture is zero (i.e., x◦α = 0 or x◦β = 0) or when one component is replaced with the other
(i.e., β → α or α → β). In all the possible four cases, it suffices to consider the mass balance
equation for the mixture (102)2 and, therefore, one can ignore Eq. (102)1. Moreover, the
coefficient ς1 in Eq. (102)4 vanishes that means we do not need the balance equation for the
diffusion velocity (103) in the system any more, this agrees with the fact that there should
not be any term/equation of the diffusion velocity in the single gas case because there is no

diffusion in single gases. Furthermore, owing to same reason, the reduced heat flux ĥi in
the mixture changes to the usual heat flux q̂i in single gas case. In all these limiting cases,
all the coefficients except a18 and a20 in Eqs. (104) and (105) immediately reduce to the
coefficients in R13 equations for Maxwell molecules, i.e., they reduce to

a2= a14=
4

5
, a3= a12= a13= a16= 0, a4= a5= 1, a6= a15=

2

3
, a17=

12

5
, a19= 2.

For x◦α = 0 or β → α or α → β cases, one immediately gets a18 = a20 = 0. Although, for

the case of x◦β = 0, both a18 and a20 themselves are non-zero, but together with û
(α)
i they

let the whole terms vanish, i.e., a18û
(α)
i = a20û

(α)
i = 0, since the diffusion velocities for both

the components in the mixture vanish.

VIII. LINEAR STABILITY OF THE EQUATIONS

In order to scrutinize the linear stability of the above sets of equations, we consider them
in one dimension and assume plane wave solutions of the form

Û = Û0 exp
{
i(x̂− ω̂t̂)

}
. (106)

In Eq. (106), Û is the vector containing all field variables in a set of equations; Û0 con-
tains the complex amplitudes of the corresponding field variables; i is the imaginary unit;
ω̂ = ω/(k v◦) is the dimensionless frequency of the wave with k being the wavenum-
ber, ω being the complex frequency of the wave, and the velocity scale v◦ is taken as
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v◦ =
√
k T◦/(mαx◦α +mβx◦β) . The length scale L is taken as the inverse of wavenumber, i.e.,

L = 1/k so that the Knudsen number is ε = ℓ k. Owing to this length scale, the Knudsen
number now enacts as a dimensionless wavenumber. Insertion of plane wave solution (106)
into each system of moment equations yields algebraic equation of the form

A(ω̂, ε, µα, x
◦
α,Ωα,Ωβ) Û = 0. (107)

For non-trivial solutions of Eq. (107), the determinant of matrix A(ω̂, ε, µα, x
◦
α,Ωα,Ωβ) must

vanish. This condition det{A(ω̂, ε, µα, x
◦
α,Ωα,Ωβ)} = 0 gives the dispersion relation—a

relation between ω and κ (ω̂ and ε here). For temporal stability analysis, it is customary
to assume a perturbation with real wavenumber k and solve the dispersion relation for
complex modes ωj(k) = Re(ωj) + i Im(ωj), where j = 1, 2, . . . , N with N being the number
of equations in the system considered. Here, we assume ω̂j(ε) = Re(ω̂j) + i Im(ω̂j). The
growth rate of the amplitude of perturbation is determined by the signs of the imaginary
part of ω̂j for all j. From Eq. (106), it is clear that for linearly stable solutions, the imaginary
part of ω̂j must be non-positive for all j.

It is trivial to check that for the zeroth order accurate equations, i.e., for the Euler
equations (61), Im(ω̂) = 0 as long as the wavenumber is real. Thus, the Euler equations
(61) are always linearly stable for all gas mixtures. However, for the other sets of equations,
owing to the large number of parameters, it is not easy to check the stability for all gas
mixtures. Nevertheless, we have analyzed the linear stability by considering several different
permissible values of the parameters; in particular, we have analyzed the linear stability for
three binary mixtures of noble gases: neon–argon (Ne–Ar), helium–argon (He–Ar), helium–
xenon (He–Xe). The molecular masses and diameters (for hard spheres) of these gases are
listed in Table I. The diameters of these gases (for hard spheres) are calculated using the
exact expression of viscosity for a single gas given in Ref. 55 and the experimental data on
the viscosities of single gases at temperature 300 K given in Ref. 56. It can be noted that
the computation of parameters Ωα and Ωβ for the Maxwell interaction potential is not so
straightforward, since their computation requires explicit viscosity formulas for a single gas as
well as for a binary gas mixture and viscosity data from experiments. Although, the viscosity
formulas for single gases and binary gas mixtures can be obtained by performing Chapman–
Enskog expansion either on the respective Boltzmann equation(s) or on the respective Grad’s
moment equations, only limited viscosity data from experiments is available in the literature
(only for mole fractions 0.25, 0.5 and 0.75 in Ref. 56). Therefore, we compute Ωα and Ωβ

through the values of Omega integrals for hard spheres, i.e., through the relation Ω
(2,2)
ij =

(di + dj)
2/4, where i, j ∈ {α, β} and di is the molecular diameter gas i so that they can be

used for any value of mole fraction, not necessarily 0.25, 0.5 and 0.75. Indeed, Gupta 50 has
also computed Ωα and Ωβ for the Maxwell interaction potential and for mole fractions 0.25,
0.5, 0.75, and found that the values of Ωα and Ωβ for the Maxwell interaction potential are
not very different from those for the hard-sphere interaction potential (or for hard spheres),
see Table 5.1 of Ref. 50.

