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Abstract Heat transfer in solids is modeled by deriving the macroscopic equations for phonon transport
from the phonon-Boltzmann equation. In these equations, the Callaway model with frequency-dependent
relaxation time is considered to describe the Resistive and Normal processes in the phonon interactions. Also,
the Brillouin zone is considered to be a sphere, and its diameter depends on the temperature of the system.
A simple model to describe phonon interaction with crystal boundary is employed to obtain macroscopic
boundary conditions, where the reflection kernel is the superposition of diffusive reflection, specular reflection
and isotropic scattering. Macroscopic moments are defined using a polynomial of the frequency and wave
vector of phonons. As an example, a system of moment equations, consisting of three directional and seven
frequency moments, i.e., 63 moments in total, is used to study one-dimensional heat transfer, as well as
Poiseuille flow of phonons. Our results show the importance of frequency dependency in relaxation times and
macroscopic moments to predict rarefaction effects. Good agreement with data reported in the literature is
obtained.
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1 Introduction

Miniaturization of devices in the last 50years has attracted the attention of many researchers [1]. The rapid
development of micro-/nano-electro-mechanical systems (MEMS/NEMS) requires a deeper understanding
of the flow characteristics and heat transfer mechanisms at micro-/nanoscales. Effects that are negligible at
macroscales can dominate atmicro- and nanoscales. For example, the characteristic length of a flowcan become
small enough that surface effects at interfaces dominate over the bulk properties of the flow, and subsequently
lead to a breakdown at the classical laws of continuum mechanics.

The Knudsen number [2] is defined as the ratio of the mean free path (λ) to the characteristic length of flow
(L), Kn = λ

L , and indicates the degrees of rarefaction. The classical assumptions in continuum mechanics [2]
start to break down as Kn becomes larger than 0.001.

One important area of research in nanotechnology is the study of heat transport. The tiny size of modern
electronic systems combined with the relative large power of lasers can lead to huge changes in temperature.
Therefore, we need accurate models for heat transfer that guarantee an effective long-lasting thermal design
of modern micro-/nanoscale systems [3].

Heat transport in solids is due to the exchange of energy between the particles that vibrate on the crystal
lattice, with respect to their mean position [4,5]. These vibrations lead to an energy wave inside the solid, that
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can be quantized into particles known as phonons. Themacroscopic properties of a crystal, such as temperature,
internal energy and heat flux, can be obtained by taking suitable averages of phonons properties, such as energy
and momentum [4].

Phonons can interact among themselves, and with other particles, including photons, electrons and crystal
boundaries. In phonon–phonon collisions, phonons always conserve energy, but can lose momentum [4]. The
interactions in which phonons conserve both energy and momentum are called Normal processes. The phonon
processes in which the momentum does not remain conserved are called Resistive processes [4,5].

Based on the magnitude of the Knudsen numbers for Resistive and Normal processes, we distinguish three
modes of heat transfer in solids:

• The diffusive heat transfer that dominates the heat transfer mechanisms when the mean free path for
Resistive processes is much smaller than the characteristic length of the flow, λR � L . In this mode,
phonons mainly undergo interactions that do not conserve momentum, and as a results, the energy waves
are damped in a very short length. In this regime, the Fourier law governs the heat transfer process [4].

• The second mechanism happens when the mean free path for the Resistive process is much larger than
the characteristic length of the flow λR � L , while the mean free path for the Normal process is smaller
or comparable with the characteristic length of the flow, λN � L . In this regime, Normal processes by
conserving the phonon momentum dominate the heat transfer mechanism and lead to a wave-like energy
transport known as second sound [6,7].

• The energy can also be transported in solids via ballistic phonons [8]. In this regime, the mean free path for
both Resistive and Normal processes is larger than the characteristic length of the flow, i.e., λR, λN > L .
In this Knudsen flow, phonons travel inside the crystal without any interactions.

In general, the energy transport in solids is a combination of the above mechanisms. Depending on the
temperature range and the crystal properties, each of the above transport regimes can dominate.

The phonon-Boltzmann equation, first formulated by Peierls [9], describes the transport of phonons in the
crystal lattice. This equation relates the time evolution of the phonon distribution function to phonon convection
and collisions with other phonons, as well as other particles. While the phonon-Boltzmann equation is valid
for all degrees of rarefaction, its direct solution, due to the complexity in the phase space dimension as well as
the nonlinearity in the collision term, is a formidable task [10].

As an alternative to the direct solution, one can use discrete particle methods to track each individual
phonon in the crystal and use the deterministic approach (a branch of molecular dynamics) to study the
phonon transport [11]. Another approach, known as direct simulation Monte Carlo (DSMC), is using sta-
tistical assumptions to group a cloud of phonons and study their behavior [2]. Employing the stochastic
assumptions in the DSMC method compared to the deterministic nature of molecular dynamics significantly
reduces the computational costs. However, DSMC still suffers from expensive computational overheads [12].
More recently, a variance-reduction formulation has been proposed to improve the traditional Monte Carlo
method, when the temperature difference is small [13]. In this method, the stochastic particle description is
only solved for the deviation from a nearby equilibrium, that leads to significant speed up compared to stan-
dard DSMC. Peraud and Hadjiconstantinou [14] also showed that in the case where the governing deviational
formulation for solving phonon-Boltzmann equation can be linearized, additional speed up will be obtained,
which provides a suitable algorithm for using DSMC in three-dimensional geometries.

Due to the complexity of the collision term in the phonon-Boltzmann equation, the well-known Callaway
model [15] was proposed to provide an approximation for this term. In this model, the collision is described
as a process that relaxes the distribution function of phonons to the appropriate equilibrium state for collision
type, with the relaxation time τ that needs to be provided.

When the mean free path for the Resistive process is very smaller than the length scale of the flow, i.e.,
KnR � 1, by performing the Chapman–Enskog expansion [16] on the phonon-Boltzmann equation equipped
with the Callaway model, one can obtain the Fourier law as the heat flux equation. The Fourier law provides
an explicit expression for the heat conductivity, which can be determined by experimental measurements.
However, since the second sound and ballistic phonons are not included in the Fourier law, it cannot provide
satisfactory results when diffusion does not dominate the heat transport process [17–20].

By considering certain ratios between Resistive and Normal relaxation times, researchers derived macro-
scopic equations to extend the validity of classical hydrodynamics beyond the Fourier regime. Guyer and
Krumhansl [8,21,22] solved the linearized form of the phonon-Boltzmann equation in terms of eigenvectors
of the Normal process when the ratio of Resistive and Normal processes are very small or very large. They
showed that this condition leads to the Fourier law in the former, while a set of equations that can capture the
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second sound was obtained in the latter. Although these equations predicted the second sound effect, they were
only valid at low temperature where the employed assumptions held.

Another approach to obtain a system of macroscopic equations with extended validity beyond the Fourier’s
regime is using higher-ordermoments of the distribution function. Thismethod, known asmomentmethod, has
been successful in rarefied gas dynamics and shown to be capable of predicting and explaining the flowbehavior
up to mid-transition regime (Kn � 0.5). In the seminal work of Grad, a generic form of macroscopic moments
was considered, and a set of transport equations were derived by taking integral moments of the Boltzmann
equation [23,24]. This approach provides an infinite number of transport equations for macroscopic moments,
where in theory, its solution is equivalent to the solution of Boltzmann equation. However, in order to make
this system of infinite number of equations practical, we need to truncate it at some point. Using Grad-type
distribution function to provide closure for the system of moments is a common approach; however, this
closure brings approximation to the system [23,25]. In this method, the Knudsen number determines degrees
of rarefaction in the flow, and subsequently, the required extra terms and equations to capture non-equilibrium.
Abig advantage of accessing tomacroscopic equations compared to particlemethods is the opportunity to relate
non-equilibrium phenomena to macroscopic terms. These macroscopic terms in the system of moments can be
simply switched on and off so that we study their effect to help us explain the non-equilibrium phenomena. So
far, we had a great success in capturing and explaining thermal-driven flows by system of moments in rarefied
gas dynamics [26–28].

Struchtrup and co-workers [6,29] followed Grad’s moments method and presented a simple model for
the phonon transport in solids. Although this model described the interplay between Normal and Resistive
processes, and included the second sound and ballistic phonon effects, due to its simplifying assumptions, it
could not provide good agreement with experimental data. The main simplifications considered in their model
were (a) linear dispersion relation between phonon energy and momentum, (b) extension of the Brillouin
zone to infinity and (c) considering a constant relaxation time for the Callaway model. These simplifications
provided fast access to a system of moments that could describe the rarefied phonon gas in principle, but fail
to give accurate results at room temperature.

By aiming to access to a system of moments that can indeed capture the phonon transport at room temper-
ature, we replace the simplifying assumptions employed in Ref. [29] with a more realistic model. We consider
a quadratic dispersion relation to accurately describe the dependency of frequency on wavevector at room
temperature. Moreover, the Brillouin zone is considered to be a sphere with finite radius, which depends on
the working temperature of the system. Most importantly, the dependency of relaxation time on frequency is
considered in the Callaway model, to account for phonon interactions at low and high frequencies.

Macroscopic moments are defined using a polynomial of frequency and wavevector of phonons. Using
the aforementioned assumptions, the resulting transport equations for macroscopic moments are derived and
presented. The finite size of Brillouin zone as well as the frequency dependency in relaxation time makes
the derivation of the transport equations more complicated compared to Ref. [29]. In particular, providing a
closed form of integration at room temperature becomes a formidable task, and most integrations have to be
numerically calculated.

