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Recently Struchtrup (2013) proposed an extension to the original Maxwell boundary conditions for the
Boltzmann equation which introduces velocity dependent accommodation coefficients. These boundary
conditions are implemented into the direct simulation Monte Carlo (DSMC) method. The effect of the
velocity dependent Maxwell (VDM) boundary conditions on thermal transpiration phenomena is studied
for two-dimensional micro-cavities. Variation of the three microscopic parameters provided by the VDM
boundary condition yields changes in slip velocity, temperature jump and the thermal transpiration
effect. The results indicate that the strength of thermal transpiration can change and, depending on
the values of the coefficients, the rarefied flow can be driven from warmer toward colder regions.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The interactions between gas particles and a solid surface are
complex. It is unlikely that a general mathematical model be devel-
oped that can adequately describe the gas–surface interactions for
different combinations of gases and surfaces at all conditions.
However, by using microscopic simulation methods, such as direct
simulation Monte Carlo (DSMC) [1] and molecular dynamics (MD)
[2], better understanding of the interaction can be obtained. This
knowledge helps in developing phenomenological models which
can provide better fit to the experimental data.

Experiments with molecular beams show that the beam is scat-
tered into a plume-like structure around the line of specular reflec-
tion [3,4]. The structure of the reflected beam becomes particularly
important when scattered particles are free to move for a long dis-
tance inside the bulk gas. The Knudsen number, Kn, is defined as
the ratio between the mean free path of the gas particles and the
flow characteristic length scale, Kn ¼ k

L. Special attention should
be given to the reflection kernel when the Knudsen number
becomes large.

This plume-like structure is described and captured by the
Cercignani–Lampis (CL) model [5,6], where the shape of the
reflection plume strongly depends on the values of the normal
and tangential accommodation coefficients, an and at . In this
model, the collision outcome depends on the velocity of impacting
particle with the surface. Although the CL model can be fitted to
slip velocity and temperature jump, it does not provide sufficient
flexibility to be fitted to the data for thermal transpiration
coefficient [7].

For moderate Knudsen numbers, i.e., in the transition flow
regime, the particles reflected from the surface travel a rather short
distance before their first inter-molecular collision. In this regime
the exact shape of the reflection plume is not required to express
boundary conditions, but an appropriate approximation can deliver
the chemistry of gas–surface interaction. This provides room for a
simpler model than CL, which can be fitted to the thermal tran-
spiration coefficient. The original Maxwell accommodation model
[8], due to its simplicity, cannot predict different accommodation
coefficients for the slip velocity and temperature jump.

Epstein [9] considered the effect of impact velocity on the
reflection kernel, and proposed an extension to the Maxwell
model. In this model the degree of thermal accommodation is
determined based on the impact energy of the colliding particle.

Recently, Struchtrup [10] added the isotropic scattering kernel
to the Maxwell’s boundary condition to also account for nearly
adiabatic surface with friction [11]. Also this model, by considering
the impact velocity of the particles, allows to incorporate velocity
dependent accommodation coefficients into the microscopic
description. In the velocity dependent Maxwell (VDM) boundary
condition, a particle colliding with the surface is either thermal-
ized, specularly reflected, or scattered in an arbitrary direction,
where the probabilities for the different processes depend on the
impact velocity. The model provides wide flexibility for the choice
of the velocity dependent accommodation coefficients. A particular
model was suggested in Ref. [10], based on the assumption that the
gas–wall interaction can be described as a thermally activated
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process, where particles with higher velocities are more likely to be
specularly reflected or isotropically scattered from the surface,
while particles with smaller velocity are more likely to be thermal-
ized. The corresponding macroscopic boundary conditions for slip
velocity and temperature jump were obtained from the first order
Chapman–Enskog expansion.

Thermally-driven flows inside a two-dimensional enclosure
have been studied in the literature [12,13]. Vargas et al. [13] exam-
ined the effect of Knudsen number, surface temperature gradient
and the geometry aspect ratio on the flow formation inside a micro
cavity. They observed that the interplay between thermal tran-
spiration and the viscous stresses in the boundary determines
the direction of tangential velocity close to the wall. They also
reported that close to the continuum regime thermal transpiration
dominates, and the gas flows from colder to warmer regions.

