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Abstract Flow and heat transfer in a bottom-heated square cavity in a moderately rarefied gas is investigated
using the R13 equations and the Navier–Stokes–Fourier equations. The results obtained are compared with
those from the direct simulation Monte Carlo (DSMC) method with emphasis on understanding thermal flow
characteristics from the slip flow to the early transition regime. The R13 theory gives satisfying results—
including flow patterns in fair agreement with DSMC—in the transition regime, which the conventional
Navier–Stokes–Fourier equations are not able to capture.
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1 Introduction

The design and performance optimization of microdevices such as micropumps, microactuators, microres-
onators, microsensors, and microheatexchangers [1–3] demands a good understanding of the heat transport
mechanism through gases in rarefied conditions, where the physical length scales of devices are comparable
with the mean free path of the gas. The degree of rarefaction in a gas is expressed by means of the Knudsen
number K n, which is defined as the ratio of the molecular mean free path λ to the macroscopic length scale
of the flow, L , e.g., the diameter of a duct.

Based on the value of the Knudsen number, four flow regimes are distinguished in rarefied gas dynamics:
[1,4] free molecular (K n � 10), transition (10 � K n � 10−1), slip and jump (10−1 � K n � 10−3), and
continuum regime (10−3 � K n).

In the slip regime, effects such as velocity slip and temperature jump manifest themselves at the walls [5].
For the relevant range of Knudsen numbers, the Navier–Stokes equations can still be utilized with adapted
boundary conditions allowing for velocity slip and temperature jump at the walls [6].

On the other hand, in the free molecular regime, the collisions of the gas molecules with surfaces prevail
and the reflected molecules travel across a large distance before colliding with other molecules. Hence, the
process is determined by the interaction between gas molecules and the surface, while collisions between the
molecules in the gas may be neglected.

In the transition regime, however, due to insufficient collisions between gas molecules within the flow,
the gas exhibits rarefaction effects such as Knudsen layers, Knudsen minimum, heat flux without temperature
gradient, and thermal creep [6,7,9]. These effects cannot be described by the conventional continuum models
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whose mathematical description is usually provided by the Navier–Stokes–Fourier (NSF) equations. Hence,
the shear stresses and the heat fluxes can no longer be expressed as linear functions of the gradients in velocity
and temperature.

The direct simulation Monte Carlo (DSMC) method is a commonly used method to investigate the flow and
heat transfer behaviors in microdevices [4,10]. But this method is also very expensive both in computational
time and memory requirements, especially for low-speed flow in microelectromechanical devices (MEMS)
and nanodevices [11]. Recently, Hadjiconstaninou and co-workers developed a low-noise Monte Carlo method
that greatly reduces the computational cost for linear problems [12].

The Boltzmann equation [5] gives an accurate microscopic description of gas flows at all Knudsen numbers,
but its direct numerical solution requires huge computational effort [10]. A very common strategy in the
literature is to consider simpler models for the collision term, typical examples are the BGK, ES-BGK, and S
models [13]. These simplifications offer a significant computational advantage over the full collision operator
in many practical situations [14,15]. In particular, for the slow flows, where DSMC method suffers from
statistical noise, kinetic equations can be linearized and then they can be solved rather effectively by using the
discrete velocity methods [16] or integro-moment methods [13].

An alternative is offered by macroscopic transport models, which capture microscale effects in a reason-
able compromise between computational effort and required accuracy [17]. These approximation methods are
obtained from the Boltzmann equation at different levels of accuracy. Conventionally, these high-order con-
tinuum models are derived based on either the Chapman–Enskog expansion method [18], or Grad’s moment
expansion method [19].

The Chapman–Enskog method relies on an asymptotic expansion of the Boltzmann equation in the Knudsen
number. The NSF equations are obtained from first-order expansion, while the second-order and the third-order
expansions give the Burnett and super-Burnett equations [17,20], respectively. However, these higher-order
equations lack a complete set of boundary conditions and are usually unstable for time-dependent problems
[21]. Recently, Bobylev suggested alternative forms of the Burnett equations that are, indeed, stable; however,
at present, no boundary conditions are available for these equations [22,23].

