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A high-order macroscopic model for the accurate description of rarefied polyatomic
gas flows is introduced based on a kinetic equation of Bhatnagar-Gross-Krook (BGK)-
type, where the different energy exchange processes are accounted for by two collision
terms. The order of magnitude method is applied to the primary moment equations
to acquire the optimized moment definitions and the final scaled set of Grad’s 36
moment equations for polyatomic gases. The two Knudsen numbers of the system
are used for model reduction in terms of their powers, which yields a wide range of
different reduced systems, a total of 13 different orders. These include, at lower order,
a modification of the Navier-Stokes-Fourier (NSF) equations which shows consid-
erable extended range of validity in comparison to the classical NSF equations. The
highest order of accuracy considered gives a set of 18 regularized partial differential
equations (PDEs) (R18). Attenuation and speed of linear waves are studied as the first
application of the many sets of equations. For frequencies where the internal degrees
of freedom are effectively frozen, the equations reproduce the behavior of monatomic
gases. C© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4873577]

I. INTRODUCTION

Conventional hydrodynamics fails in the description of rarefied gas flows, where the Knudsen
number is not too small. The Knudsen number is a measure illustrating the degree of non-equilibrium
and rarefaction in a gas and is used to characterize the processes in kinetic theory. In the following
we shall consider models of extended hydrodynamics for polyatomic gases that extend the validity of
the macroscopic description towards larger Knudsen numbers. These models close the gap between
classical fluid dynamics, as described by the Navier-Stokes-Fourier (NSF) equations, and kinetic
theory, that is, they aim at a good description in the transition regime.

The NSF equations result from applying the Chapman-Enkog method1–3 to the Boltzmann
equation to first order in the Knudsen number. However, the Chapman-Enskog method at higher
order, even for modified models,4–7 usually yields unstable equations.8–10 Alternatively, to obtain
a stable set of equations at higher order, Grad’s moment method11, 12 with different numbers of
moments was proposed, with, e.g., 13 moments,13 14 moments,14, 15 and 17 moments.16, 17 However,
in the cited literature, no clear reasons for the choice and number of moments are given. We will
address this issue in this paper by a rational approach to derive a hierarchy of moment equations
based on orders in the Knudsen numbers.

For the monatomic case, we had good success with regularized moment equations18 which were
derived by means of the order of magnitude method.19, 20 This model gives smooth shocks even
at higher Mach numbers10 and captures Knudsen boundary layers.21 One major advantage of the
order of magnitude method is that it uses the Knudsen number of the flow to define the order of the
moments, and to identify the equations required at a given order.
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The present paper aims at introducing a rigorous macroscopic model for rarefied polyatomic
gases. In order to meet this goal we develop a model based on meeting these requirements:

1. be stable,
2. provide a clear definition of moments,
3. identify the field variables to be considered for different levels of accuracy based on the

Knudsen number,
4. have high order of accuracy; specifically, higher than the existing first order (NSF) and second

order (14 moments) theories,
5. model the exchange processes in particle collisions based on their characteristic microscopic

time scales, and
6. have a nice, firm, and simple mathematical structure.

The first item in the list eliminates the use of Chapman-Enskog method and brings the stable
Grad’s moment method into attention. However, in Grad’s method the choice of moments is unclear
(item 2) and not linked to the Knudsen number (item 3). This implies the need of a more genuine
model which satisfies all requirements. Here, we suggest the order of magnitude method, which will
be applied and generalized to polyatomic gases. The order of magnitude method specifically aims
at identifying the order of moments in terms of the Knudsen number, and the set of moments that
needs to be considered for a given order of accuracy (items 2, 3, and 4). We model the exchange
processes with two different microscopic time scales, using a collision operator with two terms
(item 5).

For this first attempt to apply the order of magnitude method to polyatomic gases, we chose a
continuous internal energy parameter to model the internal degrees of freedom, instead of having
discrete internal energy levels. For the same reason we chose a two-term Bhatnagar-Gross-Krook
(BGK) collision model22 to describe different collision processes. This gives a fast access to a
complete hierarchy of moment equations. The resulting sets of macroscopic equations for various
orders in the Knudsen number have all desired properties (items 6 and 1).

The order of magnitude method19, 23–25 is used to derive the regularized set of equations. We
briefly describe the procedure of this method which consists of the following steps:

1. Constructing an infinite set of equations: A system of moment equations using Grad’s moment
method with arbitrary choice of definition and number of moments is constructed.

2. Reconstructing moments: The Chapman-Enskog expansion is applied to the moment equa-
tions, and their leading order terms are determined. New moments are defined using linear
combinations of the original moments, in order to have the minimal number of moments at
each order of magnitude.

3. Full set of equations: The set of equations for the new moments is constructed from the
equations of the original moments. The Chapman-Enskog expansion is applied to the new
moments to determine their leading order.

4. Model reduction: The full set of equations is rescaled considering the obtained orders of the
new moments. Then, the model is reduced to the desired orders of accuracy.