After scrutinizing the linear stability by considering several different permissible values of
the parameters, we have found empirically that the first order accurate equations (Eqs. (62)
and (63))—i.e., Fick, Navier–Stokes, and Fourier equations—as well as the second order
accurate equations (Eqs. (73)–(76)) are linearly stable for all binary gas mixtures. As an
example, we plot the imaginary part of dimensionless frequency, Im(ω̂), over the Knudsen
number, ε, for He–Xe mixture with x◦He = 0.75 in Figure 1, in which Figure 1(a) illustrates the
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TABLE I. Mass and diameters of some noble gases

Gas Mass (in atomic units) Diameter (in nanometres)

He 4.0026 0.2166

Ne 20.1791 0.2564

Ar 39.948 0.3606

Xe 131.293 0.4821

(a)

Modes

from

first

or-

der

ac-

cu-

rate

equa-

tions

(Eqs. (62)

and

(63))

(b)

Modes

from

sec-

ond

or-

der

ac-

cu-

rate

equa-

tions

(Eqs. (73)–

(76))

FIG. 1. Dispersion modes in He–Xe mixture with x◦He = 0.75 obtained with (a) first order accurate

(Fick, Navier–Stokes, and Fourier) equations (Eqs. (62) and (63)), and (b) second order accurate

equations (Eqs. (73)–(76)).

dispersion modes obtained with the first order accurate (Fick, Navier–Stokes, and Fourier)
equations (Eqs. (62) and (63)) while Figure 1(b) depicts the dispersion modes obtained with
the second order accurate equations (Eqs. (73)–(76)). Figure 1(a) delineates four modes
where two modes coincide with each other for small Knudsen numbers (for ε . 0.323), while
they split into two distinct modes for large Knudsen numbers. Similarly, Figure 1(b) displays
seven modes where three modes have quite small damping for very small Knudsen numbers
and two modes coincide. For large Knudsen numbers some of the modes coincide with each
other. It can be seen from Figure 1 that the imaginary part of the dimensionless frequency
remains always non-positive resulting into stability for both first and second order accurate
equations.

The R17 equations (Eqs. (102)–(105)), on the other hand, turn out to be stable for the
mixtures with small or moderate mass differences but, unfortunately, unstable for the mix-
tures with large mass differences. We have analyzed the linear stability for three mixtures:
Ne–Ar, He–Ar, He–Xe and found that the R17 equations are linearly stable for Ne–Ar and
He–Ar mixtures with any mole fraction of the components while they are unstable for He–Xe
mixture. As an example, Figure 2 illustrates the dispersion modes from the R17 equations
for the three mixtures (a) Ne–Ar, (b) He–Ar and (c) He–Xe with mole fraction of each gas
in each mixture being 0.5. Each sub-figure of Figure 2 displays seven modes, where some of
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the modes coincide with each other. It is also clear from Figure 2 that the R17 equations are
not stable for He–Xe mixture since it is the mixture with large mass difference but they are
stable for the other two mixtures. In order to have more insight into region of instability,
we plot the zero contours of maximum value of Im(ω̂) in Figure 3 which illustrates them
in (x◦α, µα) plane for fixed values of Ωα and Ωβ: (a) Ωα = 1, Ωβ = 1 and (b) Ωα = 0.5,
Ωβ = 1.5. The Knudsen number (ε) varies from 0.001 to 5000. The white color represents
the regions in which the R17 equations are stable while the gray color portrays the regions
in which they are unstable. Of course, in the limiting cases of µα ≈ 0 and µα ≈ 1, the R17
equations reduce to the linearized R13 equations for a single gas and become linearly stable.

(a)

Ne–

Ar

(b)

He–

Ar

(c)

He–

Xe

FIG. 2. Dispersion modes in different binary gas mixtures computed with R17 equations

(Eqs. (102)–(105)): (a) Ne–Ar (x◦Ne = 0.5), (b) He–Ar (x◦He = 0.5) and (c) He–Xe (x◦He = 0.5).

(a)

Ωα =

1

and

Ωβ =

1

(b)

Ωα =

0.5

and

Ωβ =

1.5

FIG. 3. Zero contours of maximum (dimensionless) damping for different mole fractions (x◦α) and

different mass ratios (µα) with fixed values of Ωα and Ωβ: (a) Ωα = 1, Ωβ = 1 and (b) Ωα = 0.5,

Ωβ = 1.5. The Knudsen number (ε) varies from 0.001 to 5000. The white color represents the

regions in which the R17 equations are stable while the gray color portrays the regions in which

they are unstable.

It can be stated from Figure 3 that for plausible values of Ωα and Ωβ, the R17 equations
seem to be stable for the mixtures with mass ratios 0.1 . µα . 0.9 for any mole fractions.

IX. ONE-DIMENSIONAL APPLICATION OF THE R17 EQUATIONS

In order to solve boundary value problems with the moment equations derived in Sec-
tionVII, these equations must be supplemented with proper boundary conditions. However,
as mentioned before, the derivation of proper boundary conditions for the R17 equations
equations is beyond the scope of the present paper and will be considered elsewhere in the
future. Therefore, in this section, we consider a very simple one-dimensional flow problem of
binary gas mixture in steady state, which we can study with the R17 equations analytically
without boundary conditions. The R17 equations (considering the flow in x-direction) for
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this problem simplifies to

dû
(α)
x

dx̂
= 0,

dv̂x
dx̂

= 0,

dσ̂xx

dx̂
+ x◦α

dn̂α

dx̂
+ x◦β

dn̂β

dx̂
+

dT̂

dx̂
= 0,

dĥx

dx̂
= 0,


(108)
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(109)

− 2
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− 2
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a14ε
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= − 1

εΩ
a4σ̂xx, (110)

a5
dσ̂xx

dx̂
− a16

dσ̂xx

dx̂
= − 1

εΩ
a6

(̂
hx + εκ

dT̂

dx̂

)
. (111)

Eqs. (108)–(111) form a system of first order ordinary differential equations, whose solution
turns out to be

û(α)
x (x̂) = c1, v̂x(x̂) = c2, ĥx(x̂) = c3, σ̂xx(x̂) = c4 e

Ax̂ + c5 e
−Ax̂,

T̂ (x̂) = c6 −
c3
εκ

x̂− (a5 − a16)

a6

Ω

κ
σ̂xx(x̂),

n̂α(x̂) = c7 − c1
1

εΩ
δ1

κ
κ2

β

x̂− T̂ (x̂)−

[
(a0 − a7)

a1
δ1

κ
κ2

β

+
κ2

α

κ

]
σ̂xx(x̂),

n̂β(x̂) = c8 −
1

x◦β

[
x◦α n̂α(x̂) + T̂ (x̂) + σ̂xx(x̂)

]
,


(112)

where c1, c2, . . . , c8 are the integration constants—and can be computed through boundary
conditions—and

A =
1

ε

√√√√ a4

Ω
[
2
3
a14 + a15 − 2

3
Ω
{

a13
a1
(a0 − a7) +

a12
a6
(a5 − a16)

}] . (113)
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Notice that the solution (112) is a combination of bulk solution and Knudsen boundary
layers—which are given by the superposition of exponential functions and are well-known
rarefaction effect. The bulk solution follows from the first order accurate equations (i.e.,
when single and double underlined terms in Eqs. (109)–(111) are zero) and reads

û(α)
x (x̂) = c1, v̂x(x̂) = c2, ĥx(x̂) = c3, σ̂xx(x̂) = 0, T̂ (x̂) = c6 −

c3
εκ

x̂,

n̂α(x̂) = c7 − c6 +

(
c3
εκ

− c1
1

εΩ
δ1

κ
κ2

β

)
x̂,

n̂β(x̂) = c8 −
1

x◦β

[
x◦αc7 + x◦βc6 −

(
x◦β

c3
εκ

+ x◦αc1
1

εΩ
δ1

κ
κ2

β

)
x̂

]
.