In Grad’s moment method, the set of macroscopic variables is extended beyond the hydrodynamic variables
(mass density ρ, temperature T , velocity vi ) by including stress tensor σi j , heat flux vector qi , and other higher
moments of the distribution function. Grad’s moments method offers no criterion on which moments need to
be considered for a given Knudsen number.

The regularized-13 (R13) equations, see, e.g., Refs. [17,24–26], are obtained by combining the elements of
the Chapman–Enskog and Grad methods, using the order of magnitude in the Knudsen number up to third order
(super-Burnett order). The R13 equations are stable and equipped with a complete set of boundary conditions
[27]. These equations provide an accurate description of rarefied gas flows for moderate Knudsen numbers,
see Refs. [7,9,28,29], but at reasonable computational costs.

In the present work, the flow behavior and heat transfer characteristics of a rarefied gas confined in a bottom-
heated square cavity [30–32] are investigated by solving the R13 equations and NSF equations numerically
and comparing the results to DSMC solutions. Preliminary results for this problem were presented in Ref. [32].
Now, we consider a wider range of the temperature ratio to investigate also the nonlinear rarefaction effects,
and we compare to DSMC simulations. An important point in this paper is that DSMC and R13 inform each
other: We shall validate the R13 results by comparing to DSMC simulations and then, in turn, interpret the
DSMC results in terms of macroscopic quantities.

The results show that for Knudsen numbers below 0.3, the main heat transfer characteristics are described
reasonably well by the R13 equations, and slip and jump NSF equations, with higher accuracy offered by R13.
The R13 equations can capture the main rarefaction effects, such as secondary eddies, in good accuracy, while
the NSF equations fail to do so. The computational times are several orders of magnitude below the times
required for the highly accurate DSMC simulations.

The rest of the paper is organized as follows: The physical model for the problem considered in this paper is
described in Sect. 2. In Sect. 3.1, we present the R13 equations and the NSF equations for Maxwell molecules
for steady-state process. Section 3.2 gives a short description on the theory of boundary conditions for the
R13 equations, and the first-order slip and jump boundary conditions for the NSF equations. In Sect. 3.3, we
summarize the numerical method and the DSMC method is presented in Sect. 3.4. In Sect. 4 of this article,
we will discuss the effects of rarefaction on the flow and heat transfer characteristics. The paper ends with our
conclusion given in Sect. 5.
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Fig. 1 Schematic of the problem with the imposed thermal conditions

2 Problem formulation

We consider the steady heat transfer through argon gas in a two-dimensional square cavity of side length L .
The bottom surface of the cavity is kept at temperature TH , and the other sides are maintained at temperature
TC , as shown in Fig. 1. The third dimension of the cavity is assumed to be large enough so that the fluid
flow can be considered as two dimensional. Moreover, the effects of radiation and gravity are assumed to be
negligible.

In the present study, the distance L between the plates is taken to be 1µm and the average density, ρ0, is
varied to change the Knudsen number. The wall temperatures are fixed at TC = 300 K and TH = 600 K. This
large temperature difference is used since for smaller temperature differences, the DSMC method converges—
in the Knudsen number range considered—very slowly. The reference viscosity of the argon gas at reference
temperature T0 = 273 K, according to [4], is μ0 = 1.9552 × 10−5 Ns/m2. Temperature dependence of the
viscosity μ̂ is given by

μ̂ = μ0

(
T

T0

)ω

(1)

with the temperature exponent ω = 1, for Maxwell molecules.

3 Method of solution

With the Boltzmann equation as the starting point, the R13 equations [17,24] are obtained by combining the
elements of the Chapman–Enskog and Grad methods. The goal of this macroscopic model is to reduce the
high-dimensional phase space of the particle description to a low-dimensional continuum model by relating
the physical quantities as moments of the probability density function.

The R13 equations, despite some limitation on the their accuracy at large Knudsen numbers (K n � 0.3),
elegantly explain all important rarefaction effects [6,7,28,29], which the classical hydrodynamic theory fails
to describe.

Details of the derivation of the R13 equations can be found in [24] and the textbook Ref. [17], and the
boundary conditions are presented in Ref. [27]. Here, we only present the final equations.