The importance of boundary conditions in the thermal-driven
flows has also attracted the attention of other researchers
[14,15]. Cai [14] used the Maxwell boundary condition to study
the flow formation inside a cavity subjected to a temperature pro-
file on the wall. He considered two cases of continuum and free
molecular regimes to see the effect of Knudsen number on the rar-
efied flow. Kosuge et al. [16] used the Maxwell and the CL model to
study the steady flow between parallel plates with sinusoidal tem-
perature distribution at large Knudsen numbers. They demon-
strated that considering the CL model leads to a steady flow
between the plates, whereas for the Maxwell-type model the gas
remains at rest.

In the current study, the velocity vector for particles reflecting
from the surface is derived, and the required steps to implement
the VDM boundary conditions into a DSMC solver are presented.
To study the effects of thermal transpiration, rarefied flows inside
a two-dimensional thermal cavity with temperature gradient along
the surface are considered. The effects of the three independent
coefficients incorporated in the VDM boundary conditions on the
vortex formation, and strengthening or weakening of the rarefac-
tion effects are studied. The results indicate that, in contrast to
the CL model, the VDM boundary condition provides opportunity
for fitting to experimental data for transpiration flow.

The remainder of the paper is organized as follows. A short
description of the DSMC method employed in this study is pre-
sented in Section 2. The general reflection kernel for the VDM
boundary conditions is rephrased in Section 3.1; then the reflecting
velocity for use in the DSMC method is obtained and presented.
The geometry considered in this study is presented in
Section 4.1, and the boundary conditions are tested in a micro cav-
ity to ensure the persistency of the Maxwell distribution function.
Afterward, the flow formation inside a micro cavity with tempera-
ture gradient is studied in Section 4.2. A brief description of the
thermal transpiration flow is presented, and the possibility of
inverse transpiration flow is discussed in Section 4.3. We shortly
mention the hydrodynamic boundary equations for the VDM
model, and use the Grad equations to explain the flow formation.
The DSMC solution for the thermal cavity in larger rarefaction
regime is presented in Section 4.4. The paper ends with our conclu-
sions in Section 5.
2. DSMC method

The DSMC method is a numerical tool to solve the Boltzmann
equation by using the statistical simulation of molecular processes
based on the kinetic theory of dilute gases [1]. In this method,
many independent simulating particles are used to model gaseous
flows, where each particle represents a large number of real gas
molecules. For the current study, we modified our DSMC solver
[17–19,12,11] by implementing the VDM boundary condition. In
this code, the selection of collision pairs is based on the no-time-
counter (NTC) method, therefore the computational time is propor-
tional to the number of the simulating particles [1]. The fluid is
argon as a Maxwell molecule with m ¼ 6:63� 10�26 kg and the
reference viscosity of l0 ¼ 1:9549� 10�5 Pa:s. The Knudsen
number is defined as [20]

Kn ¼ l0

q0

ffiffiffiffiffiffiffiffi
RT0
p

L
: ð1Þ

Here, q0 is the reference density, and L indicates the
characteristic length of the flow. The DSMC simulation starts with
32 particles located in each cell. As the flow reaches the steady
state, the molecular properties are sampled over a large period of
time to reduce the statistical scattering. In addition, a filtering post
processor is used to minimize the scattering in the thermodynamic
properties. In this filtering, the sampled macroscopic properties,
F, in cell N are averaged over a pattern of its neighboring
cells [17]

~FðNÞ ¼
FN þ

PI¼Nn
I¼1 FI

Nn þ 1
:

3. VDM boundary conditions

3.1. Reflection kernel

The reflection kernel for the generalized Maxwell model can be
written as a superposition of diffuse reflection, specular reflection,
and isotropic scattering [10],

P c0 ! cð Þ ¼ H c0ð Þ cnj jf 0H cð ÞR
cn>0 cnj jf 0H cð Þdc

þ 1�H c0ð Þð Þ

� cd c0k � ck þ 2njcjnk

� �
þ 1� cð Þ 1

p
cnj j
c03

d c0 � cð Þ
� �

: ð2Þ

Here, c0k and ck denote velocities of incoming and outgoing particles,
respectively, c0 and c are the respective absolute values, and
cn ¼ cknk is the contribution normal to the wall. The velocity depen-
dent accommodation coefficient Hðc0Þ is the probability that an
incoming particle will be diffusively reflected, and the coefficient
c is introduced so that c 1�Hðc0Þð Þ is the probability that a particle
will be specularly reflected.