(114)

Thus, in the bulk of the problem domain, the number densities of the constituents and the
temperature of mixture have linear profiles, the stress vanishes, and the diffusion velocities of
the constituents, the mean flow velocity and the (reduced) heat flux are constants. Needless
to say, the first order accurate equations cannot capture the well-known Knudsen boundary
layers (which are typically superposition of exponential functions). Furthermore, it may be
noted that—for this problem—the Knudsen boundary layers in the solution appear only
through the stress (see Eqs. (112)), whose governing equation does not contain single un-
derlined terms (see Eqs. (110)). This means that the second order accurate equations also
lead to same solution as that obtained with the first order accurate equations for this simple
problem. In other words, for this simple problem, even the second order accurate equations
cannot capture the Knudsen boundary layers. Nevertheless, the—third order accurate—R17
equations do capture the Knudsen boundary layers (see Eqs. (112)).

X. CONCLUSION AND DISCUSSION

In this paper, the applicability of order of magnitude method has been extended to binary
gas mixtures in order to derive various sets of equations for binary mixtures of monatomic-
inert-ideal gases interacting with the Maxwell interaction potential up to third accuracy in
the Knudsen number. For simplicity, the equations have been derived only in linear regime.
To zeroth order accuracy, the method has resulted into the Euler equations; to first order
accuracy, it has led to the Fick, Navier–Stokes, and Fourier equations; at second order, it has
yielded the 17 moment equations; and at third order it has ensued the R17 equations. The
transport coefficients in Fick, Navier–Stokes, and Fourier equations obtained through the
order of magnitude method have been compared and matched with those obtained through
the classical Chapman–Enskog expansion. It has been established that the temperature
difference does not play any role up to second order accurate theories in the Knudsen num-
ber, however, it does become important for a third order theory in the Knudsen number.
Furthermore, it has also been found that the cross-effects of thermal diffusion and diffusion-
thermal in binary gas mixtures of Maxwell molecules cannot be captured by the first and
second order accurate equations; nonetheless, the R17 equations can be expected to capture
these effects due to cross-coupling terms present in the respective equations. The linear
stability of the derived equations has been analyzed and it has been found empirically that
the Euler equations, Navier–Stokes, and Fourier equations, and second order accurate 17
moment equations are linearly stable for any binary gas mixture whereas the R17 equations
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are unstable for mixtures having extreme differences in molecular masses, although they are
linearly stable for other mixtures. Finally, a one-dimensional steady state flow problem of
binary gas mixtures of Maxwell molecules has been investigated through the various sets of
derived equations, and it has been shown that the first and second order accurate equations
cannot describe the Knudsen boundary layers for this simple problem but the R17 equations
do so.

Indeed, on investigating closely, we have found that the third order accurate 25 equations
(Eqs. (62) and (77)–(82)) at intermediate step themselves are not stable for any of the three
mixtures above but the R17 equations have, luckily, turned out to be linearly stable for
mixtures with small and moderate mass differences. We have noticed that if we include
the equation for temperature difference with these 25 equations at intermediate step, the
resulting 26 equations become linearly stable at least for the three mixtures considered above.
However, the R17 equations supplemented with the equation for the temperature difference
are still unstable for these mixtures. Thus, the linear stability of equations also depends
on the choice of moments. We have also scrutinized the case of single temperature theory.
In this case, the third order accurate 25 equations (Eqs. (62) and (77)–(82)) are linearly
stable at least for the three mixtures considered above. However, the R17 equations are
again unstable for He–Xe mixture, although they are linearly stable for Ne–Ar and He–Ar
mixtures.

It is worth pointing out that for mixtures with extreme differences in molecular masses,
one of the two mass ratios is obviously very small, and in fact, it can well be of the order of
Knudsen number or even smaller. Therefore, while applying the order of magnitude method
for mixtures with extreme differences in molecular masses, one has to take care of mass
ratios since one of them would contribute to some power of the Knudsen number in each
term wherever it appears. At this point, it is very complicated to deal with this issue and
one would need to rederive the R17 equations for mixtures with extreme mass differences
separately by considering this issue.
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Appendix A: Coefficients in linear-dimensionless Grad’s moment equations

δ1 =
2
√
2

3
a1
√
µβ,

δ2 = 2
√
2 a1µα

√
µβ,

δ3 =

√
2

3
(4a1µα + 3µβ)

√
µβ,

δ4 =

√
2

3
(4a1 − 3)µα

√
µβ,
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δ5 =
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√
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√
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√
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√
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}]√
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√
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√
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8
√
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2
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√
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√
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√
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√
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√
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√
2 a1µβ

√
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√
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√
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√
2

3
(4a1 − 3)µβ

√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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Appendix B: Leading orders of higher moments

Comparing coefficients of ε0 on both sides of Eqs. (20) and (18)–(30), one obtains:

∆T̂|1 = 0, (B1)

1

κ

[
κ2

β

∂n̂α

∂x̂i

− κ2
α

∂n̂β

∂x̂i

− (κ2
α − κ2

β)
∂T̂

∂x̂i

]
= −δ1

Ω

(
û
(α)
i|1 − κα

κβ

û
(β)
i|1

)
,

1

κ

[
κ2
α

∂n̂β

∂x̂i

− κ2
β

∂n̂α

∂x̂i

− (κ2
β − κ2

α)
∂T̂

∂x̂i

]
= −γ1

Ω

(
û
(β)
i|1 − κβ

κα

û
(α)
i|1

)
,

 (B2)