3.1 R13 equations

For steady flow in a rarefied gas, the non-dimensional governing equations expressing the conservation of
mass, momentum, and energy are, in Cartesian coordinates, as follows:
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∂ρvk

∂xk
= 0, (2a)

∂ (p + σik + ρvivk)

∂xk
= 0, (2b)

∂
(

5p+ρv2

2 vk + σikvi + qk

)
∂xk

= 0. (2c)

Here, ρ, vk , σik , and qk are the dimensionless mass density, velocity vector, stress tensor, and the heat flux
vector, respectively. The pressure is given by the ideal gas law, p = ρθ , where temperature θ = RT and R is
the specific gas constant. The dimensionless macroscopic properties of the gas are normalized by introducing

xi = x̂i

L
, μ = μ̂

μ0
, θ = T

T0
, ρ = ρ̂

ρ0
, vi = v̂i√

RT0
, qi = q̂i

ρ0
√

RT0
3 , and σi j = σ̂i j

ρ0RT0
.

The hat̂over a quantity (e.g., ρ̂) represents the physical quantity with the proper dimensions. Moreover, ρ0
is the average density, T0 is the reference temperature, and μ0 is the reference viscosity.

Closure of the conservation laws (2a–2c) requires specification of the stress tensor, σik , and the heat flux
vector, qk , as constitutive equations. The Navier–Stokes–Fourier constitutive relations provide this additional
closure information, these are Fourier’s relation for heat conduction,

qi = −K nμ
15

4

∂θ

∂xi
, (3)

and the Navier–Stokes relation for the viscous stress tensor of the Newtonian fluid,

σi j = −2K nμ
∂v〈i
∂x j〉

. (4)

The indices inside angular brackets denote the symmetric trace-free part of tensors [17]. As a result of non-
dimensionalization, the Knudsen number, appearing in the governing equations, is defined as

K n = μ0

ρ0
√

θ0

1

L
. (5)

In the R13 system, the NSF laws are replaced by full balance equations for heat flux vector and stress tensor,
which read

∂σi jvk

∂xk
+ 4

5

∂q〈i
∂x j〉

+ 2σk〈i
∂v j〉
∂xk

+ ∂mi jk

∂xk
+ 2p

∂v〈i
∂x j〉

= − 1

K n

p

μ
σi j , (6)

and
∂qivk

∂xk
+ p

∂ (σik/ρ)

∂xk
− σik

ρ

∂σkl

∂xl
+ 5

2
σik

∂θ

∂xk
+ 2

5
qi

∂vk

∂xk
+ 2

5
qk

∂vk

∂xi

+7

5
qk

∂vi

∂xk
+ 1

2

∂ Rik

∂xk
+ 1

6

∂Δ

∂xi
+ mikl

∂vk

∂xl
+ 5

2
p

∂θ

∂xi
= −2

3

1

K n

p

μ
qi . (7)

For Δ = Ri j = mi jk = 0, the above equations reduce to the well-known Grad’s 13-moment equations
[19]. The R13 closure for Δ, Ri j , and mi jk results from higher-order moment equations, from which only
terms are kept that influence heat flux and stress up to third order in the Knudsen number [7,28]. The original
R13 equations, however, require a higher number of boundary conditions than the linearized equations [27]. To
resolve this inconsistency, in Ref. [28], we used order of magnitude arguments to rewrite the nonlinear part of
the R13 equations such that the third-order accuracy is maintained, but linear and nonlinear equations require
the same number of boundary conditions. As a result, the constitutive relationships for Δ, Ri j and mi jk read

Δ = 5
σklσkl

ρ
+ 56

5

qkqk

p
− 12K nμ

(
θ
∂ (qk/p)

∂xk

)
,

Ri j = 20

7

σk〈iσ j〉k
ρ

+ 192

75

q〈i q j〉
p

− 24

5
K nμ

(
θ
∂

(
q〈i/p

)
∂x j〉

)
,

mi jk = 20

15

q〈iσ jk〉
p

− 2K nμ

(
θ
∂

(
σ〈i j/p

)
∂xk〉

)
. (8)
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A Chapman–Enskog expansion of Eqs. (6) and (7) shows that the NSF relations, as indicated by the underlined
terms in (6) and (7), are included in the R13 equations asymptotically for small Knudsen numbers [17].