Many meaningful models for the coefficients HðcÞ and c can be
developed [9]. In the following we use the model suggested in Ref.
10, where c ¼ const, and thermalization is assumed as a thermally
activated process,

H c0ð Þ ¼ H0 exp
e� a m

2 c02

kTW

� �
: ð3Þ

Here, the dimensionless coefficient a is a measure for the strength
of the activation, where a ¼ 0 as a case without activation, corre-
sponds to the original Maxwell model with fully diffusive walls.
Moreover, � considers the effect of energy bounce on the reflected
particle, and H0 is a constant depending on the wall structure.
Note that these coefficients can be varied so that the results fit to
the experimental data. In the following we assume that H0 ¼ 1
and � ¼ 0 unless otherwise mentioned. In Eq. (2), f 0 ¼ 2b

ffiffiffiffi
p
p

f M=q
is the reduced Maxwell distribution in the rest frame, which with
the above notation can be written as, with b ¼

ffiffiffiffiffiffi
m

2kT

p
,

f 0 ¼
2
p

b4 exp �b2c2� �
:

The probability function, Eq. (3), varies between 0 and 1, and
depends on the velocity c0 of the particle colliding with the surface.
To determine whether the particle is diffusively reflected or
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scattered, a random number, R1 2 ½0;1� is drawn, such that the par-
ticle undergoes a diffuse reflection if R1 < Hðc0Þ. If, however,
R1 > Hðc0Þ, a second random number R2 2 ½0;1� is drawn, and the
scattering is specular for R2 < c, and isotropic for R2 > c. For each
of these cases, the reflection kernel is selected according to the fol-
lowing rules:

3.2. Diffusive reflection, R1 < Hðc0Þ

The first term of Eq. (2) determines the velocity of a diffusively
reflecting particle, i.e., the reflection kernel is

PD c0 ! cð Þ ¼ cnj jf 0H cð ÞR
cn>0 cnj jf 0H cð Þdc

:

To proceed, we consider the particle velocity in cylindrical coordi-
nates, so that c! fcn; cr; hg and dc ¼ crdcndcrdh. For the imple-
mentation into DSMC we need the cumulative probability that a
particle leaves with a velocity below fVn;Vr;Xg, defined as

FnFrFX ¼
Z Vn

0

Z Vr

0

Z X

0
PD c0 ! cð Þcrdcndcrdh: ð4Þ

Here, Fn; Fr and FX are the cumulative probabilities for the velocity
vector in cylindrical coordinates. Making f 0 and H cð Þ explicit, and
performing all integrations, we find at first

FnFrFX ¼
2
R Vn

0 b2cn exp � 1þ að Þb2c2
n

� �
dcn

2
R1

0 b2cn exp � 1þ að Þb2c2
n

� �
dcn

�
2
R Vr

0 b2cr exp � 1þ að Þb2c2
r

� �
dcr

2
R1

0 b2cr exp � 1þ að Þb2c2
r

� �
dcr

RX
0

dh
2pR 2p

0
dh
2p

: ð5Þ

The above integrals can be calculated analytically, and Eq. (4) sim-
plifies to

Fn ¼ 1� exp � 1þ að Þb2V2
n

	 

;

Fr ¼ 1� exp � 1þ að Þb2V2
r

	 

;

FX ¼
X

2p
:

Solving the above equations for the three upper limits of integral
gives

Vn ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

1þ a
p 1

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� ln 1� Fnð Þ

q
;

Vr ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

1þ a
p 1

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� ln 1� Frð Þ

q
;

X ¼ 2pFX:

By converting back to the Cartesian coordinates for a surface with
normal in y-direction, the reflecting velocities are obtained as

cx ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

1þ a
p 1

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� ln 1� Frð Þ

q
cos 2pFXð Þ;

cy ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

1þ a
p 1

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� ln 1� Fnð Þ

q
;

cz ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

1þ a
p 1

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� ln 1� Frð Þ

q
sin 2pFXð Þ:

ð6Þ

The cumulative probabilities are uniformly distributed in ½0;1�. The
velocity of the thermalized particle is determined by drawing three
random numbers for fFn; Fr ; FXg, and computing the velocity from
the above.

Compared to the corresponding expressions for the standard
Maxwell boundary conditions, the VDM boundary condition con-
tains the factor 1ffiffiffiffiffiffiffi

1þa
p that is due to the velocity dependence of the
accommodation coefficient H c0ð Þ. Assuming a ¼ 0 gives the con-
ventional Maxwell boundary conditions for the diffusive wall [1].