2κα

∂v̂⟨i
∂x̂j⟩

= − 1

Ω

{
x◦αΩασ̂

(α)
ij|1 + x◦β

(
δ3σ̂

(α)
ij|1 − δ4σ̂

(β)
ij|1

)}
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2κβ

∂v̂⟨i
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(β)
ij|1 + x◦α

(
γ3σ̂

(β)
ij|1 − γ4σ̂

(α)
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,

 (B3)
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(β)
i|1

)}
,

5

2

∂T̂
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(β)
i|1 − γ6ĥ

(α)
i|1

)}
,

 (B4)
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,
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,

 (B5)
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 (B6)
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 (B7)
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Eqs. (B1)–(B7) on using the relation ραuα + ρβuβ = 0 in dimensionless form imply that

û
(α)
i|1 , û

(β)
i|1 , σ̂

(α)
ij|1, σ̂

(β)
ij|1, ĥ

(α)
i|1 , ĥ

(β)
i|1 do not vanish, whereas

∆T̂|1 = m̂
(α)
ijk|1 = m̂

(β)
ijk|1 = R̂

(α)
ij|1 = R̂

(β)
ij|1 = ∆̂α|1 = ∆̂β|1 = 0. (B8)

Thus, the leading orders of the diffusion velocities, stresses and heat fluxes of both the
constituents are one while the leading orders of temperature difference and other higher
moments for both the constituents are at least two.

Comparing the coefficients of ε1 on both sides of Eqs. (20) and (25)–(30), one obtains

1
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∂ĥ
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 (B12)

From Eqs. (B10)–(B12), it is clear that m̂
(α)
ijk|2, m̂

(β)
ijk|2, R̂

(α)
ij|2, R̂

(β)
ij|2, ∆̂α|2, and ∆̂β|2 do not

vanish and therefore the leading orders of these quantities are two. Also, one can verify

from Eq. (B9)—by inserting the values of û
(α)
i|1 , û

(β)
i|1 , ĥ

(α)
i|1 and ĥ

(β)
i|1 from Eqs. (34) and (36)—

that ∆T̂|2 is also non-zero. Therefore, the leading order of ∆T̂|2 is two as well.
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Appendix C: Coefficients in other equations

The coefficients in Eqs. (40) are as follows.
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 (C3)

The coefficients ζm, ζR and ζ∆ are as follows.
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
(C4)

The coefficients ςi’s are as follows.
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x◦ακ6κβ + x◦βκ5κα

, ς29 =
x◦ακ8 + x◦βκ7

x◦ακ6κβ + x◦βκ5κα

, ς30 =
x◦ακ8 + x◦βκ7

x◦ακ4κβ + x◦βκ3κα

,

ς31 =
x◦ακ10 + x◦βκ9

x◦ακ4κβ + x◦βκ3κα

, ς32 =
5

2
x◦βa3(κ2

α − κ2
β)

Ω

δ1

κ2
β

κ
, ς33 =

x◦ακ4κ3
β + x◦βκ3κ3

α

κ2
ακ2

β(x
◦
ακ4κβ + x◦βκ3κα)

.

The coefficients ϖi’s are as follows.

ϖ1 =
x◦ακβ{κ2(x

◦
αΩα + x◦βδ3)− κ1x

◦
βδ4}+ x◦βκα{κ1(x

◦
βΩβ + x◦αγ3)− κ2x

◦
αγ4}

κακβ(x◦ακ2 + x◦βκ1)

=
(x◦αΩα + x◦βδ3)(x

◦
βΩβ + x◦αγ3)− x◦αx

◦
βδ4γ4

x◦ακ2 + x◦βκ1

,

ϖ2 =
x◦αx

◦
β

[
κβ{(x◦αΩα + x◦βδ3) + x◦αδ4} − κα{(x◦βΩβ + x◦αγ3) + x◦βγ4}

]
κακβ(x◦ακ2 + x◦βκ1)

=
x◦αx

◦
β

{
(κ1 − κ2) + κβδ4 − καγ4

}
κακβ(x◦ακ2 + x◦βκ1)

,

ϖ3 =
κ1κβ{κ2(x

◦
αΩα + x◦βδ3)− κ1x

◦
βδ4} − κ2κα{κ1(x

◦
βΩβ + x◦αγ3)− κ2x

◦
αγ4}

κακβ(x◦ακ2 + x◦βκ1)
= (κ1 − κ2)ϖ1

ϖ4 =
κ1κβx

◦
β{(x◦αΩα + x◦βδ3) + x◦αδ4}+ κ2καx

◦
α{(x◦βΩβ + x◦αγ3) + x◦βγ4}

κακβ(x◦ακ2 + x◦βκ1)

=
x◦ακ

2
2 + x◦βκ

2
1 + x◦αx

◦
β(κ1 − κ2)(κβδ4 − καγ4)

κακβ(x◦ακ2 + x◦βκ1)
,

ϖ5 =
x◦ακ2

β

{
κ4

(
2
3
x◦αΩα + x◦βδ5

)
− κ3x

◦
βδ6
}
+ x◦βκ2

α

{
κ3

(
2
3
x◦βΩβ + x◦αγ5

)
− κ4x

◦
αγ6
}

κακβ(x◦ακ4κβ + x◦βκ3κα)

=
(x◦ακ2

β + x◦βκ2
α)
{(

2
3
x◦αΩα + x◦βδ5

) (
2
3
x◦βΩβ + x◦αγ5

)
− x◦αx

◦
βδ6γ6

}
κακβ(x◦ακ4κβ + x◦βκ3κα)

,
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ϖ6 =
x◦αx

◦
β

[
κ2

β

{
κα

(
2
3
x◦αΩα + x◦βδ5

)
+ κβx

◦
αδ6
}
− κ2

α

{
κβ

(
2
3
x◦βΩβ + x◦αγ5

)
+ καx

◦
βγ6
}]

κ2
ακ2

β(x
◦
ακ4κβ + x◦βκ3κα)

=
x◦αx

◦
β

{
κακβ(κ3κβ − κ4κα) + (x◦ακ2

β + x◦βκ2
α)(κβδ6 − καγ6)

}
κ2

ακ2
β(x

◦
ακ4κβ + x◦βκ3κα)