The remainder of the paper is structured as follows. In Sect. II, the foundation of the kinetic
theory of polyatomic gases is presented. The two term collision operator is discussed and the BGK
model is introduced. In Sec. III, the general moment equation for polyatomic gases is introduced and
the system of Grad’s 36 moment equations is constructed, which is step 1 in the order of magnitude
method. In Sec. IV, the Chapman-Enskog method is applied, the leading order terms of all moments
are determined, and the new set of moments is constructed (step 2). The full set of new moment
equations is obtained in Sec. V (step 3). Step 4, the model reduction, is performed in Sec. VI, which
also presents the reduced equations for different orders of accuracy. To get some insight into the
various sets of equations, as a first application of the equations damping and attenuation of linear
waves are computed and compared in Sec. VII. Finally, some concluding remarks are given in
Sec. VIII.
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II. KINETIC MODEL

In 1872, Boltzmann26 proposed a transport equation which models the velocity distribution
function over time, known as Boltzmann equation. A first attempt into considering the effects of
internal degrees of freedom (DoF) on the behavior of molecules was made by Eucken in 1913.27

Afterward, Wang Chang and Uhlenbeck considered excitation of internal degrees of freedom and
presented the generalized Boltzmann equation.28, 29 Bourgat et al. introduced a model which uses
just one additional continuous internal parameter to represent the internal degrees of freedom of the
polyatomic gas.30

Dealing with the collision term of the Boltzmann equation is an intricate task due to its com-
plicated and non-linear structure. Often, for simplification, the linearized Boltzmann equation is
considered.31 Bird32 introduced the direct simulation monte carlo (DSMC) method for solving the
Boltzmann equation by means of particle-based statistical simulations. However, due to statistical
noise, the need for large sample size and higher number of collisions in transition regime, DSMC
is computationally expensive and extremely time consuming method in the transition flow regime.
Macroscopic methods offer an alternative to the Boltzmann equation in the transition regime, since
they offer high computational speed, although their accuracy is limited based on the Knudsen number.

The best known approaches to obtain macroscopic models from the Boltzmann equation are the
Chapman-Enskog method and the method of moments of Grad. First attempts to deal with the Wang
Chang and Uhlenbeck equation were made using the Chapman-Enskog method. Monchick et al.33–35

and Morse et al.36, 37 obtained the relations for shear and bulk viscosity and heat conductivity as
functions of the relaxation times. Recently, Kustova, Nagnibeda, and co-workers38 studied the strong
vibrational non-equilibrium in reacting mixtures of polyatomic gases for different cases with regards
to the characteristic time of the microscopic processes. They used the Chapman-Enskog method up
to the first order to tackle the problem.38

First attempts for solving the Wang Chang and Uhlenbeck equation using the moment equations
were made in Refs. 13, 39, and 40. Kogan used entropy maximization to obtain a generalization of
Grad’s 13 moment equations.13 The generalized 17-moment equations for polyatomic gases were
derived independently by Zhdanov16 and McCormack17 to cover a wider range of physical problems;
the latter derived expressions for slip velocity and temperature jump. Also, Mallinger14 generalized
Grad’s method and derived the 14 moment equations based on Bourgat’s model.

In the past two years Ruggeri, Sugiyama, and co-workers used the framework of extended
thermodynamics to develop a generalized 14 field theory for polyatomic gases, for both dense and
rarefied gases. Their theory is consistent with Mallinger’s model,14 in the rarefied gas limit.15 They
studied the dispersion relation for sound and showed that their results have a good consistency
with experimental data up to the non-dimensional frequency of 0.1.41 Moreover, they showed the
equivalency between extended thermodynamics and maximization of entropy,42 and recovered the
monatomic gas model as a singular limit of their model.43

The order of magnitude method bridges between the Chapman-Enskog and Grad method by
using Knudsen number orders in the Chapman-Enskog sense to identify the appropriate moments
and moment equations required for a given order. So far, the method was only applied to monatomic
gases,19, 20, 25, 44 where it gives the regularized 13 moment equations (R13). The R13 equations were
solved for a wide variety of one- and two-dimensional problems, where – within their range of validity
– they are able to reproduce all interesting rarefaction phenomena in good agreement to solutions of
the Boltzmann equation.45–48 The extension of the method towards higher order suggests the regular-
ized 26 moment equations, which indeed yields accurate results up to higher Knudsen numbers.49–51

The application of the order of magnitude method to polyatomic gases is the topic of this paper.

A. Kinetic theory of polyatomic gases

A gas particle has three translational degrees of freedom associated with its motion, and addi-
tional degrees of freedom due to rotation and vibration. All degrees of freedom, translational and
internal, contribute to the energy of the molecule due to the laws of quantum mechanics. At room
temperature, the vibrational degrees of freedom are usually frozen.52
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The energetic state of a molecule changes due to the interaction with other molecules, i.e., col-
lisions. While total energy and momentum are conserved, the colliding particles exchange different
energy forms. The various exchange processes occur on different characteristic time scales. In all
collisions, translational energy is exchanged between particles, but internal energy is exchanged
only in some of the collisions. Hence, the characteristic time scale for equilibration of translational
energy is faster than that for the equilibration of internal energy.

In the model we shall pursue, at time t, the gas particles are described by their position, xi,
velocity, ci, and their internal energy parameter, I ≥ 0, in a 7-dimensional space known as phase
space. We assume a simplified model where all internal degrees of freedom are either fully developed
or frozen. Then, the spectrum of the internal energy is continuous, and the internal energy of a particle
is given by53, 54

eint = I
2
δ , (1)

where δ is the number of non-translational degrees of freedom of the gas. The velocity distribution
function f (x, c, I, t) is defined such that the number of molecules in a phase space element dxdcd I
is

f (x, c, I, t)dxdcd I.