3.3. Specular reflection, R1 > Hðc0Þ and R2 < c

A particle is specularly reflected if R1 > Hðc0Þ and R2 < c. The
reflection kernel

PSp c0 ! cð Þ ¼ d c0k � ck þ 2njcjnk

� �
;

describes the deterministic specular reflection of the particle, with
the after-collision velocity

cx ¼ c0x; cy ¼ �c0y; cz ¼ c0z:
3.4. Isotropic scattering, R1 > Hðc0Þ and R2 > c

Isotropic scattering occurs when R1 < Hðc0Þ and R2 > c, and the
corresponding reflection kernel is

PSc c0 ! cð Þ ¼ 1
p

cnj j
c03

d c0 � cð Þ:

By using spherical coordinates, fc; h;/g we can write

P c0 ! cð Þdc ¼ 1
pc03

c cos /d c0 � cð Þc2dc sin /d/dh

¼ d c0 � cð Þdc½ � 1
2p

dh

� �
2 cos / sin /d/½ �:

The delta function indicates that the absolute velocity of the
leaving particle is deterministic, c ¼ c0. However, the direction of
the leaving particle is subjected to the process of random scatter-
ing, and as before we consider the cumulative probabilities

Fh ¼
Z H

0

1
2p

dh; F/ ¼
Z U

0
2 cos /ð Þ sin /ð Þd/;

The integrals for the cumulative probabilities Fh; F/ can be
solved analytically to give

H ¼ 2pFh; U ¼ arcsinð
ffiffiffiffiffiffi
F/

p
Þ ð7Þ

By converting back the velocity components to the Cartesian
coordinates, and noting that cosðarcsinðxÞÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

, the velocity
of the scattered particle is

cx ¼ c0
ffiffiffiffiffiffi
F/

p
cosð2pFhÞ;

cy ¼ c0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� F/

q
;

cz ¼ c0
ffiffiffiffiffiffi
F/

p
sinð2pFhÞ:

ð8Þ

The cumulative probabilities are uniformly distributed in ½0;1�. The
velocity of the isotropically scattered particle is determined by
drawing two random numbers for fF/; Fhg, and computing the
velocity from the above.

4. Results and discussion

4.1. Persistency of Maxwell distribution in micro-cavity

We consider a square micro-cavity as depicted in Fig. 1a. The
temperature of the wall in the micro-cavity, T, varies along the x
and y-directions as indicated. We are interested in transpiration
flow, where the driving force for the flow in the cavity is the tem-
perature gradient along the surfaces.

In the DSMC method particles are initially distributed according
to the Maxwellian distribution function [1]. In this section we
ensure that in a system without perturbation the Maxwell dis-
tribution persists, when particles collide with the VDM boundary
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condition and reflect back to the flow. For this test, the rarefied
flow in the micro-cavity is left to itself, and the microscopic veloc-
ity distribution function as well as the macroscopic velocity profile
are obtained. The wall temperatures in the micro-cavity are pre-
scribed as

TB ¼ TL ¼ TT ¼ TR ¼ 300 K:

The coefficients for the VDM boundary conditions assumed in this
test are

e ¼ 0; a ¼ 0:5; c ¼ 0:7 H0 ¼ 1:

Fig. 1b demonstrates the normalized horizontal velocity dis-
tribution function for a computational cell in the top left corner
of the cavity. It is observed that the distribution obtained from
the DSMC simulation agrees with the local Maxwellian dis-
tribution, obtained from the local values for density, velocity and
temperature. The horizontal macroscopic velocity distribution
inside the cavity in Fig. 1c shows that the persistency of the
Maxwellian distribution is well guaranteed by the implementation
of this new set of boundary conditions.

4.2. Micro-cavity

The flow formation inside the micro-cavity is considered for the
case where the temperature of the side walls varies linearly,
specifically we set

TB ¼ 600 K TT ¼ 300 K TL yð Þ ¼ TR yð Þ ¼ TB 1þ y
L

	 

:

Fig. 2 shows the effect of the coefficients H0; a and c on the
velocity streamlines and the temperature distribution inside the
cavity.

The left column in Fig. 2 shows the DSMC results when the
reflection kernel does not depend on the velocity of impacting par-
ticle, a ¼ 0. The right column, on the other hand, shows the flow
formation when dependency of the reflection on the impact veloc-
ity is considered, a – 0.

Starting from the fully diffusive surface, Fig. 2a we observe that
the tangential component of the velocity vector close to the verti-
cal wall is downward: thermal transpiration pushes the rarefied
flow towards the bottom (i.e., the warmer) side of the cavity.