,

ϖ7 =
κ3κβ

{
κ4

(
2
3
x◦αΩα + x◦βδ5

)
− κ3x

◦
βδ6
}
− κ4κα

{
κ3

(
2
3
x◦βΩβ + x◦αγ5

)
− κ4x

◦
αγ6
}

x◦ακ4κβ + x◦βκ3κα

=
(κ3κβ − κ4κα)

{(
2
3
x◦αΩα + x◦βδ5

) (
2
3
x◦βΩβ + x◦αγ5

)
− x◦αx

◦
βδ6γ6

}
x◦ακ4κβ + x◦βκ3κα

=
κακβ(κ3κβ − κ4κα)

(x◦ακ2
β + x◦βκ2

α)
ϖ5,

ϖ8 =
κ3κβx

◦
β

{
κα

(
2
3
x◦αΩα + x◦βδ5

)
+ κβx

◦
αδ6
}
+ κ4καx

◦
α

{
κβ

(
2
3
x◦βΩβ + x◦αγ5

)
+ καx

◦
βγ6
}

κακβ(x◦ακ4κβ + x◦βκ3κα)

=
κακβ(x

◦
ακ

2
4 + x◦βκ

2
3) + x◦αx

◦
β(κ3κβ − κ4κα)(κβδ6 − καγ6)

κακβ(x◦ακ4κβ + x◦βκ3κα)
,

ϖ9 =
x◦ακ2

β

{
κ6

(
3
2
x◦αΩα + x◦βδ7

)
− κ5x

◦
βδ8
}
+ x◦βκ2

α

{
κ5

(
3
2
x◦βΩβ + x◦αγ7

)
− κ6x

◦
αγ8
}

κακβ(x◦ακ6κβ + x◦βκ5κα)

=
(x◦ακ2κ2

β + x◦βκ1κ2
α)
{(

3
2
x◦αΩα + x◦βδ7

) (
3
2
x◦βΩβ + x◦αγ7

)
− x◦αx

◦
βδ8γ8

}
κακβ(x◦ακ6κβ + x◦βκ5κα)

,

ϖ10 =
x◦αx

◦
β

[
κ2

β

{
κα

(
3
2
x◦αΩα + x◦βδ7

)
+ κβx

◦
αδ8
}
− κ2

α

{
κβ

(
3
2
x◦βΩβ + x◦αγ7

)
+ καx

◦
βγ8
}]

κ2
ακ2

β(x
◦
ακ6κβ + x◦βκ5κα)

=
x◦αx

◦
β

{
κακβ(κ5κ2κβ − κ6κ1κα) + (x◦ακ2κ2

β + x◦βκ1κ2
α)(κ1κβδ8 − κ2καγ8)

}
κ1κ2κ2

ακ2
β(x

◦
ακ6κβ + x◦βκ5κα)

,

ϖ11 =
κ5κβ

{
κ6

(
3
2
x◦αΩα + x◦βδ7

)
− κ5x

◦
βδ8
}
− κ6κα

{
κ5

(
3
2
x◦βΩβ + x◦αγ7

)
− κ6x

◦
αγ8
}

x◦ακ6κβ + x◦βκ5κα

=
(κ5κ2κβ − κ6κ1κα)

{(
3
2
x◦αΩα + x◦βδ7

) (
3
2
x◦βΩβ + x◦αγ7

)
− x◦αx

◦
βδ8γ8

}
x◦ακ6κβ + x◦βκ5κα

=
κακβ(κ5κ2κβ − κ6κ1κα)

(x◦ακ2κ2
β + x◦βκ1κ2

α)
ϖ9,

ϖ12 =
κ5κβx

◦
β

{
κα

(
3
2
x◦αΩα + x◦βδ7

)
+ κβx

◦
αδ8
}
+ κ6καx

◦
α

{
κβ

(
3
2
x◦βΩβ + x◦αγ7

)
+ καx

◦
βγ8
}

κακβ(x◦ακ6κβ + x◦βκ5κα)

=
κακβ(x

◦
ακ1κ

2
6 + x◦βκ2κ

2
5) + x◦αx

◦
β(κ5κ2κβ − κ6κ1κα)(κ1κβδ8 − κ2καγ8)

κ1κ2κακβ(x◦ακ6κβ + x◦βκ5κα)
,

41

http://dx.doi.org/10.1063/1.4945655


Regularized moment equations for binary gas mixtures

ϖ13 =
x◦ακ3

β

{
κ8

(
7
6
x◦αΩα + x◦βδ9

)
− κ7x

◦
βδ10

}
+ x◦βκ3

α

{
κ7

(
7
6
x◦βΩβ + x◦αγ9

)
− κ8x

◦
αγ10

}
κακβ(x◦ακ8κ2

β + x◦βκ7κ2
α)

=
(x◦ακ4κ3

β + x◦βκ3κ3
α)
{(

7
6
x◦αΩα + x◦βδ9

) (
7
6
x◦βΩβ + x◦αγ9

)
− x◦αx

◦
βδ10γ10

}
κακβ(x◦ακ8κ2

β + x◦βκ7κ2
α)

,

ϖ14 =
x◦αx

◦
β

[
κ3
β

{
κ2
α

(
7
6
x◦αΩα + x◦βδ9

)
+ κ2

βx
◦
αδ10

}
− κ3

α

{
κ2

β

(
7
6
x◦βΩβ + x◦αγ9

)
+ κ2

αx
◦
βγ10

}]
κ3

ακ3
β(x

◦
ακ8κ2

β + x◦βκ7κ2
α)

=
x◦αx

◦
β

{
κ2
ακ2

β(κ7κ4κβ − κ8κ3κα) + (x◦ακ4κ3
β + x◦βκ3κ3

α)(κ3κ2
βδ10 − κ4κ2

αγ10)
}

κ3κ4κ3
ακ3

β(x
◦
ακ8κ2

β + x◦βκ7κ2
α)

,

ϖ15 =
κακβ

[
κ7κβ

{
κ8

(
7
6
x◦αΩα + x◦βδ9

)
− κ7x

◦
βδ10

}
− κ8κα

{
κ7

(
7
6
x◦βΩβ + x◦αγ9

)
− κ8x

◦
αγ10

}]
(x◦ακ8κ2

β + x◦βκ7κ2
α)