In the absence of external forces, the evolution of the distribution function is determined by the
Boltzmann equation, which is a nonlinear integro-differential equation written as

∂ f

∂t
+ ck

∂ f

∂xk
= S ( f, f ) . (2)

The left and right-hand sides take into account the effects of the particle’s free flight and collisions,
respectively. Depending on the accuracy of description, the quadratic collision term, S(f, f) , assumes
different complex forms, which might require lengthy and expensive computations. Kinetic models,
such as the BGK model used below, replace the Boltzmann collision term by simpler models that
preserve the basic relaxation properties and give the correct transport coefficients, while loosing
some of the detailed accuracy.

B. Macroscopic quantities

Macroscopic properties such as mass density ρ, momentum ρvi , energy u, pressure p, stress
tensor σ ij, and heat flux vector qi are moments of the phase density. Based on the definition of
general trace free central moments,

uς,A
i1...in

= m
∫ ∫

(I 2/δ)AC2ςC<i1 Ci2 . . . Cin> f dcd I, (3)

the important moments can be expressed as

Density ρ = m
∫ ∫

f dcd I =
∫

ρI d I = u0,0, (4a)

Velocity ρvi = m
∫ ∫

ci f dcd I or 0 = m
∫ ∫

Ci f dcd I = u0,0
i , (4b)

Stress σi j = m
∫ ∫

C<i C j> f dcd I = u0,0
i j , (4c)

Translational energy ρutr = 3

2
p = m

∫ ∫
C2

2
f dcd I = 1

2
u1,0, (4d)

Internal energy ρuint = m
∫ ∫

I 2/δ f dcd I =
∫

I 2/δρI d I = u0,1, (4e)
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Translational heat flux qi,tr = m
∫ ∫

Ci
C2

2
f dcd I = 1

2
u1,0

i , (4f)

Internal heat flux qi,int = m
∫ ∫

Ci I 2/δ f dcd I = u0,1
i . (4g)

Here, ci is the microscopic velocity, Ci = ci − vi is the peculiar particle velocity, ρI = m
∫

f dc
is the density of molecules with the same internal energy parameter I. Moreover, utr and uint are the
translational energy and the energy of the internal degrees of freedom, respectively, while qi, tr and
qi, int are the translational and internal heat flux vectors.

The classical equipartition theorem states that in thermal equilibrium, each degree of freedom
contributes an energy of 1

2θ to the energy of particle, where θ = kb
m T is temperature in specific

energy units. Thus in equilibrium, the translational and internal energies are

utr |E = 3

2
θ and uint |E = δ

2
θ. (5)

We extend the definition of temperatures to non-equilibrium, by defining the translational temperature
θ tr and the internal temperature θ int through the energies as

utr = 3

2
θtr and uint = δ

2
θint . (6)

With these definitions, the ideal gas law in non-equilibrium reads p = ρθ tr. The total thermal energy,
u = uint + utr, is defined as the sum of the internal and translational energies, and we use the
equipartition theorem to define the overall temperature θ as

u = 3

2
θtr + δ

2
θint =

(
3

2
+ δ

2

)
θ. (7)

In equilibrium the three temperatures agree, θ tr|E = θ int|E = θ , while in non-equilibrium they will
differ.

C. BGK model

For monatomic gases, the BGK model22 describes relaxation towards the equilibrium distribu-
tion as

S = 1

τ
(M − f ) , (8)

where the Maxwellian M is the distribution function in local equilibrium, and τ is the characteristic
relaxation time (mean free time or microscopic time scale).

Morse36 introduced a BGK-type model with two collision terms to replace the Wang Chang
and Uhlenbeck equation and tackled it using the Chapman-Enkog method. Andries et al. introduced
the ellipsoidal Gaussian BGK model for polyatomic gases considering the additional continuous
internal parameter and proved the H-theorem.53 Brull et al. used maximization of entropy to obtain
the model of Andries et al.54

As discussed earlier, in a polyatomic gas, translational energy is exchanged in all molecular
collisions, but internal energy of the molecules is exchanged only in some collisions. Hence, the
characteristic microscopic time for internal energy is larger than that for the translational energy
exchange. To describe this in a BGK model, we use a two term collision operator, where the first
term describes only the translational energy exchange during the collisions and the second term
models the exchange of the internal and translational energies.55 The resulting BGK equation reads

∂ f

∂t
+ ck

∂ f

∂xk
= − 1

τtr
( f − ftr ) − 1

τint
( f − fint ). (9)

Here, τ tr and τ int are the corresponding mean free times that we assume to depend only on the
macroscopic equilibrium variables (ρ, θ ). Moreover, ftr and fint are equilibrium distribution functions
that describe the different equilibria to which the distribution function will relax due to the collisions.
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They depend on the collisional invariants and we obtained them using entropy maximization56, 57 as
Maxwellian functions,

ftr = ρI

m

(
1

2πθtr

) 3
2

exp

[
− 1

2θtr
C2

]
, (10a)

fint = ρ

m

1

(2π )
3
2 θ (δ+3)/2

1



(
1 + δ

2

) exp

[
−1

θ

(
C2

2
+ I 2/δ

)]
. (10b)

Processes in kinetic theory are characterized by the Knudsen number,

Kn = λ

L0
= τ

τ0
, (11)

where L0 is the characteristic length scale of the process, τ 0 is a typical characteristic time of the
process, and λ is the mean free path. The typical reference time scale τ 0 is defined as L0/

√
θ0.