In order to describe the phonon–surface interactions, we used an extension to the boundary condition
model presented in Ref. [29]. In this model, three types of interactions are considered: thermalization, specular
reflection and isotropic scattering. Based on the proportions of these three types, the free parameters in the
reflection model can be altered to fit to the experimental data.

In order to fix the free parameters in our model, we use the experimental data for specific heat and thermal
conductivity. We use the specific heat to fix the dispersion relation, and then, by employing this relation, we
use the thermal conductivity to fix the relaxation time in the production term. Then, the resulting equations
are used to analytically solve the heat transfer problem in two simple geometries.

As the first application, we model the thermal grating experiment [30], considering infinite width for the
silicon specimen to neglect the effects of boundary conditions. This assumption leads to a one-dimensional
flow problem, that can be solved using eigenvalue–eigenvector analysis. We compare the predicted results of
our system with the reported data in Ref. [30]. The results show the importance of considering low-frequency
phonons as well as high-frequency phonons in the relaxation time model, to get a good agreement with the
reported data in Ref. [30]. Then, we use the system of moments to solve Poiseuille flow of phonons in a heat
conductor with adiabatic boundaries. In this problem, the effect of boundary conditions on the heat transfer
is studied. Moreover, we show the deviation of our results from the Fourier’s solution and discuss the role of
relaxation time model on this deviation.



A. Mohammadzadeh, H. Struchtrup

The remainder of the paper is organized as follows: in Sect. 2 we recall the kinetic theory of phonons and
introduce the dispersion relation as well as the specific heat. Then, we do a quick review on the Callawaymodel
and introduce the relaxation times considered in this study. Macroscopic moments are presented in Sect. 3, and
the system of moment equations are derived from the phonon-Boltzmann equation. This system is then closed
using the Grad distribution function in Sect. 3.2. The details of phonon–boundary interactions are presented
in Sect. 4. Then, the closed system of moment equations as well as their boundary conditions, and the thermal
conductivity predicted by this system are presented in Sect. 5. In Sect. 6, the system of moments are used in
two simple geometries to solve heat transfer problems. The paper closes with conclusion is Sect. 7.

2 Phonons

2.1 Phonon model

The energy is transported in solids when atoms vibrate around their mean positions on the crystal lattice.
The particle representative of the resulting energy wave due to these vibrations is called phonon. Phonons
have energy and momentum; they can interact among themselves and with other particles, including photons,
electrons, and crystal boundaries. They can also interact with crystal impurities and dislocations and lose
momentum [4]. The thermal properties of the crystal, such as temperature and heat flux, can be obtained by
taking appropriate averages of microscopic properties of the phonon gas.

In the phonon model, the crystal is replaced by a box containing the gas of phonons, such that the energy
transport can be treated analogous to the transport processes in gases [31,32]. The eigenvibration of the lattice
with the frequency ω and the wave vector k in the crystal correspond to phonons with the energy �ω and the
momentum �k, where � is Planck’s constant. The dispersion relationω(k) determines the relationship between
the frequency and the wave vector, which follows from the quantum mechanics equation of motion for atoms
in the crystal [4]. This relation is periodic in nature, with a full period equal to the Brillouin zone. Phonons
travel with the group velocity, c = ∂ω

∂k .
In contrast to the transport process for gasmolecules, phonons do not follow the lawof number conservation;

they can be created or destroyed during interactions. The energy, on the other hand, is always conserved in the
phonon–phonon interaction [9],

�ω′ + �ω′′ = �ω′′′ or �ω′ = �ω′′ + �ω′′′.

In this process, two phonons with frequencies ω′ and ω′′ interact and create a phonon with the frequency
ω′′′, or a phonon with frequency ω′ splits into two phonons with frequencies ω′′ and ω′′′. Phonon momentum
is generally not conserved, but obeys

�k′ + �k′′ = �k′′′ + �G or �k′ = �k′′ + �k′′′ + �G,

whereG is the reciprocal lattice vector. The phonon momentum is conserved when the reciprocal lattice vector
is zero. This interaction is called Normal process. If the interaction between phonons leads to a momentum
vector outside the Brillouin zone, the nonzero reciprocal vector G brings back the momentum vector to the
Brillouin zone. This type of process is called Umklapp (flip over). The phonons can also interact with the
lattice imperfections and boundaries, and lose momentum while conserving energy. All processes that do not
conserve momentum are called Resistive processes [4,5].

We distinguish two different types of phonons: optical phonons and acoustic phonons. Optical phonons
appear in crystals with more than one atom in the smallest unit cell, and only have high frequencies. Therefore,
they can be neglected in single element crystals and at moderate temperatures range [4]. Acoustic phonons,
on the other hand, can have very low to high frequencies. Acoustic phonons have three polarizations, two
transversals and one longitudinal. In the current study, we only consider acoustic phonons and group their
three polarizations into a single mode with a single velocity and single deformation potential [31].

2.2 Kinetic theory of phonons

In kinetic theory, the state of the phonon gas is described by the distribution function, f (x,k, t), defined such
that the number of phonons in a phase space element, dkdx at time t is given by

dN = f (x,k, t)dkdx.
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where x is the three-dimensional space vector. The phonon-Boltzmann equation reads [6,9]

∂ f

∂t
+ ci

∂ f

∂xi
= SR( f ) + SN ( f ), (1)

where ci = ∂ω
∂ki

is the group velocity of phonons, and S( f ) is the collision operator including the Resistive
SR( f ) and the Normal process SN( f ).

Moments of the distribution function provide the macroscopic properties of phonon system. The energy
density, energy flux and momentum density in the phonon gas are obtained as

e(t, x) =
∫

BZ

�ω f (x,k, t)dk (2a)

qi (t, x) =
∫

BZ

�ωci f (x,k, t)dk (2b)

pi (t, x) =
∫

BZ

�ki f (x,k, t) dk (2c)

where BZ denotes the Brillouin zone of the lattice. We assume that the dispersion relation only depends on the
absolute value of the wave vector. This assumption leads to a spherical Brillouin zone [4] with the boundaries
of

−π

a
≤ ki ≤ π

a
, (3)

where a is the lattice spacing.
Phonons are Bose particles [4], and their entropy density reads

s = −kB

∫
BZ

(
f ln

(
f

y

)
− y

(
1 + f

y

)
ln

(
1 + f

y

))
dk, (4)

where kB is the Boltzmann’s constant, and y = 3
8π3 is the density of states [4]. Note that the factor 3 in this

constant is related to the three phonon polarizations, with two branches for transversal and one branch for
longitudinal modes. In the equilibrium state, phonons follow the Bose distribution function [4],

fE = y

exp
(

h̄ω
kBT

)
− 1

. (5)

2.3 Dispersion relation and specific heat

In order to relate the microscopic properties of phonons to the macroscopic properties of lattice, we need to
express the dependency of frequency on the wave vector. We use an isotropic quadratic function, as suggested
in Ref. [33], to approximate the dispersion relation as

ω(k) = v1k+v2k
2, (6)

where v1 and v2 are constants. The group velocity is obtained by

ci = ∂ω

∂ki
= (v1 + 2v2k)ni , (7)

where

ni = ki
k

,

is the phonon direction vector.
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Fig. 1 Specific heat for Silicon predicted with the quadratic dispersion relation

Specific heat is obtained by taking the temperature derivative of the energy moment in equilibrium, where
f is the Bose distribution function

C = ∂e

∂T
=

∂

(∫
BZ

�ω fEdk

)

∂T
. (8)

We set v1 to the Debye speed c0, and choose v2 such that we get the best fit to the experimental values for
specific heat at room temperature. The Debye speed c0 is defined as

1

c30
= 1

3

3∑
i=1

1

c3i
,

which is an appropriate average in the three polarizations for phonons [4]. Using literature [4] to set c0 = 5883
m
s , we choose v2 = −1.0103 × 10−10 m2

s to fit to the experimental values for specific heat. Figure 1
shows the variation of specific heat with temperature obtained from the considered model, compared with the
experimental data in Ref. [4]. The deviation that occurs around T � 100K is due to the value of v2 employed
in the dispersion relation that we chose to, specifically, fit to the values around room temperature. Note that
we can extend the comparison to higher temperatures; however, in the current study we are interested in the
room temperature comparison.

2.4 Callaway model

We use the Callaway model [15] to describe the production term in the phonon-Boltzmann equation. This
model is analogous to the BGK model in the kinetic theory of classical gases [34]. In this model, the phonon
distribution function, f , relaxes to the reference distribution functions, fR and fN, with the relaxation times τR
and τN for the Resistive (R) andNormal (N) processes, respectively. The idea behind thismodel comes from the
concept of maximum entropy at the equilibrium state. All phonon interactions are supposed to increase entropy
and drive the distribution function toward the equilibrium state corresponding to their type of interactions. The
relaxation time relates to the phonon mean free path and shows the rate of this increase in the flow. The
Callaway model reads

S( f ) = − 1

τR(ω)
( f − fR) − 1

τN(ω)
( f − fN). (9)

The equilibrium distributions fR and fN must be chosen to satisfy the conservation conditions for energy and
momentum. In all R-processes the energy is conserved, hence

∫
BZ

h̄ω

τR(ω)
( f − fR)dk = 0, (10)
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and in all N-processes both energy and momentum are conserved,
∫
BZ

h̄ω

τN(ω)
( f − fN)dk = 0 and

∫
BZ

h̄ki
τN(ω)

( f − fN)dk = 0. (11)

In order to obtain the appropriate expressions for the equilibrium distributions fR and fN, we maximize
the entropy density Eq. (4), under the constraints of Eqs. (10) and (11), respectively. This leads to

fR = y

e
h̄ω
kB

γ − 1
and fN = y

e

(
h̄ω
kB

γ ′+ ξ j h̄k j
kB

)
− 1

, (12)

where γ , γ ′ and ξ j are the Lagrange multipliers. We assume that the phonon gas is not very far from the
local equilibrium, so that the above distribution functions deviate only slightly from the local equilibrium
distribution functions. This allows us to linearize these distribution functions in Lagrange multipliers to get

fR = fE + ∂ fR
∂γ

∣∣∣
E

(γ − γE) ,

fN = fE + ∂ fN
∂γ ′

∣∣∣
E

(
γ ′ − γ

′
E

)
+ ∂ fN

∂ξ j

∣∣∣
E

(
ξ j − ξ j,E

)
.