Considering the impact velocity on the reflection kernel using
the VDM boundary condition, decreases the magnitude of the ver-
tical velocity close to the vertical walls. As we increase a and c, an
additional vortex which drives the rarefied flow toward the upper
cx

f

-1000 -500 0
0

0.0005

0.001

0.0015

0.002

0.0025

(b)

L

Lx
y

DA

CB

(a)

T(x)
T

T(y)
L

T(x)
B

T(y)
R

Fig. 1. Persistency of the Maxwell distribution in micro-cavity, (a) cavity geometry, (b)
horizontal velocity distribution in the micro-cavity.
(i.e., colder) side of the cavity appears (Fig. 2e and f). In other
words, sufficiently large values of a and c in the VDM boundary
condition lead to a decreased strength of the thermal transpiration
phenomenon, and the appearance of warm-to-cold vortices.

In order to confirm the effect of impact velocity on the forma-
tion of the secondary vortex, we performed the simulation when
the reflection kernel does not depend on the impact velocity
a ¼ 0, but contains diffusive, specular and isotropic scattering. In
order to have a comparable setting we adjust H0 such that it is
the average probability for a diffusive reflection, defined as
�H ¼

R
cn<0 H cð Þcnf Mdc=

R
cn<0 cnf Mdc which gives �H ¼ ð1þ aÞ�2. For

comparison with the case for a ¼ 0:2, we hence chose H0 ¼ 0:7,
and perform the simulation for two values of c. As depicted in
Fig. 2b and c, the secondary vortex does not appear when the
reflection kernel is independent of the impact velocity. This figure
indicates that, in the case of VDM boundary condition, the depen-
dency of the reflection kernel on the impact velocity is required to
weaken/increase the strength of the thermal transpiration effect.

Smaller transpiration effects in the VDM boundary condition
allows other non-equilibrium phenomena, such as thermal stres-
ses, to play a more important role in determining the flow direction
close to the surface. The reversed direction of velocity close to the
surface also suggests the possibility of reversed transpiration flow,
where the rarefied flow is driven from warm to cold; this will be
discussed in greater detail in Section 4.3.

Comparing the temperature distributions inside the cavity
shows that the VDM boundary condition leads to smaller tempera-
ture gradients inside the cavity. Since not all particles are forced to
thermalize with the surface after collision, the wall information
will not be completely transferred to the flow field, so that the
temperature jump is larger, which leads to smaller maximum,
and larger minimum temperature inside the cavity.

Fig. 3 shows the rarefied flow properties along the vertical line
X
L ¼ 0:95, which lies inside the Knudsen layer of the right wall. The
VDM boundary condition allows some particles to reflect back to
the flow without exchanging momentum, or energy, with the sur-
face, which subsequently decreases the shear stress along the wall.
It is also seen that the effect of changing c on the tangential veloc-
ity is quite different for standard Maxwell and the VDM boundary
condition. In the case of standard Maxwell boundary condition, the
tangential velocity is not much dependent on c. As a and c
increases, the shear stress and the vertical velocity become smaller
in magnitude, see Fig. 3a and b, and the velocity changes sign when
the small vortex close to the right wall appears. Fig. 3c shows
Vx ( m/s )

0.2
0.15
0.1
0.05
0

-0.05
-0.1
-0.15
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500 1000
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normalized microscopic horizontal velocity distribution function, (c) macroscopic



Fig. 2. Velocity streamlines overlaid on the temperature distribution, Kn ¼ 0:1; e ¼ 0.
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Fig. 3. The effect of H0; a and c coefficient on the flow properties along X
L ¼ 0:95 for Kn ¼ 0:1; e ¼ 0.
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smaller gradient of temperature for the new reflection kernel,
which appears to be unaffected by the coefficients in the VDM
model.
4.3. Forward and inverted transpiration flow

Thermal transpiration takes place when two particles coming
from the cold (smaller thermal velocity) and warm (higher thermal
velocity) regions exchange momentum with the surface at the
same location. Fig. 4 shows an schematic of the particle–surface
interaction for the two types of boundary conditions.