For the polyatomic BGK model (9) we have two different relaxation times, corresponding to
two different mean free paths, and two distinct Knudsen numbers, Kntr = τtr

τ0
and Knint = τint

τ0
. The

Knudsen numbers will be used for model reduction.

III. MOMENT EQUATIONS

Moment methods replace the kinetic equation by a finite set of differential equations for the
moments of the distribution function. The set of moment equations approximates the kinetic equation
and can be used to describe rarefied gas flows. Also, increasing the number of moments typically
leads to a better approximation.58

A. General moment equation

The moment equations are obtained by taking weighted averages of the kinetic equation.
Multiplying the kinetic equation (9) with m(I 2/δ)AC2ςC<i1 Ci2 . . . Cin>, and subsequent integration
over velocity space and internal energy parameter gives the general moment equation as

Duς,A
i1...in

Dt
+ 2ςuς−1,A

i1...ink

Dvk

Dt
+ 2ςuς−1,A

i1...ink j

∂v j

∂xk
+ n

2n + 1
2ςuς,A

j<i1...in−1

∂v j

∂xin>

+ ∂uς,A
i1...ink

∂xk

+ n

2n + 1

∂uς+1,A
<i1...in−1

∂xin>

+ 2ς
n

2n + 1
uς,A

<i1...in−1

Dvin>

Dt
+ 2ς

n + 1

2n + 3
uς,A

<i1...in

∂vk>

∂xk

+ n − 1

2n − 1
nuς+1,A

<i1...in−2

∂vin−1

∂xin>

+ nuς,A
<i1...in−1

Dvin>

Dt
+ uς,A

i1...in

∂vk

∂xk
+ n

2n + 1

n − 1

2n − 1
2ςuς+1,A

<i1...in−2

∂vin−1

∂xin>

+ nuς,A
k<i1...in−1

∂vin>

∂xk
= 1

τtr

[
uς,A

i1...in |E,tr − uς,A
i1...in

]
+ 1

τint

[
uς,A

i1...in |E,int − uς,A
i1...in

]
.

(12)

Here, the relation uς,A
<i1...in>k = uς,A

i1...ink + n
2n+1 uς+1,A

<i1...in−1
δin>k is used.20 The right hand side of the

equation describes the change of the moment uς,A
i1...in

due to collisions, which relax the moment
toward its value according to the equilibrium distributions,

uς,A
|E,int = (2ς + 1)!!



(

δ
2

) ρθς+A


(
A + δ

2

)
, (13a)

uς,A
|E,tr = (2ς + 1)!!θς

tr

∫
(I 2/δ)AρI d I, (13b)

uς,A
i1...in |E = 0 n �= 0, (13c)

where (2ς + 1)!! =
ς∏

s=1
(2s + 1) and ρI = m

∫
f dc.
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B. Conservation laws

Conservation laws for mass (ς = A = n = 0), momentum (ς = A = 0, n = 1), and total energy
are obtained from the general moment equation (12) as

Dρ

Dt
+ ρ

∂vi

∂xi
= 0, (14a)

Dvi

Dt
+ 1

ρ

∂σi j

∂x j
+ ∂θtr

∂xi
+ θtr

ρ

∂ρ

∂xi
= 0, (14b)

ρ
3 + δ

2

Dθ

Dt
+ ∂qi,int

∂xi
+ ∂qi,tr

∂xi
+ σi j

∂v j

∂xi
+ ρθtr

∂vi

∂xi
= 0. (14c)

The conservation of the total energy results from summation of the balance laws for translational
(ς = 1, A = n = 0) and internal (ς = 0 , A = 1, n = 0) energies. The balance law for translational
energy reads

ρ
3

2

Dθtr

Dt
+ ∂qi,tr

∂xi
+ σi j

∂v j

∂xi
+ ρθtr

∂vi

∂xi
= 3ρ

τint

(θ − θtr )

2
. (15)

Later, we will replace the translational temperature θ tr as variable by its non-equilibrium part �θ

= θ − θ tr, named dynamic temperature.
Moment equations for stress tensor, σi j = u0,0

i j , translational heat flux, qi,tr = 1
2 u1,0

i , and internal

heat flux, u0,1
i = qi,int , which are present in the conservation laws, are obtained from the general

moment equation (12) by appropriate choice of (ς , A, n). These equations contain higher moments
u1,0

i j , u2, 0, u0,0
i jk , u0,1

i j , and u1, 1 for which full moment equations can be obtained from Eq. (12).
Choosing all moments mentioned so far as variables will construct a 36 moments set,{

ρ, vi , θtr , θint , σi j , qi,tr , qi,int , u1,0
i j , u2,0, u0,1

i j , u1,1, u0,0
i jk

}
. (16)

The equations for these 36 moments contain higher moments u1,0
i jk , u2,0

i , u0,0
i jkl , u0,1

i jk , and u1,1
i . To close

the system of 36 equations, Grad’s distribution function will be used next to obtain expressions for
these higher moments in terms of the 36 variables.