(13)

Note that by comparing Eq. (12) with the Bose distribution function, we have

γE = γ ′
E = 1

T
and ξ j,E = 0.

The relaxation times in the Callaway model play a very important role in predicting the phonon transport
characteristics. The relaxation time for the R-processes reads [35]

1

τR(ω)
= 1

τU(ω)
+ 1

τB(ω)
+ 1

τX(ω)
,

where τU denotes the relaxation time for the Umklapp processes, τB denotes the relaxation time for the
phonon–boundary interaction and τX takes the effects of impurities into account. The effects of phonon–
surface interactions will be considered in the boundary condition model in Sect. 4. Moreover, we consider a
pure crystal without any imperfection, i.e., 1

τX(ω)
= 0.

For the relaxation time in the Umklapp processes, we use the results reported in Ref. [36]. Ward and
Broido [36] employed the first principle approach to obtain the relaxation times and observed that at low
frequency τU ∝ 1

ω2 , while at high frequencies this dependency is stronger, τU ∝ 1
ω4 .

Considering that at low frequency this relation is in accordance with the well-known Klemenss expres-
sion [35,37]

τU(ω) = 1

BUT exp
(− D

T

) 1

ω2 , (14)

with BU = 1.73 × 10−19 s
K and D = 137.39K, we used Eq. (14) for the relaxation time at low frequency in

U-processes.
Considering that the relaxation time has a stronger frequency dependency at higher frequencies [36], we

employed a similar expression to the well-known Eq. (14), but with larger powers of frequencies to express
the relaxation time at higher frequencies. We considered that the relaxation time follows

τU(ω) =

⎧⎪⎨
⎪⎩

1

BUT exp
(
− D

T

) 1
ω2 , ω ≤ ωC

1

SUT exp
(
− D

T

) 1
ω4 , ω ≥ ωC

, (15)

where ωC is the crossover frequency. Here, SU is chosen such that we observe a continuous relaxation time at
ωC,

SU = BU

ω2
C

.
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The crossover frequency, ωC, is then chosen to fit to the experimental data for thermal conductivity.
For the N-process, we follow Ref. [38] and assume that the relaxation time is approximated as

τN(ω) = 1

BNTω2 , (16)

where BN can be used to adjust to the experimental data.

3 System of moments

3.1 Moment equations

FollowingGrad’smomentmethod [23],we derive a set ofmacroscopic transport equations that can approximate
the phonon-Boltzmann equation. For this means, we define the general macroscopic moment

uα〈i1,...,in〉 =
∫
BZ

ωαn〈i1...nin 〉 f (x,k, t)dk, (17)

to relate the phonon properties to the macroscopic properties of the crystal. The indices in the angular brack-
ets denote the trace-free and symmetrical part of the tensor. Our moment definition contains the powers of

frequencies ωα with α = 0, 1, 2, . . . , and the wave vector in the form of direction vectors, n〈i1...in〉 = k〈i1...in 〉
kn .

Following Eq. (17), the energy density is obtained by

e(x, t)
�

= u10(x, t).

The energy density flux and the momentum density of phonons will be related to the vectorial moments uα
i ,

by using the constitutive relations in the sequel.
In order to get a hierarchy of balance equations for the moments, we multiply the phonon-Boltzmann

equation with the generic term
Υ α
i1,...,in

= ωαni1...nin , (18)

and perform an integration over the k-space in the Brillouin zone. This leads to a system of moment equations
of the generic form

∂uα
i1,...,in

∂t
+

∂Fα
i1,...,in in p

∂xnp

= Pα
i1,...,in , (19)

with the fluxes

Fα
i1,...,in in+1

=
∫
BZ

cin+1ω
αni1...nin f dk,

and the productions

Pα
i1,...,in

=
∫
BZ

ωαni1...nin S( f )dk.

For the scalar moments uα
0 , we separate the equilibrium part from the non-equilibrium part and define

vα
0 = uα

0 − uα
0|E . (20)

Here, the equilibrium part of the scalar moment is defined as

uα
0|E =

∫
BZ

ωα fEdk.

Note that Fα
i1,...,in

has been defined as a rank n tensor. It is helpful in the further calculation to decouple the
trace and trace-free parts of tensors, and indicates the trace-free tensor by angled brackets around the indices.
For example, for the second-order tensor we can write

Fα
i j = Fα〈i j〉 + 1

3
Fα
0 δi j ,
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where δi j is the Kronecker delta function. Using similar tensorial calculation [25], we can decouple the trace
and trace-free parts of a rank n tensor. Therefore, the hierarchy of moment equations, using the trace-free
symmetrical tensors, can be written as

∂u10
∂t

+ ∂F1
i

∂xi
= 0,

∂vα
0

∂t
− ∂uα

0|E
∂u10

∂F1
i

∂xi
+ ∂Fα

i

∂xi
= Pα

0 α ≥ 0, �= 1,

∂uα
i

∂t
+ ∂Fα〈i j〉

∂x j
+ 1

3

∂Fα
0

∂xi
= Pα

i ,

∂uα〈i j〉
∂t

+ ∂Fα〈i j p〉
∂xp

+ 2

5

∂Fα〈i
∂x j〉

= Pα〈i j〉,

∂uα〈i1i2...in〉
∂t

+ ∂Fα〈i1i2...in in+1〉
∂xn+1

+ n

2n + 1

∂Fα〈i1i2...in−1

∂xin
〉 = Pα〈i1i2...in〉 n > 2.

(21)

Note that based on the definition of moments, we have ui1i2...inkk = ui1i2...in . Moreover, α is the number of
frequency powers in the non-equilibrium moments. The first equation in this hierarchy is the conservation of
energy, where production term is zero in the right-hand side.

3.2 Closure for system of moments

Taking moments of the phonon-Boltzmann equation generates a large system, consisting of an infinite number
of balance equations (21). This system includes flux terms Fα〈i1i2...in in+1〉, as well as production terms Pα〈i1i2...in〉,
that need to be determined to get a closed system of equations. The solution to this closure problem in kinetic
theory was first proposed by Grad [23] and then extended to the phonon kinetic theory in Refs. [6,29]. Since
flux and production terms are expressed through the distribution function, the closure problem is solved when
we find the distribution function, that indeed depends on the moments. For this means, we follow the Grad’s
[23] idea to express the distribution function as a function of moments in “Appendix A.” Here, we present the
final result as

fG = fE + a3

32π

∑
η,m
�=E

(2m + 1)!!
m! ΦηXη+1

M

[
uη

〈 j1,..., jm 〉 − uη
〈 j1,..., jm 〉E

ω
η
M

]
n〈 j1...n jm 〉, (22)

where ωM = 2c0
a is the reference frequency, and XM = h̄ωM

kBT
is the non-dimensional inverse of temperature.

For the detailed derivation of the distribution function, as well as the expressions for Φη see “Appendix A.”

3.2.1 Flux terms

Using the Grad distribution function, we can determine the fluxes as functions of moments. The fluxes have
the general form

Fα〈i1i2...in in+1〉 =
∫
BZ

cin+1ω
αn〈i1...nin 〉 fGdk. (23)

Substituting Eq. (22), and rearranging the equations gives

Fα〈i1i2...in〉 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c0ωα
M

⎛
⎝Aα

E
uα
0|E

ωα
M

+ ∑nF
η=0
�=1

Aα,η
0

v
η
0

ω
η
M

⎞
⎠ , n = 0

c0ωα
M

(∑nF
η=0

Aα,η
n

uη
〈i1,...,in 〉
ω

η
M

)
, n �= 0

, (24)

The detailed derivation of this relation, aswell as the expressions forAα,η
n andAα

E, can be found in “Appendix
B.”
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3.2.2 Production terms

Similar to the flux terms, we use the Grad distribution function to express the production terms as functions
of moments. The production terms have the general form

Pα〈i1i2...in〉 =
∫
BZ

ωαn〈i1...nin 〉S( fG)dk, (25)

where S( fG) is obtained by using the Callaway model in Eq. (9). It is worth noting that by using the moment
method, R and N-processes can be treated completely independently

Pα〈i1i2...in〉 = Pα〈i1i2...in〉,R + Pα〈i1i2...in〉,N. (26)

(a) Resistive process Considering the conservation of energy in the R-process Eq. (10), and expressing fR as
a function of the non-equilibrium moments, we obtain the production moments for R-processes as

Pα〈i1i2...in〉,R =

⎧⎪⎪⎨
⎪⎪⎩

−ωα
M

τ 0R

∑nF
η=0
�=1

Jα,η
0,R

v
η
0

ω
η
M

n = 0

−ωα
M

τ 0R

∑nF
η=0

Jα,η
n,R

uη
〈i1,...,in 〉

ω
η
M

n �= 0

, (27)

where τ 0R is the reference relaxation time for R-process that depends on the crystal and will be discussed in the

sequel. Note that we have J 1,η0,R = 0, which implies zero production in the case of energy moment, i.e., n = 0
and α = 1. The detailed derivation of the above production matrix, as well as the expression for Jα,η

n,R can be
found in “Appendix C.”