3.2 Boundary conditions for R13

The boundary conditions for the R13 equations are based on Maxwell’s accommodation model, which assumes
that a fraction (1 − χ) of the gas molecules hitting the surface undergoes specular reflections, while the
remaining fraction χ is diffusely reflected with a Maxwellian distribution f W with the wall temperature θW

and the tangential velocity vW
τ of the wall. A detailed derivation of the R13 boundary conditions can be found

in Ref. [27]; here, we just present the final result, a set of six boundary conditions for each wall,

vn = 0 (9a)

στn = −χ

2 − χ

√
2

πθ

(
PVτ + 1

5
qτ + 1

2
mτnn

)
, (9b)

qn = −χ

2 − χ

√
2

πθ

(
2PT − 1

2
PV2

τ + 1

2
θσnn + 1

15
Δ + 5

28
Rnn

)
, (9c)

Rτn = χ

2 − χ

√
2

πθ

(
6PT Vτ + PθVτ − PV3

τ − 11

5
θqτ − 1

2
θmτnn

)
, (9d)

mnnn = χ

2 − χ

√
2

πθ

(
2

5
PT − 3

5
PV2

τ − 7

5
θσnn + 1

75
Δ − 1

14
Rnn

)
, (9e)

mττn = −χ

2 − χ

√
2

πθ

(
1

5
PT − 4

5
PV2

τ + 1

14
Rττ + θσττ − 1

5
θσnn + 1

150
Δ

)
, (9f)

where

P = ρW

√
θW

√
θ =

(
ρθ + 1

2
σnn − 1

120

Δ

θ
− 1

28

Rnn

θ

)
. (10)

Here, Vτ = vτ − vW
τ and T = θ − θW are velocity slip and temperature jump, respectively. The subscript n

denotes the direction of the wall normal pointing toward the gas, and τ is the tangential direction relative to
the wall.

The first-order slip and jump boundary conditions for the NSF equations are obtained from Eqs. (9a)–(9c)
by retaining the terms only up to first order and replacing the stress tensor, σik , and the heat flux vector, qk ,
from the Navier–Stokes–Fourier constitutive relations (4) and (3) [17]; they read

vn = 0, (11a)

στn = −χ

2 − χ

√
2

πθ

(
PVτ + 1

5
qτ

)
, (11b)

qn = −χ

2 − χ

√
2

πθ

(
2PT + 1

2
θσnn

)
. (11c)

Equations (9b) or (11b) relate the velocity slip Vτ to the shear stress στn , associated with the gradient of
tangential velocity in the normal direction, and the heat flux qτ , tangential to the boundary. The latter term can
induce a flow from the colder to the hotter part of the gas, an effect usually referred to as thermal transpiration
[6]. Similarly, the next Eq. (11c) gives the temperature jump T in terms of normal components of heat flux
vector and stress tensor.

3.3 Numerical method

A second-order central finite-difference scheme was employed to obtain a numerical solution of the R13
and NSF equations in Ref. [28]. The discretized equations obtained were solved iteratively, with a quasi-
minimal residual (QMR) algorithm using MATLAB. The nonlinear terms were substituted successively with
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(a) (b)

Fig. 2 Grid independence test of the numerical solution in terms of Qy and θ̄ for Kn = 0.13. a R13 solution and b DSMC method

updated values. The solution was considered to be fully converged when the maximum absolute values of the
dependent variables at any node from iteration to iteration are smaller than a prescribed value, chosen as 10−5.
The simulations were conducted using a two-dimensional grid with 120 × 120 uniformly spaced grid points.
A grid independence test was conducted with different meshes of size N = 17, 35, 70, 140, 280. Figure
2a shows, for various mesh sizes, the relative change in the net dimensionless heat transfer from the bottom
surface,

Qy = 1

N

N∑
i=1

(
qy

)
i,1 ,

and the average temperature along the heated surface,

θ̄ = 1

N

N∑
i=1

θi,1 .