C. Grad closure: 36 moments

Grad11, 12 proposed a distribution function based on the expansion of the Maxwellian into
a series of Hermite polynomials. It is convenient to consider the expansion with the trace free
moments instead of regular moments, so that the generalized Grad distribution function based on
the 36 variables is written as

f|36 = fint

(
λ0,0 + λ

0,0
i Ci + λ1,0C2 + λ

0,0
<i j>C<i C j> + λ0,1 I 2/δ + λ

1,0
i Ci C

2 + λ
0,1
i Ci I 2/δ

+λ
1,0
<i j>C2C<i C j> + λ2,0C4 + λ

0,0
<i jk>C<i C j Ck> + λ

0,1
<i j>C<i C j> I 2/δ + λ1,1C2 I 2/δ

)
, (17)

where λ
ς,A
〈i1i2...in〉 are expansion coefficients. Grad’s 36 distribution function should reproduce the set

of 36 moments, this is done by choosing the coefficients λ based on the definition of moments,
Eq. (A2). The obtained coefficients are presented in Subsection A 1 of the Appendix. Using Grad’s
distribution function (17), the constitutive equations are obtained as

u1,0
i jk = 9θu0,0

i jk , u2,0
i = 28θqi,tr , u0,0

i jkl = 0,

u0,1
i jk = δ

2
θu0,0

i jk , u1,1
i = (5qi,int + δqi,tr

)
θ. (18)

Substituting these equations into the 36 balance laws gives the closed set of equations. Due to lack
of space, the full set of equations will be shown only later.
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Grad’s distribution function implies a relation between the internal state density, ρI, the total
density, ρ, and the temperatures, θ and �θ = θ − θ tr, viz.

ρI = ρ

θ1+δ/2

(
1 + δ

2

) [I 2/δ

(
1 −

(
1 − 3

δ

)
�θ

θ

)
+ θ − 3

2
�θ

]
exp

(
−1

θ
I 2/δ

)
. (19)

IV. RECONSTRUCTING MOMENTS

A. Smallness parameters

Applying the order of magnitude method to the set of 36 moment equations will ensure that
the minimum number of variables are used for any wanted order of accuracy in terms of power of
the Knudsen numbers. This method first applies the Chapman-Enskog expansion on the moments
to find their leading order terms. Then, new moments are constructed such that only those which
are linearly independent have the same order of accuracy. This will give the minimum number of
moments at a certain order of accuracy.

The expansion parameter in the Chapman-Enskog method is the Knudsen number, of which we
have two, Kntr and Knint, to account for translational and internal energy exchange. We rescale the
microscopic time scales as

τtr = Kntr τ̃tr and τint = Knint τ̃int . (20)

Here, τ̃tr and τ̃int are of the order of the macroscopic time scale τ 0. The notation used is chosen since
it always indicates the type of collision (translational or internal) that gives rise to a term occurring
in the equations below. After the expansion is done, the Knudsen numbers will be substituted back
to the microscopic time scales and the original equations will be recovered.

Kntr should be less than Knint, because internal energies are exchanged only in a smaller portion
of collisions and τ int > τ tr. Considering both Knudsen numbers to be less than unity, we define the
internal smallness parameter ε as

Kntr = ε and Knint = εα. (21)

With this, the two Knudsen numbers are replaced by a single smallness parameter, ε, and a magnifying
parameter, α, with 0 < α < 1. The lower limit of the internal smallness parameter is recovered when
α = 1 and the upper limit is reached when α = 0. From the above we find

α = 1 −
ln τtr

τint

ln Kntr
=
(

1 +
ln τtr

τint

ln Knint

)−1

. (22)

While the ratio of relaxation times τtr
τint

depends on the state of the gas, the ratio τtr
τ0

= ε = Kntr

depends on the relevant macroscopic time scale τ 0 . Accordingly, the values of both, α and ε = Kntr,
depend on the chosen scale. To show some examples of the translational and internal relaxation
times and their ratios, we used the experimental data on shear viscosity59 and fitting data on bulk
viscosity41 of normal hydrogen and deuterium. As will be shown later, shear and bulk viscosity (42)
in the linear case with ground state {ρ0, θ0, �θ0 = 0} are

μ = τtrρ0θ0 = τtr p0 and v = τint
2δ (ρ0θ0)

3 (3 + δ)
= τint

2δ (p0)

3 (3 + δ)
. (23)

Values for the translational and internal relaxation times of normal hydrogen and deuterium
for reference pressure of 103 Pa and reference temperature of 77.3 and 293 (K) are listed in
Table I. Bulk viscosity values are obtained by assuming different values for specific heat based on
the temperature, which are converted to corresponding values of δ. The obtained relaxation times
and their ratio, τ tr/τ int = Kntr/Knint, is at order of 10−2 and 10−3.

Different values of α correspond to different values of internal or translational Knudsen number
and ratios of the relaxation times, τ tr/τ int = Kntr/Knint, as shown in Fig. 1. For higher Knudsen
numbers Knint, particularly near unity, mostly values of α less than 0.5 are relevant. The ratio of the
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TABLE I. Shear, bulk viscosity, and specific heat values41, 59 of hydrogen and deuterium for two temperature values and
reference pressure of 103 Pa. Obtained values of relaxation times and their ratios.