(b) Normal process Using Eq. (11), we express fN as a function of non-equilibrium moments and obtain the
N-production moment as

Pα〈i1i2...in〉,N =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−ωα
M

τ 0N

∑nF
η=0
�=1

Jα,η
0,N

v
η
0

ω
η
M

n = 0

−ωα
M

τ 0N

∑nF
η=0

Jα,η
1,N

uη
i

ω
η
M

n = 1

−ωα
M

τ 0N

∑nF
η=0

Jα,η
n,N

uη
〈i1i2 ...in 〉

ω
η
M

n > 1

. (28)

where τ 0N is the reference relaxation time for N-process that also depends on the crystal and will be discussed
in the sequel. The detailed derivation of the above production matrix and an expression for Jα,η

n,N can be found
in “Appendix D.”

4 Boundary conditions

So far, we have derived the system of moments equations and provided expressions for the flux and production
terms to it. In this section, we will derive the appropriate boundary conditions for this system of equations.

4.1 Microscopic model for the phonon-Boltzmann equation

In order to describe the phonon–surface interactions, we need a microscopic boundary condition that can be
used to solve the phonon-Boltzmann equations. Later, this microscopic model will be utilized to obtain the
macroscopic boundary conditions for the moment equations.

We use a phonon–surface model similar to the Maxwell boundary condition in classical theory [39], where
the reflection kernel is a superposition of the kernels for diffusive reflection and specular reflection.

For phonons, we consider three possible scenarios when colliding with the surface [29,40]:
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• Thermalization This process occurs when the impacting phonon with the surface is absorbed at the wall,
and new phonons are emitted from the surface to the gas. The generated phonons will leave the surface
at the equilibrium Bose distribution (5), with the temperature of the surface. In this process, impacting
phonons exchange energy and momentumwith the surface, which subsequently leads to an energy transfer
across the crystal boundary.

• Specular reflection In this process, the energy and tangential momentum of the impacting phonons with
the surface remain conserved and only their normal momentums become inverted. This interaction does
not lead to any energy transfer or drag (like) forces across the crystal boundary.

• Isotropic scattering This process accounts for the adiabatic interactions, while phonons transfer tangential
momentum to the surface. The incoming phonons are reflected in a random direction, while keeping their
impacting energy. This process is in analogy to the collision of a light gas particle to the heavy surface
particle for classical gasses [41].

In order to describe the phonon–surface behavior, we need the distribution function in an infinitesimal
neighborhood of the wall, that we write as

f =
{
f ∗(x,k, t), niνi ≥ 0
f (x,k, t), niνi ≤ 0 . (29)

where νi is the surface normal unit vector, and ni = ki
k is the unit phonon direction vector. The distribution

function for phonons leaving the surface (niνi ≥ 0) is expressed by f ∗ and is described by the reflection
model.

We define β as the portion of phonons that are scattered or specularly reflected from the wall. Noting that
the number of phonons are conserved in these two process, we assume that γ of them are specularly reflected,
and (1 − γ ) are isotropically scattered. Moreover, α is the relative amount of thermalized phonons. Thus, the
distribution function for the particles leaving the surface reads

f ∗ = α fE (Ts, k) + βγ f
(
ki − 2k jν jνi

) + β
(1 − γ )

π

1

c

∫
nkνk<0

c (−nkνk) f (k j )dΩ. (30)

where the first term in the right-hand side denotes the thermalized phonons, which will be emitted with the
equilibrium distribution function at the wall temperature, Ts. The second term describes the specular reflection
of phonons, in which only the normal momentum will be inverted. The isotropic scattering of phonons, where
phonons are reflected with a random angle, is described in the third term of Eq. (30).

This relation must also hold in the equilibrium state, when both incoming and outgoing particles follow
the equilibrium distribution fE at T = Ts. Substituting this condition in Eq. (30) gives

α = (1 − β).

Therefore, based on the crystal properties, this model for boundary condition introduces β and γ as the free
parameters to fit to experimental data.

4.2 Boundary conditions for moments

To obtain the macroscopic boundary conditions for moments, we follow the ideas of Grad as outlined in
[23,42]. In this method, first we assume that the phonon distribution function can be approximated with the
Grad distribution Eq. (22), and set f = fG. Then, we require the continuity of certain normal fluxes over an
infinitesimal surface element that by using Eq. (29) gives∫

ΥAnkνk f dk =
∫

ΥAnkνk fGdk (31)

where ΥA is the polynomial of the frequency and the direction vector that we already defined in Eq. (18).
Following this method, we obtain relations between the macroscopic moments and the wall properties, which
shall be used as the boundary conditions for the macroscopic moments. Since f and fG agree for the incident
particles, the above relation simplifies to∫

niνi>0
ωαni1...nin nkνk f

∗dk =
∫
niνi>0

ωαni1...nin nkνk fGdk. (32)
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In order to perform the directional integration on the half space, it is best to use the normal-tangential frame
with respect to the surface, where the phonon direction vector can be expressed as nk = {τA, ν}k . In this frame,
the normal and tangential components to the surface can be written as

ν = nkνk = cos θ and τA = {sin θ cosφ, sin θ sin φ}A
Using this notation, Eq. (32) simplifies to

∫
ν>0

ωατA1 . . . τAr ν
n−r+1 f ∗dk =

∫
ν>0

ωατA1 . . . τAr ν
n−r+1 fGdk, (33)

where r ≤ n. Grad [23] observed that in order to get a meaningful set of boundary conditions ΥA must be even
in the normal component of the directional vectors, hence n − r must be even. Performing the integration in
Eq. (32) leads to the general relation for the boundary conditions

32π

a3Xα+1
M

(1 − β)

(∫
BZ

Xα
(
fE − fE (Ts)

)
G(X)dX

)
ξms δ{B1...Bs }

−β(1 − γ )
∑
n

μα

(
uα〈ν1...νn〉 − uα〈ν1...νn〉|E

)

ωα
M

ξms δ{B1...Bs } =
∑
n

n∑
r=0

(2n + 1)!!
(n − r)!r !

(
γβσ n+m

r+s − ξn+m
r+s

)
(
uα〈A1...Ar ν1...νn−r 〉 − uα〈A1...Ar ν1...νn−r 〉|E

)

ωα
M

δ{A1...Ar B1...Bs } (34)

where X = h̄ω
kBT

is the non-dimensional frequency. Moreover, the capital indices refer to the tangential, ν refers
to the normal directions with respect to the surface, and δ{B1...Bs } is the generalized tangential unit tensor. Note
that the above boundary conditions are an extension to the simplified form of boundary equations presented
in Ref. [29]. Details for derivation of this relation can be found in “Appendices E and F.”

5 Closed system of moment equations and boundary conditions

5.1 Macroscopic equations

Substituting the description for the flux term Eq. (24), as well as the production terms Eqs. (27) and (28),
provides a closed system of equations that can be solved to describe the thermal behavior of the crystal. We
introduce the non-dimensional moments, time and space as

Uα〈i1i2...in〉 = uα〈i1,...,in〉
ωα
M

, t̂ = tc0
L

, x̂ = x

L
, (35)

where L is the length scale of the system. Based on the desired accuracy, we can use a specific number of
transport equations for the direction and frequency. In the current study, we employ three directional moments
(uα

0 , uα
i , uα〈i j〉).As a required condition,wewill show that further increase in the number of directionalmoments,

i.e., uα〈i jk〉, uα〈i jkl〉 . . ., will not cause any noticeable change in the solution. Considering three directional
moments will lead to a set of 9× nF macroscopic equations, where nF is the number of considered powers of
frequency. By considering a small deviation from the equilibrium state, we can linearize the convection term
in the non-equilibrium moments, and write Eq. (21) as

∂U 1
0

∂ t̂
+

nF∑
η=0

A1,η
1

∂Uη
i

∂ x̂i
= 0,

∂V α
0

∂ t̂
+

nF∑
η=0

(
Aα,η
1 − ∂Uα

0|E
∂U 1

0

A1,η
1

)
∂Uη

i

∂ x̂i
= − 1

KnR

nF∑
η=0
�=1

Jα,η
0 V η

0 α ≥ 0, �= 1,
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∂Uα
i

∂ t̂
+

nF∑
η=0

Aα,η
2

∂Uη
〈i j〉

∂ x̂ j
+ 1

3

nF∑
η=0
�=1

Aα,η
0

∂V η
0

∂ x̂i
+ 1

3

∂
(
Aα
EU

α
0|E

)

∂U 1
0

∂U 1
0

∂ x̂i
= − 1

KnR

nF∑
η=0

Jα,η
1 Uη

i ,

∂Uα〈i j〉
∂ t̂

+ 2

5

nF∑
η=0

Aα,η
1

∂Uη
〈i

∂ x̂ j〉
= − 1

KnR

nF∑
η=0

Jα,η
2 Uη

〈i j〉. (36)

where α is the number of frequency powers in the non-equilibrium moment, which can be up to nF. Moreover,

Jα,η
n = Jα,η

n,R + KnR
KnN

Jα,η
n,N,

and

KnR = c0τ 0R
L

and KnN = c0τ 0N
L

,

are the reference Knudsen numbers for the R and N-processes. The temperature and heat flux implicitly appear
in the moments equations and will be discussed in details in the sequel.