The maximum deviations observed in terms of Qy and θ̄ remain within 0.61 and 0.41 %, respectively, when
the grid of 120 × 120 is considered. This justifies the selected grid size 120 × 120 as a reasonable compromise
between computational effort and required accuracy. A typical simulation with R13 equations (as well as NSF),
when a grid of size 120 × 120 is considered, takes about 20 min on a single quad-core desktop PC. Whereas
depending on the flow parameters and the value of the Knudsen number, DSMC simulation takes up to 70 h
of the computational time.

3.4 DSMC method

The DSMC method used in this paper follows the scheme proposed by Bird [4]. The DSMC method is a
particle method based on the kinetic theory for the simulation of the dilute gases, where the dynamic equations
for a gas are solved for simulated particles. Each particle represents a large number of real gas molecules
and mimics the actual physics by interacting with other particles and solid surfaces. The local macroscopic
quantities are obtained by averaging the molecular properties in each cell. The time step �t in the DSMC
method is chosen so small that the motion of particles and their collisions can be decoupled at each time step.
In order to implement DSMC, the domain is first divided into computational cells. The cell size should be
chosen small enough so that the changes in the thermodynamic flow properties are small across each cell. The
cells are then divided into subcells in each direction to facilitate the selection of collision pairs. In the current
study, Maxwell argon particles with m = 6.63×10−26 kg and reference viscosity of μ0 = 1.9549×10−5 Pa ·s
are considered. The particle diameter, d , is related to the reference viscosity as [4]

d2 = 5 (α + 1) (α + 2)
√

mkT0/π

4α (5 − 2ω) (7 − 2ω)μ0
,
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with α = 2.13986 and ω = 1 for Maxwell molecules [4], k is the Boltzmann constant. To satisfy the cell size
limitation, the cell dimensions �x , �y are considered as 0.1λ; to reduce the scattering noises, 64 particles are
initially set in each computational cell.

For gas–solid interaction, Maxwell’s accommodation model is employed. The accommodation coefficient
χ is assigned the value of unity, i.e., fully diffuse reflection has been assumed for all DSMC solutions. In order
to minimize the statistical scattering, molecular properties are sampled over a large period of time after the flow
reaches steady state. These time-averaged data are then used to obtain the thermodynamic parameters such
as velocity, temperature, and heat flux. In addition, a filtering post-processor in DSMC is used to minimize
the scattering in the predicted results. In this filtering, the sampled macroscopic properties, F , in cell N are
averaged over a pattern of its neighboring cells,

F̃(N ) = FN + ∑I=Nn
I=1 FI

Nn + 1
,

where Nn denotes the four neighboring cells located at the above, below, left, and right side of the cell N .
In order to perform the grid independency test, we considered four grids composed of 50 × 50, 100 × 100,

200 × 200, and 300 × 300 cells. Relative percentage changes in the net dimensionless heat transfer and the
average temperature along the heated surface are plotted in Fig. 2b. It is seen that the results are numerically
equivalent for 200 × 200 and 300 × 300 grids, with the relative errors less than 0.2 % for both Qy as well as
θ̄ . Therefore, the grid containing 200 × 200 cells is selected for the reported results of the DSMC method in
this study.

4 Results and discussion

4.1 Analysis of streamlines and isotherms

Figure 3 shows the velocity streamlines superimposed on the temperature contours resulting from the Navier–
Stokes–Fourier, DSMC, and the R13 theory, respectively, at K n = 0.05. The NSF results show two counter-
circulating primary vortices, symmetrical with respect to the center of the cavity. The flow velocity is relatively
small indicating a rather slow convective motion (v ≈ 0.1 m/s). The formation of the primary vortices is due
to the sharp temperature gradients in the corners between the heated and cooled walls, which induce thermal
transpiration. As can be seen from the figures, the isotherms near the corners are visibly denser, which indicates
higher temperature gradients in this region.