Gas T0(K) μ (Pa s) × 107 v (Pa s) × 106 Cv = 3+δ
2 τtr (s) τint (s) τ tr/τ int

H2 77.3 35.0 98 1.57 3.50 × 10−9 3.30 × 10−6 1.06 × 10−3

293 88.2 326 2.45 8.82 × 10−9 1.26 × 10−6 7 × 10−3

D2 77.3 48.2 174 2.54 4.82 × 10−9 6.37 × 10−7 7.57 × 10−3

293 123 271 2.50 1.23 × 10−8 1.01 × 10−6 0.012

relaxation times considered here covers both extreme cases, τ tr ≈ τ int (τ tr/τ int = 0.5) and τ tr 	 τ int

(τ tr/τ int = 10−7), and the values in between.
Different problems may encounter different relaxation times and different Knudsen numbers.

A vacuum system with pressure of 20 Pa, temperature of 293 K, and macroscopic length scale of
5 cm with deuterium has the following characteristics: Kntr = 0.00956, Knint = 0.797, α = 0.0488.
However, if the pressure and length scale increase to 100 Pa and 8 cm, the values become Kntr

= 0.00119, Knint = 0.0996, α = 0.343. As another example, a microsystem at atmospheric pressure,
temperature of 293 K, and macroscopic length scale of 20 μm with hydrogen has the following
characteristics: Kntr = 0.0067, Knint = 0.954, α = 0.0094. If the characteristic length increases to
150 μm, we have Kntr = 0.00089, Knint = 0.1272, α = 0.294.

Based on the values of α, different set of equations in various required order of accuracy will
be obtained in Sec. VI. Therefore, the particular problem under consideration determines which set
of equations should be used.

B. Chapman-Enskog expansion

The Chapman-Enskog expansion on the moment equations must be performed for both Knudsen
numbers, that is, for all powers of ε and εα . Due to the large ratio possible between the Knudsen
numbers, the underlying multiscale problem might require more than a simple accounting of terms
with the same order only. For instance, when Kn2

int 
 Kntr , proper accounting to first order in Kntr

might require consideration of different orders in the CE expansion: expansion to first order in
Kntr, but to second order in Knint. The conserved variables, density, velocity, and total temperature,

FIG. 1. Values of α for a range of internal Knudsen number and four relaxation times ratio, τtr /τint = 0.5 (gray solid line),
τtr /τint = 10−1 (blue dots), τtr /τint = 10−2 (green dashed line), and τtr /τint = 10−7 (red dotted-dashed line). The limit of
α = 0.5 is shown with black dashed line.
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have equilibrium values and hence are at zero order. The remaining variables are expanded in the
smallness parameter as

ψ = ε0α
[
ε0ψ (0,0) + ε1ψ (0,1) + ε2ψ (0,2) + ε3ψ (0,3) + · · ·]

+ ε1α
[
ε0ψ (1,0) + ε1ψ (1,1) + ε2ψ (1,2) + · · ·]+ ε2α

[
ε0ψ (2,0) + ε1ψ (2,1) + · · ·]+ · · ·, (24)

where for the 36 moment system, ψ =
{
�θ, σi j , qi,tr , qi,int , u1,0

i j , u2,0, u0,1
i j , u1,1, u0,0

i jk

}
.

The leading order terms of the moments are found as the first nonvanishing term in their
expansion; one finds

O
(
ε0
)

: u2,0(0,0) = 15ρθ2, u1,1(0,0) = 3

2
ρδθ2, (25a)

O (εα) : �θ (1,0) = τ̃int
2δ

3 (3 + δ)
θ

∂vi

∂xi
, (25b)

O
(
ε1
)

: q (0,1)
i,tr = −τ̃tr

5

2
ρθ

∂θ

∂xi
, u1,0(0,1)

i j = −τ̃tr 14ρθ2 ∂v<i

∂x j>
, (25c)

O
(
ε1
)

: σ
(0,1)
i j = −τ̃tr 2ρθ

∂v<i

∂x j>
, q (0,1)

i,int = −τ̃tr
δ

2
ρθ

∂θ

∂xi
, u0,1(0,1)

i j = −τ̃trρδθ2 ∂v<i

∂x j>
, (25d)

O
(
ε2
)

: u0,0(0,2)
i jk = −τ̃tr

(
3

7

∂u1,0
<i j

∂xk>

− 3σ<i j
∂θ

∂xk>

− 3θσ<i j
∂ ln ρ

∂xk>

+ 12

5
q<i,tr

∂v j

∂xk>

)
. (25e)

To leading order, the two scalar moments, u2, 0(0, 0) and u1, 1(0, 0), are proportional to the total
temperature and density. The heat fluxes, q (0,1)

i,tr and q (0,1)
i,int , are proportional to each other, and also

the three tensorial moments, σ
(0,1)
i j , u0,1(0,1)

i j , and u1,0(0,1)
i j , are proportional to each other.

We aim at having the smallest number of moments at each order. Higher order replacements for
the scalars u2, 0 and u1, 1 are obtained by subtracting their leading order terms to define new variables
as

w2,0 = u2,0 − 15ρθ2 and w1,1 = u1,1 − ρ
3

2
δθ2. (26)

The dynamic temperature, �θ = θ − θ tr, is the only variable at order α.
The linear dependent vectors qi, tr and qi, int, which are of first order, can be combined into one

first order vector, the total heat flux,

qi = qi,tr + qi,int , (27a)

and one unique higher order variable, heat flux difference,

�qi = qi,tr − 5

δ
qi,int . (27b)

Similarly, the 2-tensors can be combined such that only the stress tensor σ ij is of first order,
while the moments u1,0

i j and u0,1
i j are replaced by higher order moments as,

u−
i j = u1,0

i j − 14

δ
u0,1

i j and u+
i j = u1,0

i j + u0,1
i j − (14 + δ) θ

2
σi j . (28)

The second order moment u0,0
i jk is the only 3-tensor in the equations and thus remains unchanged.