The boundary conditions for this system are obtained from Eq. (34) as

Uα
ν = − (1 − β)

2 (β + 1)

�T

TS
Y α(T )U 1

0 − (1 − β)

2(β + 1)
V α
0 − 15

16

(1 − β)

(β + 1)
Uα〈νν〉 α ≥ 0, �= 1,

Uα〈A1ν〉 = −3

8

(1 − γβ)

(γβ + 1)
Uα

A1
α ≥ 0, �= 1.

(37)

where we linearized the first term of Eq. (34) in the temperature difference �T = TS − T , to get

Y α(T ) =
∫
BZ

Xα+1 exp(X)G(X)

(exp(X)−1)2
dX

Xα−1
M

∫
BZ

XG(X)
exp(X)−1dX

.

The first equation in the system of moments (36) represents the transport equation for the energy moment,
with no production on the right-hand side, and will be discussed in the next section. The transport equations
for the non-equilibrium scalar moments and vectorial moments are shown in the second and third equations
(36).

The vectorial moments will be related to the phonon momentum using the constitutive relations. The
transport equations for the vectorial moments include second-rank tensorial momentsUη

〈i j〉, that can be related
to the phonon stress. Dreyer and Struchtrup [6] showed that using the system of moment including the phonon
stress can successfully express the second sound in the crystal. Therefore, the system of moments (36) are
expected to include the corresponding terms for the second sound.

5.2 Energy, temperature and heat flux

The energy moment U 1
0 appearing in the system of equations (36) varies with temperature as

U 1
0 = 4πk4By

h̄4c30ωM

(∫
BZ

X2
MXG(X)

exp(X) − 1
dX

)
T 4.

Note that in the above equation X and XM are also a function of temperature. In the case of linear dispersion
relation with infinite Brillouin zone, i.e., Debye assumptions [4], this relation simplifies to

U1
0|D = 4π5k4By

15h̄4c30ωM
T 4.

However, this assumption is only valid at low temperatures.Variationof the energymoment relative to theDebye
energy moment with respect to the temperature is shown in Fig. 2. It is observed that at room temperature
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Fig. 2 Variation in the energy moment relative to the Debye energy moment with respect to the temperature for Silicon

the energy moment deviates from the Debye energy moment, which reiterates the limitation of the Debye
assumptions.

Another look into Eq. (36) shows that energy flux appears as a summation over the vectorial moments

Qi =
nF∑
η=0

A1,η
1 Uη

i . (38)

Note that the non-dimensional heat flux Qi , relates to the dimensional heat flux qi as

Qi = qi
co (h̄ωM)

.

We use Eq. (38) to obtain the energy flux as a function of energy gradient and derive the thermal diffusivity.

5.3 Thermal diffusivity and thermal conductivity

The thermal diffusivity, �, relates the heat flux to the gradient of energy as

qi = −�
∂u10
∂xi

. (39)

Equation (36)-3 shows the dependency of the vectorial moments on the gradient of energy moment that will
be used to obtain the thermal diffusivity. Considering that Fourier’s law Eq. (39), is valid in the first order of
Kn, we perform a Chapman–Enskog (CE) expansion [16] on the system of moments to identify the first-order
terms contributing to the Fourier’s heat flux.

We expand the non-equilibrium moments in the smallness parameter KnR as

V α
0 = V α

0,0 + KnRV
α
0,1 + O

(
Kn2R

)
,

Uα
i = Uα

i,0 + KnRU
α
i,1 + O

(
Kn2R

)
,

Uα〈i j〉 = Uα〈i j〉,0 + KnRU
α〈i j〉,1 + O

(
Kn2R

)
.

(40)

Then, we substitute this description in the system of moments. For example, Eq. (36)-2 reads

∂
(
V α
0,0 + KnRV α

0,1 + O
(
Kn2R

))

∂ t̂
+

nF∑
η=0

(
Aα,η
1 − dUα

0|E
dU 1

0

A1,η
1

)
∂
(
Uη
i,0 + KnRU

η
i,1 + O

(
Kn2R

))

∂ x̂i

= −
nF∑
η=0

1

KnR
Jα,η
0

(
V η
0,0 + KnRV

η
0,1 + O

(
Kn2R

))
.
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Fig. 3 Variation of the thermal conductivity with the temperature for silicon, line system of moments, dots experimental data in
Ref. [4]

Collecting the powers of Kn−1
R in the system of moments gives

V α
0,0 = Uα

i,0 = Uα〈i j〉,0 = 0,

that implies none of the above moments have zeroth-order contributions. Applying the CE expansion to (36)-3
with the updated form of (40) and collecting the contribution of order Kn0R gives

1

3

∂
(
Aα
EU

α
0|E

)

∂U 1
0

∂U 1
0

∂ x̂i
= − 1

KnR

nF∑
η=0

Jα,η
1 Uη

i,1. (41)

Using the description of energy flux from (38) and the first-order contribution of the vectorial moments
(41), the thermal diffusivity can be written as

� = �0
nF∑

η,γ=0

A1,η
1

⎛
⎝(

J−1
1

)ηγ ∂
(
Aγ
EU

γ

0|E
)

∂U 1
0

⎞
⎠ (42)

where

�0 = 1

3
τ 0Rc

2
0,

is the reference thermal diffusivity, obtained by considering a constant relaxation time at the reference tem-
perature.

Equation (42) shows that the thermal diffusivity predicted by the system of moments is a correction to the
reference value, due to the frequency dependency in the relaxation time, i.e., the contribution of the production
term J ηγ

1 . It has been shown in Ref. [38] that the correction resulting from the Normal scattering process can
be disregarded in the case of Silicon. Therefore, in order to adjust our relaxation time we assume that we only
have R-process in our system and neglect the N-process contribution.

Figure 3 shows the variation of the thermal conductivity with the temperature. Thermal conductivity, κ , is
related to the thermal diffusivity as

κ = �ρC,

where ρ is the mass density of the solid andC is the specific heat obtained in Eq. (8). We considered six powers
of frequency in our system, i.e., nF = 6. In order to fit to the experimental data for thermal conductivity, we
chose the crossover between the two relaxation times in Eq. (15) to occur at 0.3 of the length of Brillouin

zone, i.e.,
h̄ωC
kBT

BZ = 0.3. Note that since BZ in this expression also depends on the temperature, the considered
value for the crossover frequency does not vary with the working temperature. The predicted results from the
system of moments are in very good agreement with the experimental values for the Silicon. We could extend
the comparison of the thermal conductivity to larger temperatures; however, we are interested in the room
temperature comparison in the current study.



A. Mohammadzadeh, H. Struchtrup

3 4 5 6 7
0.0

0.1

0.2

0.3

0.4

nF

n F
n F

n F
1

n F

Fig. 4 Variation of the relative change in the thermal conductivity with the number of considered frequency powers

E

x

L

Fig. 5 One-dimensional body with periodic initial condition

The effect of increasing the number of frequency powers on the thermal conductivity is depicted in Fig. 4.

Here, we show the relative changes in the thermal conductivity φnF = |κnF−κnF−1|
κnF

with successive increase in

the number of considered frequencies, nF at T = 300K. We observed that the predicted results for thermal
conductivity do not change noticeably by increasing the number of frequency powers to more than six. Thus,
we set nF = 6 for the following results in this study.

6 Analytical solution in simple geometries

The system of moment equations (36) equipped with the boundary conditions (37) is a set of linear partial
differential equations that can be analytically solved in simple geometries. First, we study the behavior of one-
dimensional wave obtained by system of moments, and then, we investigate the one-dimensional Poiseuille
flow for the phonon gas.

6.1 1-D heat conduction with periodic initial condition

As the first application, we look into the decay of energy amplitude with time in a one-dimensional body
with periodic initial conditions such as Fig. 5. Johnson et al. [30] experimentally studied this problem by
interfering two laser beams and exposing a wafer to the diffraction pattern. In this experiment, a sinusoidal
energy pattern was initialized in a thin silicon wafer at room temperature, and the thermal decay was measured
to determine a wavelength dependency of the damping coefficient. They observed that at room temperature,
the thermal transport in Silicon significantly deviates from the diffusion model already at micron distances.
More specifically, they showed that low-frequency phonons, with rather large mean free paths that cannot be
described by the diffusion model, significantly contribute to the heat transfer at micron distances.

Maznev et al. [43] investigated this problem by proposing a model in which the high-frequency phonons
are described by the thermal diffusion equation, while the low-frequency phonons are described by the phonon-
Boltzmann equation. They reported good agreement with the experimental data.
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We use the moment method to predict the damping behavior as a function of the grating’s wavelength and
compare it with the data reported in Ref. [43]. Due to the periodic nature of this problem, we do not need to
use boundary conditions at both ends of the specimen and will study the flow behavior in the bulk.

The depth of wafer used in Ref. [30] was much smaller than its length and width, such that the sinusoidal
pattern remains homogenous throughout the entire specimen. Moreover, Johnson et al. used wafers with
different thickness to study the effect of thickness (boundary conditions) on the heat flow. For simple analysis,
we only consider a one-dimensional flow with infinite thickness to neglect effects of boundaries. Then, we
validate our numerical results with the reported data in Ref. [30] for the infinite thickness.