The left figure shows the collisions for the classical Maxwell
boundary model, where the accommodation is independent of
impact velocity. Since the collision kernel is isotropic, the average
reflection velocities for the particle colliding with the wall is per-
pendicular to the wall, as indicated by the dashed vectors.
Therefore, in average, the complete tangential momentum of an
incoming particle is transferred to the wall. Since the particle com-
ing from the warmer region has a higher impact velocity, it can
induce a greater force on the wall, so that the net force on the wall
points toward the colder region, see FW in Fig. 4a. As a reaction, the
wall drives the rarefied flow toward the warmer region by
Maxwell fully diffusive boundary
(a)

Warm

F
W

HC

WHWC

Cold

FG

Fig. 4. Thermal transpiration effect over the conven
imposing a shear force on the flow, FG. Consequently, the gas
moves in the direction of the wall temperature gradient.

In the VDM boundary condition, as shown in the right figure, a
particle with higher velocity c0 relative to the surface has a higher
chance, c 1�Hðc0Þð Þ, to be specularly reflected, which implies no
exchange of tangential momentum. Accordingly, a larger number
of slower particles–coming from the colder region–transmit their
tangential momentum to the wall, compared to a smaller number
of fast particles–coming from the warmer region. As a increases,
larger number of particles with high impact velocity skip the ther-
malization process with the surface, and reflect back to the bulk
without any momentum exchange. For relatively large values of
a and c, the colder particles will transfer more tangential momen-
tum than the warmer particles, which results in a net force on the
wall toward the warmer region. That is, the force FW changes its
sign as compared to the standard transpiration flow, see Fig. 4b.
This leads to the movement of the gas relative to the wall, from
warm to cold. It is also worth noting that the magnitude of shear
force on flow, FG, becomes smaller since less momentum is trans-
ferred due to more specular reflections.

While the above argument shows the theoretical possibility of
inverted transpiration flow, it is not clear that the occurrence of
the secondary vortices in the VDM model can actually be
Warm

F
W

VDM boundary
(b)

HC

WHWC

Cold

FG

tional Maxwell and VDM boundary conditions.
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attributed to this effect. In order to examine the transpiration phe-
nomena on the microscopic level, we used DSMC results to com-
pare the tangential momentum that particles exchange with the
right wall of the micro-cavity. We keep the thermal configuration
of the cavity as in Section 4.2, and define the tangential momen-
tum exchange between a particle and the surface as

Mj ¼ m c0t � ctð Þj:

Here, c0t and ct are the tangential velocities before and after collision
with the surface element j, and the overbar indicates the time aver-
age of the microscopic quantity. Particles with positive tangential
impact velocity, c0t > 0, come from a warmer region (they move
upward), i.e., they have larger thermal velocity, and exchange the
momentum MH

j with the surface. Particles with negative tangential
impact velocity, c0t < 0 come from the colder region (they move

downward) and exchange the momentum MC
j with the surface.

Fig. 5 shows the variation of exchanged momentum for the VDM
boundary condition along the surface. The tangential momenta

are non-dimensionalized with respect to M0 ¼ m
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 k

m TB

q
.

As the coefficients a and c increase, we observe a decrease in
the exchanged momentum from both, colder and warmer particles.
This result is in accordance with the reduction of shear stress
inside the Knudsen layer in Fig. 3a. However, the decrease in the
warmer momentum exchange, MH

j is larger than the decrease in

colder exchange MC
j . For larger a and c, the warmer particles have

a higher chance to be specularly reflected, which implies that no
tangential momentum is exchanged with the surface. The total
momentum exchange, obtained from adding the two sources of
tangential momentum, determines the direction of thermal tran-
spiration force. It is observed that increasing the coefficients in
the VDM boundary conditions can reduce the strength of the ther-
mal transpiration effect, and in an extreme case, Fig. 5c, lead to a
small reversed transpiration force.

Fig. 5b shows that for the case of Fig. 2f where an inverted
velocity at the wall is observed, the momentum transfer–and thus
the transpiration force–still has the same direction as for the fully
diffusive surface, but it is much weaker. Blow-ups of the total
momentum exchange are inserted in Fig. 5 for a detailed compari-
son. Hence, we must conclude that in this case the inverted tan-
gential velocity at the wall cannot be attributed to the inversion
of the transpiration force, but most likely results from a much
weaker transpiration force at the boundary, which subsequently
leads to domination of thermal stresses in the bulk.
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Fig. 5. Variation of the tangential momentum exchange on particle–s
In the original paper [10], the tangential velocity on the bound-
ary is obtained utilizing the first order Chapman–Enskog expan-
sion. Using Bird’s notation for the shear stress [1], the tangential
velocity was written as