After this first round of the reconstructing moments, we replaced the original 36 variables by
the alternative set {

ρ, vi , θ,�θ, σi j , qi ,�qi , w
2,0, w1,1, u−

i j , u+
i j , u0,0

i jk

}
.

Here,
{
ρ, vi , θ, qi , σi j , u0,0

i jk

}
have linear independent leading order terms, thus, there will be no

further change for these variables. The other variables are treated with the same procedure, i.e.,

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

142.104.86.60 On: Mon, 05 May 2014 20:27:14



052001-11 B. Rahimi and H. Struchtrup Phys. Fluids 26, 052001 (2014)

rewriting the moment equations with the new moment definitions, and applying the Chapman-
Enskog expansion to obtain the leading order terms as

O (εα) : w2,0(1,0) = −30ρθ�θ, w1,1(1,0) = 3

2
[3 − δ] ρθ�θ,

O
(
ε1+α

)
: u−(1,1)

i j = τ̃tr 14
[3 + δ]

δ
ρθ�θ

∂v<i

∂x j>
, u+(1,1)

i j = τ̃tr 11ρθ�θ
∂v<i

∂x j>
. (29)

Now the leading order terms of the scalars
{
�θ,w2,0, w1,1

}
are linearly dependent, also the leading

order terms of the 2-tensors
{

u−
i j , u+

i j

}
are linearly dependent. Therefore, we construct new moments

to have linearly independent moments in all the orders; the results are four new moments which

substitute
{
w2,0, w1,1, u+

i j , u−
i j

}
by

z2,0 = w2,0 + 30ρθ�θ , z1,1 = w1,1 − 3

2
[3 − δ] ρθ�θ, (30a)

B−
i j = u+

i j − 11

14

δ

δ + 3
u−

i j , B+
i j = u+

i j + u−
i j . (30b)

There will be no further change for B−
i j and B+

i j , since they have linearly independent leading
order terms. Applying again the Chapman-Enskog expansion, the leading order terms for z2, 0 and
z1, 1 are

z1,1(2,0) = −9

2
ρ�θ2 and z2,0(2,0) = 15ρ�θ2. (31)

The linear dependent scalars z1, 1 and z2, 0, which are of 2α order, can be combined into one 2α order
scalar, B+, and one unique higher order scalar, B−, as

B+ = z1,1 − z2,0 and B− = z1,1 + 3

10
z2,0. (32)

After this set of operations, we have the final set of 36 moments,{
ρ, vi , θ,�θ, σi j , qi ,�qi , B+

i j , B+, B−
i j , B−, u0,0

i jk

}
.

By construction, these variables are linearly independent in their leading orders.

C. Orders and leading terms of moments

The leading order contributions of all non-equilibrium variables are obtained from Chapman-
Enskog expansion for proper accounting of the magnitude and later use of the expressions. For the
model reduction, we require the explicit order of all terms be clearly visible in the equations, hence
we rewrite the variables as

� = εξ �̃, (33)

� =
{
�θ, B+, σi j , qi , �qi , B+

i j , B−, B−
i j , u0,0

i jk

}
,

ξ =
{
α, 2α, 1, 1, 1 + α, 1 + α,

{
1 + 2α 0 < α < 0.5

2 0.5 < α < 1

}
, 2, 2

}
.

Quantities with a tilde are considered to be of zeroth order, while the orders are made explicit with
ε and εα . The leading orders of the above variables are not affected by the value of α, except for B−

where we find

O
(
ε1+2α

)
: B−(2,1) = τ̃tr

[
2

13
B+ + 3ρ�θ2

]
∂vi

∂xi
for 0 < α < 0.5, (34a)
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or

O
(
ε2) : B−(0,2) = τ̃tr

[
2 (6 + δ)

5 + δ
qkθ

∂ ln ρ

∂xk
−
(

8 − 10

5 + δ

)
qk

∂θ

∂xk

−12

5
θσk j

∂v j

∂xk
− (24 − δ)

2 (5 + δ)
θ
∂qi

∂xi

]
for 0.5 < α < 1. (34b)

Note that for α 
 0.5 both contributions have the same order and their sum must be considered.

V. GRAD’S 36 MOMENT EQUATIONS IN OPTIMIZED VARIABLES

We identified the final variables in Sec. IV. Their balance laws, which are the final closed form
of the 36 moment equations, are obtained from the original moment equations by the appropriate
linear combinations. Here, we only show the equations for the first 18 moments, the equations for the
remaining 18 moments are presented in Subsection A 2 of the Appendix. The introduced notation
allows us to arrange all terms by their explicit ε-orders. In particular we have the following.