6.1.1 System of moment solution

In one dimension, we can write the linear system (36) as

∂UA

∂t
+ AAB

∂UB

∂x
= −CABUB, (43)

where AAB and CAB correspond to the variable vector

U =
{
U 1
0 , V α

0 ,Uα
i ,Uα〈i j〉

}
α = 0, 1, . . . , nF.

where α is the number of frequency powers in the non-equilibriummoment, which can be up to nF. Considering
the periodic nature of the problem, we make the harmonic wave ansatz

UA(x, t) = ŨA exp(i(�x − Ωt)),

where ŨA is the complex amplitude, � and Ω are, respectively, wavenumber and frequency of the harmonic
wave. By inserting this relation in Eq. (43), we get the algebraic equation

(iΩδAB − i�AAB + CAB)UB = 0,

that only has non-trivial solutions when the determinant of the matrix inside the parenthesis becomes zero. This
will lead to an eigenvalue problem, where Ω is the vector of eigenvalues for the matrix of �AAB + iCAB . For
each eigenvalue, there is a specific solution to the wave ansatz. By considering that only the energy moment
was initially nonzero and equal to E exp(i�x), the general solution can be obtained by adding all individual
solutions together to form

UA(x, t) = E
∑
B

QABQ
−1
B1 exp(i(�x − ΩBt)). (44)

where QAB is the matrix of eigenvectors. We use our MATHEMATICA code to obtain the solution for the
above expression. Note that the solution can be generated for an arbitrary number of moments, by simply
expanding the dimensions of UA, AAB and CAB .

6.1.2 Fourier’s law solution

The linearized heat equation in one dimension reads

∂U1
0

∂t
− �

∂2U 1
0

∂x2
= 0.

Using the wave ansatz leads to a quadratic relation between the frequency and the wavenumber

Ω = −i��
2,

that is the case when diffusion is the dominant energy transfer mechanism. Using the Fourier law to solve the
one-dimensional heat conduction problem gives

U 1
0 = E exp

(−��
2t
)
cos (�x) . (45)

This equation shows that the Fourier law predicts a pure exponential decay for the energy moment by time.
This exponential decay depends on the thermal diffusivity and the initial wavevector.
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Fig. 6 Variation of the energy decay with time for various grating periods,markers solution to Eq. (44), lines exponential function
passing through t1 and t2, red line Fourier’s solution in Eq. (45) (color figure online)

6.1.3 Results and discussion

Johnson et al. [30] conducted the thermal decay experiment on 15 transient gradient periods ranging from 2.4
to 25µm and reported that within the whole range of grating periods the thermal decay remains exponential.

First, we use the system of moments to investigate if the energy moment follows an exponential decay. For
this means, first we assume that the energy moment follows an exponential function such as Eq. (45), however,
the coefficient in the exponential argument is not necessarily the thermal diffusivity �. Then, we consider t1

and t2 as two arbitrary times during the decay, and plot − log
U1
0
E as a function of �

2t in this period. This curve
is compared with the predicted results from Eq. (44) for different values of grating period in Fig. 6.

For t1 and t2, we obtained the required time that the predicted energy by the system of moments drops to
80 and 20% of its initial value, respectively. We observed that as long as the grating period remains larger
than 0.5µm, the decay follows a pure exponential curve, which is in accordance with the reported results in
Ref. [30]. Moreover, it is observed that by increasing the grating length, the solution of system of moments
approaches the Fourier’s law solution, which is depicted by the red line.

Considering that the decay curve remains exponential for L > 0.5µm, we define the decay parameter

Γ
(
�

2) =
ln

(
U1
0 (0,t1)

U1
0 (0,t2)

)

t2 − t1
. (46)

Note that as long as we have an exponential decay, the choice of t1 and t2 are arbitrary and will not change the
value of the decay parameter. For the Fourier law, we have ΓF = ��

2 that shows a quadratic decay with the
wavenumber.

Figure 7 shows the decay parameter Γ relative to the bulk Fourier decay as a function of the grating period
for the moment solutions and the reported data in Ref. [30]. Johnson et al. [30] employed an effective thermal
conductivity model that takes into account the diffusion and ballistic transport of phonons, to report the energy
decay when boundary scattering is not present.

For our numerical results, we employed three forms of relaxation times: the crossover relaxation time
model Eq. (15) depicted by the black curve, Klemens model Eq. (14) depicted by the blue curve, and the
constant relaxation time model as shown by the red curve. Although all employed relaxation time models
predict the exact thermal conductivity (first-order contribution) at this temperature, this figure demonstrates
their shortcoming in capturing higher-order non-equilibrium phenomenon and suggests the importance of
employing appropriate relaxation times in the Callaway model.

We adjusted the free parameter in the relaxation time for the N-process Eq. (16), to get the best agreement
with reported data. It is seen that at larger grating period the decay parameter approaches to unity, which shows
the domination of diffusion in the heat transport mechanisms. It is observed that employing the appropriate
relaxation time in the system of moments provides very good agreement with the reported results in Ref. [30].

In order to ensure the independency of the solution on the number of moments, we increase the number of
directional moments nD and compared the relative deviation from the most accurate solution. Figure 8a shows
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Fig. 7 Variation in the decay parameter relative to the bulk Fourier decay with the grating period, green reported data in Ref. [30],
black crossover model, blue Klemens model, red constant relaxation time model (color figure online)
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Fig. 8 a Relative changes in thermal decay parameter with the successive increase in the number of directional moments for
L = 1.5µm (square), L = 2.5µm (circle) and L = 10µm (triangle). b Energy decay for grating periods of L=2.3–18µm,
corresponding to the reported results in Ref. [30]

the variation of ΦnD = |ΓnD−ΓS|
ΓnD

with the number of considered directional moments, where ΓS is the solution

of our largest systems with nF = nD = 7. The comparison is conducted for three grating periods, L = 1.5µm
(square), L = 2.5µm (circle) and L = 10µm (triangle). It is observed that by considering three directional
moments, the relative deviation from the solution of large system will be around 1%, and the solution is more
or less converged. This system, that includes second-rank tensorial moment, is rather simple for our analytical
calculation and will be used in the sequel.

Figure 8b shows the energy decay traces for grating periods from 3.2 to 18µm. This figure corresponds
to the experimental results of Fig. 2 in Ref. [30]. It is seen that the thermal decay becomes slower at larger
grating period. At larger grating period, it takes longer for heat to move from the peak to the null.

Note that in the experimental results of Ref. [30] the scattering of the phonons at the boundaries reduces the
thermal conductivity (thickness effects). However, for our simple analytical calculation we assumed that the
silicon specimen is wide enough that the boundary conditions do not play a role in the solution. The obtained
results from the system of moments in Fig. 8b are qualitatively similar to the experimental data of Fig. 2 in
Ref. [30].

6.2 1-D Poiseuille flow of phonons

As another application we use the system of moments to solve one-dimensional Poiseuille flow of phonons
in a heat conductor of thickness 2L , as depicted in Fig. 9. We assume that there is a constant energy gradient

of
∂U1

0
∂x along the x-direction inside a semi-infinite silicon specimen, with adiabatic boundaries at y = ±L .
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Fig. 9 One-dimensional Poiseuille flow

This problem is analogous to the one-dimensional pressure-driven flow in fluid dynamics, where the pressure
gradient in the fluid is replaced by energy gradients inside the solid.

As the first step to solve Poiseuille flow, we replace one of the vectorial moments with the energy flux Qi
to have an explicit relation for energy flux in our equations. By this change of variable, providing the solution
becomes more straightforward. Using the description for energy flux from Eq. (38) we replace U 1

i as

U 1
i = 1

A1,1
1

Qi −
nF∑

η=0
η �=1

A1,η
1

A1,1
1

Uη
i . (47)

By considering the steady-state condition, where all moments except for energy have zero gradient in
x-direction, we can decouple Eq. (36) to get

∂Qy

∂ ŷ
= 0,

nF∑
η=0

Aα,η
2

∂Uη
〈xy〉

∂ ŷ
+ 1

3

∂
(
Aα
EU

α
0|E

)

∂U 1
0

∂U 1
0

∂ x̂
= − 1

KnR

Jα,1
1

A1,1
1

Qx − 1

KnR

nF∑
η=0
η �=1

(
Jα,η
1 − Jα,1

1
A1,η
1

A1,1
1

)
Uη
x ,

1

5

Aα,1
1

A1,1
1

∂Qx

∂ ŷ
+ 1

5

nF∑
η=0
η �=1

(
Aα,η
1 − Aα,1

1

A1,1
1

A1,η
1

)
∂Uη

x

∂ ŷ
= − 1

KnR

nF∑
η=0

Jα,η
2 Uη

〈xy〉, (48)

where KnR = c0τ 0R
2L , and α is the frequency power in the non-equilibrium moment, which is considered to be

up to nF. The corresponding boundary conditions for this problem are obtained from Eq. (37)

Uα〈xy〉 = −3

8

(1 − γβ)

(γβ + 1)
Uα
x . (49)

Note that by substituting Eq. (47) in the above relation, we can obtain the boundary condition for the energy
flux moment.

We derive an expression for Uβ
〈xy〉 from Eq. (48)-3 as

Uβ
〈xy〉 = −1

5
KnR

nF∑
γ=0

nF∑
η=0

(
J−1
2

)β,γ

Fγ,ηŨη
x

where

Fγ,η = Aγ,1
1

A1,1
1

δ1η +
(
Aγ,η
1 − Aγ,1

1

A1,1
1

A1,η
1

)
,

and Ũη
x is the vector of vectorial moments, with the energy flux Qx on its second row, i.e., for η = 1.Moreover,

we can obtain the contribution of Fourier-like energy flux from Eq. (48 )-2 and define

Rα
x = −1

3
KnR

nF∑
η=0

(
B−1)α,η

∂
(
A η

EU
η
0|E

)

∂U 1
0

∂U 1
0

∂ x̂
, (50)
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Fig. 10 Heat flux predicted by the system of moments relative to the Fourier’s heat flux for the Poiseuille flow of phonons at
KnR = KnN = 0.2, β = 1 and γ = 0.5. a Constant relaxation time model for nF = 2, 3, 5, 6, 7. b Crossover relaxation time
model for nF = 2, 3, 5, 6, 7

where

Bα,η = Jα,1
1

A1,1
1

δ1η +
(
Jα,η
1 − Jα,1

1
A1,η
1

A1,1
1

)
.