Interestingly, in addition to the primary vortices, the R13 equations and the DSMC both predict two
secondary counter-circulating vortices located along the vertical cold surfaces. The formation of the secondary
vortices can be explained by the different terms in the slip boundary condition (9b), which reads

−vy ≈ 1

P

(√
πθ

2
σxy + 1

5
qy

)
= vvis

y + vtra
y . (12)

(a)

(a) (b) (c)

Fig. 3 Streamlines and temperature contours for K n = 0.05. a NSF solutions, b DSMC solutions, and c R13 solutions
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(a) (b)

Fig. 4 Variations in the viscous velocity and the transpirational velocity for K n = 0.05. a viscous and b transpirational contribution
to the velocity slip

(a) (b) (c)

Fig. 5 Streamlines and temperature contours for K n = 0.13. a NSF solutions, b DSMC solutions, and c R13 solutions

Variations in the viscous velocity, vvis
y = 1

P
√

πθ
2 σxy , and the transpirational velocity, vtra

y = 1
P

1
5 qy , evaluated

along x = 0, are presented in Fig. 4, for NSF, DSMC, and R13 solutions. Along the vertical surface, x = 0,
the viscous velocity is negative, thus inducing a flow in the upward direction.

On the other hand, the transpirational velocity is positive (heat flows upwards, from hot to cold), inducing
consequently a flow in downward direction, from the colder to the hotter region. Hence, both terms induce
flows in opposite direction. The respective magnitude of these terms determines the actual local direction of
the flow along x = 0.

For DSMC, the viscous contribution is larger than the transpiration term, hence the secondary vortices
appear. NSF equations are unable to produce the secondary vortices, since for them the transpirational velocity
along the vertical wall dominates the viscous velocity. The R13 equations, however, give a better description
of stress and heat flux and capture the formation of secondary whirls.

By increasing the Knudsen number to 0.13 (Fig. 5), the fluid circulation becomes more intense. The flow
structure for NSF remains bicellular, whereas R13 as well as DSMC predict the appearance of two additional
small vortices located near the upper surface of the cavity. For the NSF equations, the isotherms exhibit smaller
curvature near the vertical sidewalls. A further increase to K n = 0.3 leads to significant changes in the flow
fields, as can be observed in Fig. 6. For the DSMC simulation, the secondary vortices span most of the cavity
area, whereas for R13 the secondary eddies extend only about the upper half of the domain.

From the differences to the DSMC results, it becomes obvious that this Knudsen number is outside of the
range of applicability of both the R13 and the NSF theories. However, the qualitative description given by the
R13 equations is comparable with DSMC, while NSF cannot describe the flow features.

4.2 Analysis of heat flux lines and shear stress distribution

Figure 7 shows heat flux lines superimposed on viscous shear stress contours (σxy) for K n = 0.05, computed
with NSF, DSMC, and R13, respectively. The distribution of heat flux lines is similar for the NSF, R13, and
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(a) (b) (c)

Fig. 6 Streamlines and temperature contours for K n = 0.30. a NSF solutions, b DSMC solutions, and c R13 solutions

(a) (b) (c)

Fig. 7 Heat flux lines and shear stress contours for K n = 0.05. a NSF solutions, b DSMC solutions, and c R13 solutions

(a) (b) (c)

Fig. 8 Heat flux lines and shear stress contours for K n = 0.13. a NSF solutions, b DSMC solutions, and c R13 solutions

the DSMC solutions, indicating a dominating Fourier heat transfer contribution, but, as will be seen in the next
section, the actual values for heat transfer differ markedly.

As far as the shear stresses are concerned, DSMC (Fig. 7b) and R13 (Fig. 7c) show relatively similar shear
stress contours, which differ from the NSF contours (Fig. 7a) already at K n = 0.05. The DSMC and the R13
solutions show more uniform stress fields in the vicinity of the corners between the heated and cooled walls,
whereas the NSF solutions show the stress localized to the lower corners.

With increase to K n = 0.13, shown in Fig. 8, the corresponding heat flux lines exhibit relatively small
divergence toward the vertical sidewalls indicating a weaker heat exchange between the bottom surface and
the vertical surfaces.