=
κακβ(κ7κ4κβ − κ8κ3κα)

{(
7
6
x◦αΩα + x◦βδ9

) (
7
6
x◦βΩβ + x◦αγ9

)
− x◦αx

◦
βδ10γ10

}
(x◦ακ8κ2

β + x◦βκ7κ2
α)

=
κ2

ακ2
β(κ7κ4κβ − κ8κ3κα)

(x◦ακ4κ3
β + x◦βκ3κ3

α)
ϖ13,

ϖ16 =
κ7κβx

◦
β

{
κ2
α

(
7
6
x◦αΩα + x◦βδ9

)
+ κ2

βx
◦
αδ10

}
+ κ8καx

◦
α

{
κ2

β

(
7
6
x◦βΩβ + x◦αγ9

)
+ κ2

αx
◦
βγ10

}
κακβ(x◦ακ8κ2

β + x◦βκ7κ2
α)

=
κακβ(x

◦
ακ3κ

2
8κβ + x◦βκ4κ

2
7κα) + x◦αx

◦
β(κ7κ4κβ − κ8κ3κα)(κ3κ2

βδ10 − κ4κ2
αγ10)

κ3κ4κακβ(x◦ακ8κ2
β + x◦βκ7κ2

α)
,

ϖ17 =
x◦ακ3

β

{
κ10

(
2
3
x◦αΩα + x◦βδ11

)
− κ9x

◦
βδ12

}
+ x◦βκ3

α

{
κ9

(
2
3
x◦βΩβ + x◦αγ11

)
− κ10x

◦
αγ12

}
κακβ(x◦ακ10κ2

β + x◦βκ9κ2
α)

=
(x◦ακ4κ3

β + x◦βκ3κ3
α)
{(

2
3
x◦αΩα + x◦βδ11

) (
2
3
x◦βΩβ + x◦αγ11

)
− x◦αx

◦
βδ12γ12

}
κακβ(x◦ακ10κ2

β + x◦βκ9κ2
α)

,

ϖ18 =
x◦αx

◦
β

[
κ3

β

{
κ2
α

(
2
3
x◦αΩα + x◦βδ11

)
+ κ2

βx
◦
αδ12

}
− κ3

α

{
κ2

β

(
2
3
x◦βΩβ + x◦αγ11

)
+ κ2

αx
◦
βγ12

}]
κ3
ακ3

β(x
◦
ακ10κ2

β + x◦βκ9κ2
α)

=
x◦αx

◦
β

{
κ2
ακ2

β(κ9κ4κβ − κ10κ3κα) + (x◦ακ4κ3
β + x◦βκ3κ3

α)(κ3κ2
βδ12 − κ4κ2

αγ12)
}

κ3κ4κ3
ακ3

β(x
◦
ακ10κ2

β + x◦βκ9κ2
α)

,

ϖ19 =
κακβ

[
κ9κβ

{
κ10

(
2
3
x◦αΩα + x◦βδ11

)
− κ9x

◦
βδ12

}
− κ10κα

{
κ9

(
2
3
x◦βΩβ + x◦αγ11

)
− κ10x

◦
αγ12

}]
(x◦ακ10κ2

β + x◦βκ9κ2
α)

=
κακβ(κ9κ4κβ − κ10κ3κα)

{(
2
3
x◦αΩα + x◦βδ11

) (
2
3
x◦βΩβ + x◦αγ11

)
− x◦αx

◦
βδ12γ12

}
(x◦ακ10κ2

β + x◦βκ9κ2
α)

=
κ2

ακ2
β(κ9κ4κβ − κ10κ3κα)

(x◦ακ4κ3
β + x◦βκ3κ3

α)
ϖ17,
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ϖ20 =
κ9κβx

◦
β

{
κ2

α

(
2
3
x◦αΩα + x◦βδ11

)
+ κ2

βx
◦
αδ12

}
+ κ10καx

◦
α

{
κ2

β

(
2
3
x◦βΩβ + x◦αγ11

)
+ κ2

αx
◦
βγ12

}
κακβ(x◦ακ10κ2

β + x◦βκ9κ2
α)

=
κακβ(x

◦
ακ3κ

2
10κβ + x◦βκ4κ

2
9κα) + x◦αx

◦
β(κ9κ4κβ − κ10κ3κα)(κ3κ2

βδ12 − κ4κ2
αγ12)

κ3κ4κακβ(x◦ακ10κ2
β + x◦βκ9κ2

α)
.

The coefficients a0, a1, . . . , a20 are as follows.