Note that we have the Fourier law for R1
x , where we can see the relation between the energy flux and energy

gradient.
In order to get a compact form of the governing equations, we subtract the Fourier-like contribution of the

fluxes Eq. (50), from the vectorial moments, and define the variable vector

Zα
x = {

U 0
x − R0

x , Qx − R1
x , . . . ,U

nF
x − RnF

x

}
α

.

Noting that the energy moment only has a gradient in the x-direction, the system of moments in (48) simplifies
to an eigenvalue problem as

Zα
x = 1

5
KnR2

nF∑
η=0

Mα,η ∂2Zη
x

∂ ŷ2
, (51)

where

Mα,η =
∑
ε,β,γ

(
H−1)α,ε

Aε,β
2

(
J−1
2

)β,γ

Fγ,η.

Solving Eq. (51) gives the energy flux as

Qx = QF

⎛
⎝1 −

∑
γ

V1,γCγ cosh

(
ŷ

KnR

√
5

λγ

)⎞
⎠ , (52)

where Vα,γ is the matrix of eigenvectors, and λγ are the eigenvalues of Mα,η, that depends on the considered
relaxation time, dispersion relation and the number of frequency powers. Moreover, Cγ are the constants of
integration that need be found from the boundary equation (49), and QF is the Fourier’s heat flux

QF = −1

3
KnR

nF∑
η,γ

A1,η
1

⎛
⎝(

J−1
1

)ηγ ∂
(
Aγ
EU

γ

0|E
)

∂U 1
0

⎞
⎠ ∂U 1

0

∂ x̂
.

The system of moments gives a Knudsen layer correction to the Fourier solution. Figure 10 shows the
changes in the heat flux due to the increasing number of considered frequency moments nF for two models of
relaxation time. In the case of constant relaxation time, the production matrix is diagonal, and increasing the
number of frequency powers does not change the solution of the system. In this case, the deviation from the
Fourier solution is mainly observed in the vicinity of the crystal boundaries.
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Fig. 11 Heat flux predicted by the system of moments relative to the Fourier’s heat flux for the Poiseuille flow of phonons. a Effect
of the Knudsen number KnR = KnN =0.0001–0.3, β = 1 and γ = 0.5. b Effect of γ on the solution γ = 0, 0.25, 0.5, 0.75, 1
and KnR = KnN = 0.2

By considering the frequency dependency in relaxation time, we need sufficient number of frequency
moments to get a converged solution. By employing two frequency powers, i.e., the red line, the rarefaction
effects are mainly observed at the boundaries. As we increase nF, the deviation from the Fourier’s solution is
also predicted in the bulk of the phonon gas, and the solution will be more or less the same for nF = 5, 6, 7.

The effect of Knudsen number on the energy flux is depicted in Fig. 11a. As the Knudsen number decreases,
the energy flux approaches to the plug flow solution, that is predicted by the Fourier law. Increasing rarefaction
effects leads to a deviation from the Fourier’s solution first at the boundaries and then in the entire flow field.

Figure 11b shows the effect of changing the relative portion of specularly reflected and isotropically scat-
tered phonons on the energy flux. The plug flow solution is obtained when the reflection is purely specular
γ = 1, which means that boundaries do not have any influence on the bulk. Increasing the portion of isotrop-
ically scattered phonons imposes a drag on the gas at the crystal boundary, which leads to Knudsen layer
development and the emergence of the rarefaction effects in the flow field.

7 Conclusion

We presented a set of macroscopic equations for phonon transport to describe the thermal properties of a
crystal. We employed a quadratic dispersion relation in the finite Brillouin zone to express the dependency of
frequency on the wave vector. The collision term in the right-hand side of the phonon-Boltzmann equation is
described by the Callaway model, where the relaxation time is depending on the frequency of phonons. Using
this model, we proposed macroscopic moments that depend on the powers of frequency, and the polynomial
of phonon’s direction vector. Then, the transport equations for macroscopic moments are obtained from the
phonon-Boltzmann equation. The closure to this system of equations is provided using the Grad distribution
function.

We used the Grad method to provide boundary conditions for the system of moments. We considered
three types of microscopic interactions between phonons and crystal boundaries: thermalization, specular
reflection and isotropic scattering. The reflection kernel in the proposed boundary model is considered to be
the superposition of kernels for these microscopic interaction types.

In order to validate the system of moments, we studied the thermal decay in a one-dimensional body with
periodic initial condition. This problem was experimentally studied in Ref. [30]. We observed that the thermal
decay deviates from the heat equation already at micron level. We employed different relaxation times in
the Callaway model and observed that by accounting for both low-frequency and high-frequency phonons
in the relaxation time model, we get a good agreement with the reported data in Ref. [30]. As we employed
different relaxation timemodels, we observed that although they all agree in predicting the thermal conductivity
(first-order rarefaction effect), not all of them can predict the thermal decay curve (higher-order rarefaction
effect).

As the second application, we solved the one-dimensional Poiseuille flow of phonons in a crystal with
adiabatic surface. We observed that in this case the system of moments predict a Knudsen layer correction to
the Fourier’s solution.
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This study confirms the main role of frequency-dependent relaxation time in predicting non-equilibrium
heat transport in solids. By comparing our results with the reported data in Ref. [30], we get a validation that
the current form of moment equations is capable of capturing the deviation from equilibrium state properly.
We now aim to employ the boundary conditions to solve the two-dimensional flow of phonon gas to investigate
the effect of thickness on the heat transport in the silicon specimen.

Appendix A: Distribution Function

Maximizing the entropy density function for phonons under the constraint of our moment definition Eq. (17),
leads to

fG = y

exp
(

h̄
kB

∑nF
β=0

∑nD
m=0 Λ

β
〈i1...im 〉ωβn〈i1...nim 〉

)
− 1

, (A1)

where Λ
β
〈i1...im 〉 are the Lagrange multipliers. Comparing this form with the equilibrium distribution function,

Eq. (5), suggests that in equilibrium, i.e., m = 0 and β = 1, all Λ are zero, except for

Λ1 = 1

T
,

Now, we separate the equilibrium part from the non-equilibrium contribution, and define

λ
β
〈i1...im 〉 = �

β
〈i1...im 〉 − 1

T
δ0mδ1β,

that leads to λ1 = 0 in the equilibrium. By considering a small deviation from the equilibrium state, we can
linearize the distribution function in the non-equilibrium Lagrange multipliers to obtain

fG = fE −
y exp

(
h̄ω
kBT

)
(
exp

(
h̄ω
kBT

)
− 1

)2
nF∑

β=0

nD∑
m=0

(
λ

β
〈i1...im 〉

(
h̄ω

kBT

)β

n〈i1...nim 〉

)
.

The unknown λ
β
〈i1...im 〉 are determined as functions of the moments, by substituting this distribution function

into Eq. (17), and performing the integration over the Brillouin zone. For this means, first we switch to the
spherical coordinates with dk = dkdΩ , where Ω as the solid angel, and define the density of states g(ω) as

g(ω) = k2
dk

dω
, (A2)

to only deal with the frequency in our system of equations. Moreover, we introduce non-dimensional functions

X = h̄ω

kBT
and G(X) = c30

ω2
M

g(ω), (A3)

where c0 is the Debye velocity, and ωM is the reference frequency

ωM = 2c0
a

.

By introducing the matrix Iαβ as

Iαβ =
∫
BZ

Xα+β exp(X)G(X)

(exp(X) − 1)2
dX,

and the frequency function

Φη = exp(X)

(exp(X) − 1)2
∑
β

Xβ I −1
βη ,

we obtain the Grad distribution function as in Eq. (22).
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Appendix B: Flux term

By substituting the distribution function in Eq. (23), we get

Fα〈i1i2...in〉 = c0

⎛
⎜⎜⎜⎝
∫
BZ

B(X)XαG(X)
exp(X)−1 dX∫

BZ
XαG(X)
exp(X)−1dX

uα
0|Eδ0n

+
nF∑

η=0
�=E

(∫
BZ

B(X)XαΦηXη−α
M G(X)dX

)(
uη

〈i1,...,in〉 − uη
〈i1,...,in〉|E

)
⎞
⎟⎟⎟⎠ ,

where the first term only has contribution to the scalar flux term, n = 0. By separating the above relation for
the two cases of scalar and non-scalar flux terms, we get Eq. (24) with

Aα
E =

∫
BZ

B(X)XαG(X)
exp(X)−1 dX∫

BZ
XαG(X)
exp(X)−1dX

and Aα,η
n p

= Xη−α
M

∫
BZ

B(X)XαΦηG(X)dX.

Note that B(X) is the non-dimensional group velocity

B(X) = 1

c0

∂ω

∂k
.

Appendix C: R-process production term

By considering a small deviation from the equilibrium state, we express the distribution function for R-process
as

fR = fE − y
X exp (X)

(exp (X) − 1)2
(γRT − 1) . (C1)

Using the distribution function Eq. (22), and solving Eq. (10) for γR, to express this deviation as a function of
moments gives

γR = 1

T

⎛
⎜⎜⎝1 − a3

32πy

∑nF
η=0,
�=E

Xη+1
M

∫
BZ

XΦηG(X)
ΨR(X)

dX

∫
BZ

X2 exp(X)G(X)

ΨR(X)(exp(X)−1)2
dX

v
η
0

ω
η
M

⎞
⎟⎟⎠ . (C2)

where ΨR is the non-dimensional relaxation time for R-process

ΨR(X) =
τR

(
kBT
h̄ X

)

τ 0R
.