4.3 Effect of Knudsen number on heat flux

Figure 9 illustrates the variation in the normal heat flux, qy , along the bottom plate, obtained by solving
R13 (solid curve), NSF (dashed curves), and DSMC (symbols). The results show that the normal heat flux
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(a) (b) (c)

Fig. 9 Normal heat flux, qy , along the bottom plate, obtained by solving R13 (solid curve), NSF (dashed curves) and DSMC
(symbols). a K n = 0.05, b K n = 0.13 and c K n = 0.3

(a) (b) (c)

Fig. 10 Normal heat flux, qy , along the centerline of the cavity, obtained by solving R13 (solid curve), NSF (dashed green curves)
and DSMC (symbols). a K n = 0.05, b K n = 0.13, and c K n = 0.3

calculated by the R13 equations agrees with the DSMC solution at smaller Knudsen numbers (Figs. 9 a, b).
At larger Knudsen number, K n = 0.3 in Fig. 9c, the R13 equations underpredict the normal heat flux by 5 %.
The Navier–Stokes–Fourier’s equations, however, predict approximately 15 % higher normal heat flux than
DSMC, already at small Knudsen number of 0.05. By increasing the Knudsen number value to 0.13 and 0.3,
the NSF equations overpredict the normal heat flux by as much as 25 and 35 %, respectively.

Higher Knudsen numbers show stronger non-equilibrium as indicated by larger magnitudes of qy . Inter-
estingly, the normal heat flux along the bottom plate, predicted by DSMC, shows a bimodal behavior. This can
also be observed in the results of the R13 system in Fig. 9, while the NSF system fails to capture this.

The simulation results for the normal heat flux along the centerline of the cavity at K n = 0.05, 0.13, 0.3
are shown in Fig. 10. As before, the simulation results of DSMC are compared with the NSF and the R13
predictions. The R13 theory follows the DSMC result fairly accurate until K n � 0.3.

The average dimensionless heat transfer along the heated element, defined as

Qy =
1∫

0

qy (x, 0) dx , (13)

is shown in Fig. 11 for Knudsen numbers below 0.4.
The figure shows a monotonous increase of Qy with K n for all three theories. It can be seen that the

increase rate of heat transfer is larger for the NSF model than that corresponding to DSMC and R13.
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Fig. 11 Average dimensionless heat transfer along the heated element, Qy , for various K n

(a) (b)

Fig. 12 Dimensionless effective heat conductivity, κ , in terms of TH /TC for various values of K n. a R13, b NSF

4.4 Influence of temperature ratio

In Fig. 12, numerical results for the dimensionless effective heat conductivity, defined as

κ = Qy
15
4 K n (θH − θC )

, (14)

are shown for temperature ratios 1.1 ≤ TH /TC ≤ 2, for various values of the Knudsen numbers. Results on
the dimensionless effective heat conductivity, based on the R13 and NSF theories, are presented in Fig. 12a, b,
respectively, for TC = T0 = 273 K. It is seen from Fig. 12 that the conductivity is decreased as K n is increased.
This behavior is expected since increasing the Knudsen number diminishes the intermolecular collisions in
the gas, and consequently, the effective heat conductivity is decreased. Furthermore, as the temperature ratio,
TH /TC , is increased, the effective heat conductivity is also increased. For all cases, NSF predicts a larger
effective heat conductivity than R13. This matches our earlier observation that NSF drastically overpredicts
the heat transfer (see Fig. 9).

The combined effects of the temperature ratio, TH /TC , and the Knudsen number, Kn, on the flow structure
will be examined next. Results are reported in terms of isotherms and streamlines. These observations are
shown by the plots in Fig. 13 (K n = 0.05) and 14 (K n = 0.1).

Figure 13a, b, and c illustrate the results obtained from R13 equation for the temperature ratio TH /TC =
1.1, 1.5, and 2, respectively, for the Knudsen number 0.05. The streamlines indicate that the secondary vortices
grow along the vertical cold surfaces as the temperature ratio is increased.