a0 = ς2, a1 = δ1
κ
κ2

β

a2 =
4

5

(
1− ϖ2

ϖ4

ς9

)
,

a3 = 2

(
ς1 −

ϖ2

ϖ4

ς11

)
, a4 =

1

ϖ4

(ϖ1ϖ4 −ϖ2ϖ3), a5 = ς12 −
ϖ6

ϖ8

ς15,

a6 =
1

ϖ8

(ϖ5ϖ8 −ϖ6ϖ7), a7 =
ϖ3

ϖ4

ς3, a8 = 2Ω
ς3ς11
ϖ4

,

a9 =
4

5
Ω
ς3ς9
ϖ4

, a10 = Ωx◦βκα
ς6
δ2
, a11 = Ωx◦βκα

ς4
δ2
,

a12 =
ϖ2

ϖ4

[
a6
ϖ4

{
4

5
ς9 +

ϖ3

a4

1

κ

(
5
η

κ
− a2κ +

ς32
κ

)}
− 4

5

ϖ7

ϖ8

ς10

]
,

a13 = 2δ1
κ

κακ2
β

ς11ϖ2

ϖ2
4

,

a14 = Ω
ϖ2

ϖ4

[
2
ς2ς11
ϖ4

1

κα

+
a5
ϖ4

{
4

5
ς9 +

ϖ3

a4

1

κ

(
5
η

κ
− a2κ +

ς32
κ

)}
− 4

5

ς10ς15
ϖ8

]
+

2

5

(
1− ϖ2

ϖ4

ς7

)
ζm,

a15 =
1

3

(
1− ϖ2

ϖ4

ς7

)
ζm,

a16 = a4
ϖ6

ϖ2
8

{
ς15 −

ϖ7

a6

(
a5 −

κ

2η

)}
+

ϖ3

ϖ4

(
ς13 −

ϖ6

ϖ8

ς16

)
,

a17 = Ω

[
a2

ϖ6

ϖ2
8

{
ς15 −

ϖ7

a6

(
a5 −

κ

2η

)}
+

4

5

ς9
ϖ4

(
ς13 −

ϖ6

ϖ8

ς16

)]
+

1

2

(
1− ϖ6

ϖ8

ς17

)
ζR,

a18 = Ω

[
a3

ϖ6

ϖ2
8

{
ς15 −

ϖ7

a6

(
a5 −

κ

2η

)}
+ 2

ς11
ϖ4

(
ς13 −

ϖ6

ϖ8

ς16

)]
,

a19 =
5

2
Ωκα

ς4
δ2

(
ς14 −

ϖ6

ϖ8

ς21

)
+

1

6

(
1− ϖ6

ϖ8

ς19

)
ζ∆,

a20 =
5

2
Ωκα

ς6
δ2

(
ς14 −

ϖ6

ϖ8

ς21

)
.

Appendix D: Burnett equations: second order contributions to σ̂ij and ĥi

To obtain the precise values of second order contributions to σ̂ij and ĥi, let us perform
the Chapman-Enskog like expansion on the new system of moment equations (48)–(59). We
again expand the non-conserved quantities (Ψ) in powers of the Knudsen number (ε) as

Ψ = Ψ|0 + ε Ψ|1 + ε2Ψ|2 + . . . ,
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where Ψ ∈
{
û
(α)
i ,∆T̂ , σ̂ij,∆σ̂ij, ĥi,∆ĥi, m̂ijk,∆m̂ijk, R̂ij,∆R̂ij, ∆̂,∆∆̂

}
and the quantities

Ψ|0, Ψ|1, Ψ|2, . . . are of order O(ε0). Now, we shall substitute the above expansions in the
new system of moment equations (48)–(59) and compare the coefficients of each power of ε.

Comparing coefficients of ε−1 on both sides of Eqs. (48)–(59), it immediately follows that

Ψ|0 = 0 for all Ψ ∈
{
û
(α)
i ,∆T̂ , σ̂ij,∆σ̂ij, ĥi,∆ĥi, m̂ijk,∆m̂ijk, R̂ij,∆R̂ij, ∆̂,∆∆̂

}
.

Comparing coefficients of ε0 on both sides of Eqs. (48)–(59), it follows that

û
(α)
i|1 = −x◦β

Ω

δ1

κ2
β

κ2

(
κ2

β

∂n̂α

∂x̂i

− κ2
α

∂n̂β

∂x̂i

− (κ2
α − κ2

β)
∂T̂

∂x̂i

)
,

σ̂ij|1 = −2η
∂v̂⟨i
∂x̂j⟩

, ĥi|1 = −κ
∂T̂

∂x̂i

,

∆T̂|1 = ∆σ̂ij|1 = ∆ĥi|1 = m̂ijk|1 = R̂ij|1 = ∆̂|1 = ∆m̂ijk|1 = ∆R̂ij|1 = ∆∆̂|1 = 0.


(D1)

Comparing coefficients of ε1 on both sides of Eqs. (48)–(59), it follows that

û
(α)
i|2 = −Ω

δ1

κ2
β

κ

(
κα

∂û
(α)
i|1

∂t̂
+ ς2

∂σ̂ij|1

∂x̂j

)

=
Ω

δ1

κ2
β

κ

[
x◦β

Ω

δ1

κακ2
β

κ2

∂

∂x̂i

(
κ2

β

∂n̂α

∂t̂
− κ2

α

∂n̂β

∂t̂
− (κ2

α − κ2
β)
∂T̂

∂t̂

)
+ 2ης2

∂

∂x̂j

∂v̂⟨i
∂x̂j⟩

]

=
Ω

δ1

κ2
β

κ

[
5

3
x◦β

Ω

δ1

κακ2
β

κ2
(κ2

α − κ2
β)

∂

∂x̂i

∂v̂j
∂x̂j

+ 2ης2
∂

∂x̂j

∂v̂⟨i
∂x̂j⟩

]
, (D2)

∆T̂|2 = −Ω
κα

δ2

(
ς4
∂ĥi|1

∂x̂i

+ ς6
∂û

(α)
i|1

∂x̂i

)

= Ω
κα

δ2

[
ς4κ

∂2T̂

∂x̂2
i

+ ς6x
◦
β

Ω

δ1

κ2
β

κ2

∂2

∂x̂2
i

(
κ2

βn̂α − κ2
αn̂β − (κ2

α − κ2
β)T̂
)]

, (D3)

∂σ̂ij|1

∂t̂
+

4

5

∂ĥ⟨i|1

∂x̂j⟩
+ 2ς1

∂û
(α)
⟨i|1

∂x̂j⟩
= − 1

Ω

(
ϖ1σ̂ij|2 +ϖ2∆σ̂ij|2

)
,

4

5
ς9
∂ĥ⟨i|1

∂x̂j⟩
+ 2ς11

∂û
(α)
⟨i|1

∂x̂j⟩
= − 1

Ω

(
ϖ3σ̂ij|2 +ϖ4∆σ̂ij|2

)
,

 (D4)

∂ĥi|1

∂t̂
+ ς12

∂σ̂ij|1

∂x̂j

= − 1

Ω

(
ϖ5ĥi|2 +ϖ6∆ĥi|2

)
,

ς15
∂σ̂ij|1

∂x̂j

= − 1

Ω

(
ϖ7ĥi|2 +ϖ8∆ĥi|2

)
,

 (D5)

44

http://dx.doi.org/10.1063/1.4945655


Regularized moment equations for binary gas mixtures

m̂ijk|2 = −ζm
∂σ̂⟨ij|1

∂x̂k⟩
, R̂ij|2 = −ζR

∂ĥ⟨i|1

∂x̂j⟩
, ∆̂|2 = −ζ∆

∂ĥi

∂x̂i

(D6)

and

∆m̂ijk|2 = ∆R̂ij|2 = ∆∆̂|2 = 0. (D7)

From Eqs. (D4) and (D5), we have

σ̂ij|2 = − Ω

(ϖ1ϖ4 −ϖ2ϖ3)