Using Eq. (C1) to obtain the R-production moment in Eq. (25), we get Eq. (27) with

Jα,η
0,R = Xη−α

M

⎛
⎝
∫
BZ

XαΦη

ΨR(X)
G(X)dX −

∫
BZ

XΦηG(X)
ΨR(X)

dX∫
BZ

X2 exp(X)G(X)

ΨR(X)(exp(X)−1)2
dX

∫
BZ

Xα+1 exp(X)G(X)

ΨR(X)(exp(X) − 1)2
dX

⎞
⎠ ,

Jα,η
n,R = Xη−α

M

∫
BZ

XαΦη

ΨR(X)
G(X)dX.
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Appendix D: N-process production term

Similar to the R-process, first we assume a small deviation from the equilibrium state to express fN as

fN = fE − y

(
X exp(X)

(exp(X) − 1)2
(γNT − 1) + exp(X)

√B(X)G(X)

(exp(X) − 1)2
h̄ωM

kBc0
ξ j n j

)
.

Then, we solve Eq. (11) for γN and ξi to get

γN = 1

T

⎛
⎜⎜⎝1 − a3

32πy

∑nF
η=0,
�=E

Xη+1
M

∫
BZ

XΦηG(X)
ΨN(X)

dX

∫
BZ

X2 exp(X)G(X)

ΨN(X)(exp(X)−1)2
dX

v
η
0

ω
η
M

⎞
⎟⎟⎠ , (D1)

and

ξi = − 3a4

64π

kB
h̄ y

∑
η

∫ √B(X)ΦηXη+1
M G(X)

3
2

ΨN(X)
dX

∫ B(X) exp(X)G(X)2dX
ΨN(X)(exp(X)−1)2

uη
i

ω
η
M

.

where ΨN is the non-dimensional relaxation time for N-process

ΨN(X) =
τN

(
kBT
h̄ X

)

τ 0N
.

By accessing to the distribution function for the N-process, we can obtain the production moments in Eq. (28)
with

Jα,η
0,N = Xη−α

M

⎛
⎝
∫
BZ

XαΦη

ΨN(X)
G(X)dX −

∫
BZ

XΦηG(X)
ΨN(X)

dX∫
BZ

X2 exp(X)G(X)

ΨN(X)(exp(X)−1)2
dX

∫
BZ

Xα+1 exp(X)G(X)

(exp(X) − 1)2 ΨN(X)
dX

⎞
⎠ ,

Jα,η
1,N = Xη−α

M

⎛
⎜⎝
∫
BZ

XαΦη

ΨN(X)
G(X)dX −

∫
BZ

√B(X)ΦηG(X)
3
2

ΨN(X)
dX∫

BZ
exp(X)B(X)G(X)2

ΨN(X)(exp(X)−1)2
dX

∫
BZ

Xα
√B(X) exp(X)G(X)

3
2

(exp(X) − 1)2 ΨN(X)
dX

⎞
⎟⎠

Jα,η
n,N = Xη−α

M

∫
BZ

XαΦη

ΨN(X)
G(X)dX.

Appendix E: Distribution function for the isotropic scattering

As mentioned in 4.1, for this type of interaction the impacting phonon with the surface is reflected in a random
direction

fSc = 1

πc

∫
nkνk<0

c (−nkνk) fGdΩ

Using Grad distribution function in the above relation and further simplification give

fSc = fE − a3

32π

∑
η,m

(2m + 1)!!
m! ΦηXη+1

M

(
uη

〈 j1,..., jm 〉 − uη
〈 j1,..., jm 〉|E

ω
η
M

)∫
ki νi<0

n j1...n jmnkνkd� (E1)

Note that here we use the direction vector with trace to simplify the integration over the half space. Without
losing the generality, we consider a surface with the normal in the z-direction so that the normal unit vector
to the surface reads νi = {0, 0, 1}i . Moreover, we use the normal-tangential framework with respect to the
surface, where the direction vector can be written as ni = {ν, τA}i with ν = niνi = cos θ and τA =



A. Mohammadzadeh, H. Struchtrup

{sin θ cosφ, sin θ sin φ}. Using this notation, we can express the tensorial moments with normal and tangential
components. For example, the second-order tensor u〈i j〉 can be written as

uα〈i j〉 =
[
uα〈AB〉 uα〈Aν〉
uα〈Bν〉 uα〈νν〉

]

i j

where the capital indices, A and B, denote the tangential directions. Note that the trace-free condition reads
uα〈AA〉 + uα〈νν〉 = 0. Following the same method, the higher-order tensors can be expressed as

(
uη

〈 j1,..., jm 〉 − uη
〈 j1,..., jm 〉|E

ω
η
M

)
n j1...n jm =

m∑
r=0

m!
r ! (m − r)!(

uη
〈A1...Ar ν...ν〉 − uη

〈A1...Ar ν...ν〉|E
ω

η
M

)
τA1 . . . τAr ν

m−r

Using this relation in Eq. (E1), we can get

fSc = fE − a3

32π2

∑
η,m

(2m + 1)!!
m! ΦηXη+1

M

m∑
r=0

m!
r !(m − r)!

(
uη

〈A1...Ar ν...ν〉 − uη
〈A1...Ar ν...〉|E

ω
η
M

)∫
ν<0

τA1 . . . τAr ν
m−r+1dΩ.

The integral only has nonzero value for even numbers of r , which can be written as

− 1

π

∫
ν<0

τA1 . . . τAr ν
m−r+1d� =

{
σm
r δ{A1...Ar } r even

0 r odd (E2)

where δ{A1...Ar } is the generalized tangential unit tensor, that has (r − 1)!! terms. For example

δ{AB} = δAB and δ{ABCD} = δABδCD + δACδBD + δADδBC .

By taking the traces from Eq. (E2), we obtain

σm
r = (−1)m−r Γ

(
1 + m−r

2

)
Γ

(
1 + r

2

)
r !!Γ (

2 + m
2

) ,

where Γ is the Gamma function. Using the tensorial calculation, we simplify the product of the tonsorial
moments with the unit tangential tensors as

(
uη

〈A1...Ar ν...ν〉 − uη
〈A1...Ar ν...ν〉|E

ω
η
M

)
δ{A1...Ar } = (r − 1)!! (−1)

r
2

(
uη

〈v...ν〉 − uη
〈v...ν〉|E

ω
η
M

)

|m
. (E3)

where the subscriptm denotes the moment withm indices. The distribution function for the isotropic scattering
can now be written as

fSc = fE + a3

32π

∑
η,m

ΦηXη+1
M μm

(
uη

〈v...ν〉 − uη
〈v...ν>|E

ω
η
M

)

|m
, (E4)

where

μm =
m∑

r=0
r even

(−1)m− r
2
(r − 1)!!

r !!
(2m + 1)!!( r2 )!
r !(m − r)!

Γ
(
1 + m−r

2

)
Γ

(
2 + m

2

) .

Equation (E4) relates the distribution function for the particles that isotropically scattered from the surface to
the normal components of the non-equilibrium moments.
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Appendix F: Obtaining Eq. (34)

Starting from Eq. (E2), first we need to substitute the Grad distribution function. In here, the directional
integration has a different sign compared to Eq. (E2),

− 1

π

∫
ν>0

τA1 . . . τAr ν
m−r+1dΩ =

{
ξmr δ{A1...Ar } r even
0 r odd

where ξmr = |σm
r |. The right-hand side Eq. (33) can be written as

∫
ν>0

ωατB1 . . . τBsν
m−s+1 fGdk = 8πωα

M

a3Xα+1
M

(∫
BZ

Xα fEG(X)dX

)
ξms δ{B1...Bs }

+1

4

∑
n

n∑
r=0

(2n + 1)!!
r !(n − r)! ξ

n+m
r+s

(
uα〈A1...Ar ν1...νn−r 〉 − uα〈A1...Ar ν1...νn−r 〉|E

)
δ{A1...Ar B1...Bs }.

The contribution for the diffusive particles on the left-hand side of Eq. (33) can be written as

(1 − β)

∫
ν>0

ωατB1 . . . τBsν
m−s+1 fE(Ts)dk = 8πωα

M

a3Xα+1
M

(1 − β)

(∫
BZ

Xα fE (Ts)G(X)dX

)
ξms δ{B1...Bs }.

For the specularly reflected particles, we have

βγ

∫
ν>0

ωατB1 . . . τBsν
m−s+1 fSdk = βγ

(
8πωα

M

a3Xα+1
M

(∫
BZ

Xα fEG(X)dX

)
σm
s δ{B1...Bs }

+1

4

∑
n

n∑
r=0

(2n + 1)!!
r !(n − r)!σ

n+m
r+s

(
uα〈A1...Ar ν1...νn−r 〉 − uα〈A1...Ar ν1...νn−r 〉|E

)
δ{A1...Ar B1...Bs }

)
,

and for the isotropic scattering, by using Eq. (E4) we get

β(1 − γ )

∫
ν>0

ωατB1 . . . τBsν
m−s+1 fScdk

= β(1 − γ )

(
8πωα

M

a3Xα+1
M

(∫
BZ

Xα fEG(X)dX

)
+ 1

4

∑
n

μα
(
uα

...ν1...νn〉 − uα〈ν1...νn〉|E
))

ξms δ{B1...Bs }.

Substituting these relations in Eq. (33), we obtain Eq. (34).
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