The flow field for K n = 0.1, shown in Fig. 14, shows hardly visible secondary cells at low temperature
ratio. These grow as the temperature ratio is increased, and an additional cell flow pattern develops as TH /TC
reaches 2.
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(a) (b) (c)

Fig. 13 Streamlines and temperature contours for K n = 0.05 for R13 equations at various values of the temperature ratio,
TH /TC . a TH /TC = 1.1, b TH /TC = 1.5, and c TH /TC = 2

(a) (b) (c)

Fig. 14 Streamlines and temperature contours for K n = 0.1 for R13 equations at various values of the temperature ratio, TH /TC .
a TH /TC = 1.1, b TH /TC = 1.5, and c TH /TC = 2

4.5 Effects of convection on effective heat conductivity

In order to evaluate the influence of convection upon the effective heat conductivity, defined in Eq. (14), we
compare results for the R13 equations and the NSF equations in the moving gas with those for a gas at rest.
For this, we solve the NSF (and the R13) equations with zero velocity throughout, vi = 0, for example, in the
NSF case the Eqs. (2c) and (3) simplify to

∂qk

∂xk
= 0, and qi = −K nμ

15

4

∂θ

∂xi
.

The corresponding boundary condition, from the Eq. (11c), reads

qn = −2χ

2 − χ

√
2

πθ
ρθT .

The results computed from the R13 equations (stationary and the moving gas) are shown in Fig. 15a, where
the dashed curves are for the gas at rest and the continuous curves for the moving gas. The corresponding
results computed with the NSF equations are presented in Fig. 15b. As we see from Fig. 15, for both continuum
models, the effective heat conductivity in the pure heat conduction case (vi = 0) is slightly higher than the
effective heat conductivity in a moving gas; hence, the heat transfer is slightly weakened by convection. At
small temperature, ratios NSF and R13 both show a very small difference (less than 2 %) between the heat
conductivity in a moving and a stationary gas. At temperature ratio 2, this difference increases slightly up to 3–
4 %. We note that a comparable test is not possible in the classical DSMC method, since there the macroscopic
gas velocity vi cannot be controlled.
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(a) (b)

Fig. 15 Effective heat conductivity is compared between a stationary gas (dashed curves) against the effective heat conductivity
(continuous curves) in a moving gas, in terms of TH /TC for various values of K n. a R13, b NSF

5 Conclusions

Numerical simulations were performed for various Knudsen numbers to investigate the effects of rarefaction
on the flow and heat transfer characteristics in a thermal cavity using Navier–Stokes–Fourier equations with
first-order jump and slip boundary conditions and the R13 equations. The results obtained are compared with
those from the DSMC method. We observed that the DSMC shows a bimodal behavior for the normal heat
flux along the bottom plate. This behavior of the normal heat flux is correctly predicted by the R13 equations,
while the NSF equations fail to capture this. Moreover, the DSMC results show significant flow patterns,
which are absent in the NSF theory. This convective mechanism in the gas was described in detailed through
relative terms in the boundary conditions and their respective size. Our results show that the R13 equations
yield satisfactory agreement with DSMC data—including flow patterns—in the transition regime for Knudsen
numbers below 0.3.

Combined effects of the temperature ratio, TH /TC , and the Knudsen number, K n, on the effective heat
conductivity and flow structure were examined. The results show that the heat flux increases monotonically
with temperature ratio, and the heat flux is decreased as K n increased. Here, we have considered the R13
equations for Maxwell molecules, for which the derivation of moment equations is comparatively easy, and
which are now well established for the linear and nonlinear cases. Only recently, the R13 equations were
extended for the hard-sphere model [26], where presently only the linear equations are available. Already at
the hydrodynamic level, different molecular interaction potentials for the collision term yield different transport
parameters, e.g., the temperature exponent in viscosity ω for hard spheres is 0.5, for Maxwell molecules it is
1, whereas the measured value of ω is 0.81.

It is straightforward to incorporate the different temperature dependence of viscosity and a different Prandtl
number into the moment equations. However, for higher moment theories such as R13 or Burnett equations, not
only the viscosity and heat conductivity vary with collision model but also other transport parameters change
with the molecular interaction potentials [26]. For instance, almost all coefficients in the R13 equations change
their values when the equations are derived for hard spheres [26]. Therefore, it is expected that differences
in transport parameters due to different molecular interaction potentials will lead into small differences in
transport quantities. The effects of the different interaction potential are planned for the future; this requires
the derivation of R13 boundary conditions for the hard-sphere case, which are presently not available.

We reiterate that the R13 equations can be solved in rather short computational time as compared to those
for the DSMC method, while, in the appropriate range of Knudsen numbers, they give results in remarkable
agreement to DSMC.
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