Vtffiffiffiffiffiffiffiffiffiffi
k
m TW

q ¼ 2� v
v

ffiffiffiffi
p
2

r
rnt

p
�x

5
qt

p
ffiffiffiffiffiffiffiffiffiffi
k
m TW

q : ð9Þ

Here, Vt is the tangential velocity at the boundary, v is the
momentum accommodation coefficient, p is the pressure and x
is the coefficient for the strength of the thermal transpiration
effect. We can see that the interplay between the shear stress rnt

and the tangential heat flux, qt determines the direction of the tan-
gential velocity close to the surface. Choosing an appropriate set of
a and c in the VDM boundary condition enables us to reduce the
influence of thermal transpiration, so that the shear stress domi-
nates in determining the direction of the flow.

The shear stress, in the presence of small velocity and rather
large thermal gradient in the flow field, is mainly influenced by
the thermal stresses. Using the Grad equations [20] the shear stress
in the bulk can be approximated as

rtn ¼ rð1Þtn þ rð2Þtn ; ð10Þ

where the superscript shows the order in Knudsen number.
Following Grad equations for the Maxwell molecule, and linearizing
the shear stress in moments (small Knudsen number), we can write

rð1Þtn ¼ 2l @V<t

@xn>
;

rð2Þtn ¼
4
5

l
p
@q<t

@xn>
:

ð11Þ

Grad description for the shear stress shows that the thermal
stresses are one order in Knudsen number higher than the viscous
stresses. This means that thermal stresses will become important
when the rarefaction is large (high Knudsen number regime); or
when we are dealing with a flow at low velocity gradient and
rather large heat flux gradient.

In order to confirm the role of thermal stresses in our thermal
cavity flow, we used the DSMC result to obtain the shear stress
in the first and second order, Eq. (11), along the horizontal center-
line of the cavity. Fig. 6 shows the total stress, rxy as well as the vis-

cous rð1Þxy and thermal stresses rð2Þxy for two choices of boundary
condition coefficients. The solid line indicates the variation of the
total stress in the horizontal centerline of the cavity. Note that
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Fig. 6. Variation of shear stress component along the horizontal centerline of the cavity, (a) Fully diffusive surface: a ¼ 0; H0 ¼ 1 (b) H0 ¼ 1 a ¼ 0:2 c ¼ 0:9.

Fig. 7. Temperature distribution overlaid on the velocity streamlines at Kn ¼ 1 and e ¼ 0.
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the description of the shear stress in Eq. (10) is only valid in the
bulk of the flow. When dealing with the Knudsen layer (in the
vicinity of the walls) higher order moments can play a role and
dominate in determining the shear stress.
For the fully diffusive surface, Fig. 6a the shear stress starts from
a positive value close to the left wall and becomes negative as we
pass the center of the cavity. The flow in this case is mainly driven
by the boundaries, i.e., thermal transpiration. The tangential
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Fig. 8. The effect of a and c on the flow properties along X
L ¼ 0:95 for Kn ¼ 1; e ¼ 0.
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transpiration force accelerates the flow in the vicinity of the sur-
face, which subsequently leads to appearance of the largest value
of the shear stress at the wall. For the fully diffusive surface the
total shear stress, rxy follows the trend of first order viscous stress

rð1Þxy in the bulk of the flow, i.e., outside of the Knudsen layer
X
L 2 ½0:2;0:8�
� �

. A quick look at Fig. 3b shows that the rarefied flow
gets to its maximum velocity for the case of fully diffusive surface,
and slows down for the VDM boundary conditions. This means that
the viscous stress can take over the thermal stress, and dominate in
determining the total stress for the fully diffusive surface. Fig. 6a
also shows that the value of thermal stress in this case is very
small, and rather close to zero in the main bulk of the flow. In this
case it is safe to say that the thermal stresses do not play a big role
in determining the shear stress. The imposed disturbance from the
boundaries, coming from the thermal transpiration, is damped via
the viscous stresses.

In the second case, Fig. 6b the total shear stress profile is differ-
ent than what we observed for the fully diffusive surface, and
changes sign multiple times along the horizontal centerline.
Interestingly, the shear stress is one order of magnitude smaller
in this case. Keeping in mind that the main source of disturbance
in the flow field is the temperature gradient on the wall, the
VDM boundary condition permits rather large number of particles
to reflect back to the bulk without being influenced by the surface,
i.e., specular reflection. In addition, the shear stress does not follow
the trend of the velocity gradient, but rather has the same trend as
the thermal stresses. Small values of the velocity, compared to the
rather large values of the temperature gradient, in the flow field
leads to domination of the thermal stresses in determining the
total shear stress. This figure confirms the role of the thermal stres-
ses in the secondary vortices appears in Fig. 2e.