[
ϖ4

∂σ̂ij|1

∂t̂
+

4

5
(ϖ4 −ϖ2ς9)

∂ĥ⟨i|1

∂x̂j⟩
+ 2(ϖ4ς1 −ϖ2ς11)

∂û
(α)
⟨i|1

∂x̂j⟩

]
,

∆σ̂ij|2 =
Ω

(ϖ1ϖ4 −ϖ2ϖ3)

[
ϖ3

∂σ̂ij|1

∂t̂
+

4

5
(ϖ3 −ϖ1ς9)

∂ĥ⟨i|1

∂x̂j⟩
+ 2(ϖ3ς1 −ϖ1ς11)

∂û
(α)
⟨i|1

∂x̂j⟩

]
,


(D8)

ĥi|2 = − Ω

(ϖ5ϖ8 −ϖ6ϖ7)

[
ϖ8

∂ĥi|1

∂t̂
+ (ϖ8ς12 −ϖ6ς15)

∂σ̂ij|1

∂x̂j

]
,

∆ĥi|2 =
Ω

(ϖ5ϖ8 −ϖ6ϖ7)

[
ϖ7

∂ĥi|1

∂t̂
+ (ϖ7ς12 −ϖ5ς15)

∂σ̂ij|1

∂x̂j

]
.

 (D9)

From Eqs. (D1)2,3 on using momentum and energy balance equations (Eqs. (46) and (47))

with û
(α)
i = σ̂ij = q̂i = 0 (i.e., on using the Euler equations), we have

∂σ̂ij|1

∂t̂
= −2η

∂

∂x̂j⟩

∂v̂⟨i

∂t̂
= 2

η

κ
∂2

∂x̂⟨i∂x̂j⟩

(
x◦αn̂α + x◦βn̂β + T̂

)
, (D10)

∂ĥi|1

∂t̂
= −κ

∂

∂x̂i

∂T̂

∂t̂
=

2

3
κ

∂2v̂j
∂x̂i∂x̂j

. (D11)

Therefore, Eqs. (D8) and (D9) on using (D1) yield

σ̂ij|2 = − ∂2

∂x̂⟨ix̂j⟩

(
b1n̂α + b2n̂β + b3T̂

)
, (D12)

∆σ̂ij|2 =
∂2

∂x̂⟨i∂x̂j⟩

(
b4n̂α + b5n̂β + b6T̂

)
, (D13)

ĥi|2 = −b7
∂2v̂j

∂x̂i∂x̂j

− 2ηb8
∂

∂x̂j

∂v̂⟨i
∂x̂j⟩

, (D14)

45

http://dx.doi.org/10.1063/1.4945655


Regularized moment equations for binary gas mixtures

∆ĥi|2 = b9
∂2v̂j

∂x̂i∂x̂j

− 2ηb10
∂

∂x̂j

∂v̂⟨i
∂x̂j⟩

, (D15)

where

b1 =
2Ω

(ϖ1ϖ4 −ϖ2ϖ3)

{
x◦αϖ4

η

κ
− x◦β(ϖ4ς1 −ϖ2ς11)

Ω

δ1

κ4
β

κ2

}
=

Ω

a4

{
x◦α

2η

κ
− x◦βa3

Ω

δ1

κ4
β

κ2

}
,

b2 =
2Ω

(ϖ1ϖ4 −ϖ2ϖ3)
x◦β

{
ϖ4

η

κ
+ (ϖ4ς1 −ϖ2ς11)

Ω

δ1

κ2
ακ2

β

κ2

}
=

Ω

a4
x◦β

{
2η

κ
+ a3

Ω

δ1

κ2
ακ2

β

κ2

}
,

b3 =
2Ω

(ϖ1ϖ4 −ϖ2ϖ3)

{
ϖ4

η

κ
− 2

5
κ(ϖ4 −ϖ2ς9) + x◦β(ϖ4ς1 −ϖ2ς11)(κ2

α − κ2
β)

Ω

δ1

κ2
β

κ2

}
=

Ω

a4

{
2η

κ
− a2κ+ x◦βa3(κ2

α − κ2
β)

Ω

δ1

κ2
β

κ2

}
,

b4 =
2Ω

(ϖ1ϖ4 −ϖ2ϖ3)

{
x◦αϖ3

η

κ
− x◦β(ϖ3ς1 −ϖ1ς11)

Ω

δ1

κ4
β

κ2

}
,

b5 =
2Ω

(ϖ1ϖ4 −ϖ2ϖ3)
x◦β

{
ϖ3

η

κ
+ (ϖ3ς1 −ϖ1ς11)

Ω

δ1

κ2
ακ2

β

κ2

}
,

b6 =
2Ω

(ϖ1ϖ4 −ϖ2ϖ3)

{
ϖ3

η

κ
− 2

5
κ(ϖ3 −ϖ1ς9) + x◦β(ϖ3ς1 −ϖ1ς11)(κ2

α − κ2
β)

Ω

δ1

κ2
β

κ2

}
,

b7 =
2

3

Ω

(ϖ5ϖ8 −ϖ6ϖ7)
ϖ8κ =

2

3

Ω

a6
κ,

b8 = − Ω

(ϖ5ϖ8 −ϖ6ϖ7)
(ϖ8ς12 −ϖ6ς15) = −Ω a5

a6
,

b9 =
2

3

Ω

(ϖ5ϖ8 −ϖ6ϖ7)
ϖ7κ,

b10 =
Ω

(ϖ5ϖ8 −ϖ6ϖ7)
(ϖ7ς12 −ϖ5ς15).

Therefore, if the conservation laws for mixture are closed with up to second order corrections
in the diffusion velocity (of one constituent), total stress and total reduced heat flux, i.e.,
with

û
(α)
i = εû

(α)
i|1 + ε2û

(α)
i|2 , σ̂ij = εσ̂ij|1 + ε2σ̂ij|2, ĥi = εĥi|1 + ε2ĥi|2, (D16)

where û
(α)
i|1 , σ̂ij|1, ĥi|1, û

(α)
i|2 , σ̂ij|2 and ĥi|2 are given by Eqs. (D1)1,2,3, (D2), (D12) (D14), we

essentially get the (linear) Burnett order equations for a binary gas mixture made up of

Maxwell molecules.
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