It is also interesting to note that the very small values of the
shear stress (close to zero) in this case implies that there is a bal-
ance between the thermal stresses and the viscous stress,

rð1Þtn ¼ �rð2Þtn . In a way, existence of rather large thermal gradient
in the flow field drives the flow, and as a reaction, the viscous stres-
ses damp the rarefied flow movement.

Above, we used the equations that are only valid for evaluating
the bulk of the flow. As said above, we believe that in the cases of
Fig. 2e and f the main driving force for the flow pattern are thermal
stresses in the bulk–the secondary vortices most likely appear to
bridge between the temperature driven bulk flow, and the
boundaries.

4.4. Effect of Knudsen number

Following the discussion about the interplay between the first
and second order of shear stress, and the capability of the VDM
boundary conditions to manipulate their strength, we studied the
effect of Knudsen number on the flow formation in the thermal
cavity. To have a comparable set, we chose Kn ¼ 1 and consider
the same values of a and c as in Section 4.2. Figure 7 shows the
temperature distribution overlaid on the velocity streamlines
inside the cavity. As was expected, rarefied flow experiences rather
smaller temperature gradients in higher Knudsen regime, which is
attributed to the larger temperature jump at this Knudsen number.

More interestingly, the vortex formation is different from what
we observed at Kn ¼ 0:1. Even for the fully diffusive surface, the
secondary vortex in the vicinity of the side walls appears, and
drives the flow from warm-to-cold. At this Knudsen number the
Knudsen layer covers the entire cavity, and large rarefaction effects
inside the domain leads to a large secondary vortex in the flow
field. As we increase a the primary vortex, corresponding to the
thermal transpiration, decreases in size and get pushed to the
top corners of the cavity.

Fig. 8 shows the flow properties in the vicinity of the right wall
along X

L ¼ 0:95. It is seen that the vertical velocity close to the wall
is changing sign for all choices of a and c, which is in accordance
with the appearance of primary and secondary vortices in Fig. 7.
More interestingly, the larger positive value of the vertical velocity,
i.e., warm-to-cold flow at Kn ¼ 1 implies the rarefaction nature of
the secondary vortex. The temperature profile close to the surface
remains unchanged with respect to the corresponding coefficients
in the VDM boundary conditions.

5. Conclusions

Velocity dependent Maxwell (VDM) boundary conditions are
used in DSMC method to study the thermal transpiration effect.
The flow formation inside a micro-cavity with the temperature gra-
dient on the surface is studied. Thermal transpiration phenomena
drives the rarefied flow from colder region toward the warmer
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region for the fully diffusive surface. However, as the reflection ker-
nel becomes dependent on the velocity of colliding particle to the
surface, thermal transpiration becomes smaller in value. Particles
with larger velocity (coming from the warm region) reflect back to
the flow without being thermalized with the surface, while the
slower particle (coming from the colder region) thermalize with
the surface. As a result, using the VDM boundary condition, we can
decrease/increase the strength of the thermal transpiration effect.
This argument theoretically suggest the possibility of appearance
of reversed thermal transpiration effect which drives the rarefied
flow from warmer toward colder region. We observed the appear-
ance of warm-to-cold vortices for certain choices of corresponding
coefficients in the VDM boundary condition, and used DSMC to
investigate their nature. Our study attributes the emerging warm-
to-cold vortices to the thermal stresses in the bulk of the flow. In fact,
the VDM boundary condition weakens the thermal transpiration
effect, and subsequently permits the thermal stresses to dominate
in determining the direction of the rarefied flow.

In classical hydrodynamics, transpiration flow is described by
incorporating the wall temperature gradient as a driving force into
the slip boundary condition. The DSMC simulations in the current
study, show the inverted flow direction only at the boundary,
while large vortices appear in the bulk. This flow behavior, most
likely, is due to thermal stresses in the bulk, which cannot be
described in classical hydrodynamics. Therefore, kinetic theory
methods, like DSMC, direct numerical simulation [21], or advanced
moment methods [22] must be used for the description, and
understanding, of these flows. The VDM model is flexible, and
can be incorporated in any of these advanced methods.

We note the lack of reliable experimental data that would be
needed to fit the coefficients of the model.
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