The conservation laws for mass, momentum, and energy

Dρ

Dt
+ ρ

∂vi

∂xi
= 0, (35a)

[
Dvi

Dt
+ θ

∂ ln ρ

∂xi
+ ∂θ

∂xi

]
− εα

[
∂�θ̃

∂xi
+ �θ̃

∂ ln ρ

∂xi

]
+ ε1

[
1

ρ

∂σ̃i j

∂x j

]
= 0, (35b)

[
ρ

Dθ

Dt
+ 2

3 + δ
ρθ

∂vi

∂xi

]
− εα

[
2

3 + δ
ρ�θ̃

∂vi

∂xi

]
+ ε1

[
2

3 + δ

(
∂ q̃i

∂xi
+ σ̃i j

∂v j

∂xi

)]
= 0 ; (35c)

the balance laws for dynamic temperature �θ , stress tensor σ ij, overall heat flux qi, heat flux
difference �qi , and higher moment B+:

εα

[
ρ

D�θ̃

Dt
+ 2

3

δ

3 + δ
ρ�θ̃

∂vi

∂xi

]
− ε1

[
2

3

δ

3 + δ

(
2

5 + δ

∂ q̃i

∂xi
+ σ̃i j

∂v j

∂xi

)]
− ε1+α

[
2

3

δ

5 + δ

∂�q̃i

∂xi

]
= 2

3

δ

3 + δ
ρθ

∂vi

∂xi
− ρ

τ̃int
�θ̃, (35d)

ε1

[
Dσ̃i j

Dt
+ 4

5 + δ

∂q̃<i

∂x j>
+ 2σ̃k<i

∂v j>

∂xk
+ σ̃i j

∂vk

∂xk

]
− εα

[
2ρ�θ̃

∂v<i

∂x j>

]

+ ε1+α

[
4

5

δ

5 + δ

∂�q̃<i

∂x j>

]
+ ε2

[
∂ ũ0,0

i jk

∂xk

]
= −2ρθ

∂v<i

∂x j>
−
(

1

τ̃tr
+ ε1−α

τ̃int

)
σ̃i j , (35e)

ε1

[
Dq̃i

Dt
+ 1

5 + δ

(
(7+δ)

(
q̃k

∂vi

∂xk
+q̃i

∂vk

∂xk

)
+2q̃ j

∂v j

∂xi

)
+σ̃i j

(
5 + δ

2

∂θ

∂x j
− θ

∂ ln ρ

∂x j

)
+θ

∂σ̃i j

∂x j

]

−εα

[
ρθ

∂�θ̃

∂xi
+ (δ+5)

2
ρ�θ̃

∂θ

∂xi

]
−ε2α

[
ρ�θ̃

∂�θ̃

∂xi
+�θ̃2 ∂ρ

∂xi
+ 2

39

∂ B̃+

∂xi

]
+ε1+α

[
4δ

25δ+42

∂ B̃+
ik

∂xk

]
+ ε1+α

[
δ

5 + δ

(
�q̃k

∂vi

∂xk
+ �q̃i

∂vk

∂xk
+ 2

5
�q̃ j

∂v j

∂xi

)
+ σ̃i j

(
�θ̃

∂ ln ρ

∂x j
+ ∂�θ̃

∂x j

)
+ �θ̃

∂σ̃i j

∂x j

]

+
{

ε1+2α

ε2

}[
5

13

∂ B̃−

∂xi

]
+ ε2

[
14 + 3δ

14 + δ

7 (δ + 3)

25δ + 42

∂ B̃−
ik

∂xk
− σ̃ik

ρ

∂σ̃k j

∂x j
+ ũ0,0

i jk

∂v j

∂xk

]

= − (δ + 5)

2
ρθ

∂θ

∂xi
− q̃i

(
1

τ̃tr
+ ε1−α

τ̃int

)
, (35f)
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ε1

[
D�q̃i

Dt
+ 25 + 7δ

5 (5 + δ)
�q̃k

∂vi

∂xk
+ 5

2

3 + δ

δ
�θ̃

∂σ̃i j

∂x j
+ σ̃ik�θ̃

∂ ln ρ

∂xk
+ σ̃ik

∂�θ̃

∂xk

]

+ ε1

[
1

5 (5 + δ)

(
(25 + 7δ) �q̃i

∂vk

∂xk
+ 2δ�q̃k

∂vk

∂xi

)
+ 15 + 7δ

42 + 25δ

∂ B̃+
ik

∂xk

]
− εα

[
5 (3 + δ)

2δ
ρ�θ̃

∂�θ̃

∂xi
+ 5

2

3 + δ

δ
�θ̃2 ∂ρ

∂xi
+ 5 (δ + 3)

39δ

∂ B̃+

∂xi

]
+ε1−α

[
2

5 + δ

(
q̃i

∂vk

∂xk
+ q̃k

∂vi

∂xk
+ q̃ j

∂v j

∂xi

)
+θ

(
∂σ̃i j

∂x j
− σ̃ik

∂ ln ρ

∂xk

)]
+
{

ε1+α

ε2−α

}
5 (δ − 10)

39δ

∂ B̃−

∂xi

+ε2−α

[
ũ0,0

i jk

∂v j

∂xk
− σ̃ik

ρ

∂σ̃k j

∂x j
−7

3 + δ

14 + δ

δ + 6

42 + 25δ

∂ B̃−
ik

∂xk

]
= 5 (3 + δ)

2δ
ρθ

∂�θ̃

∂xi
−
(

1

τ̃tr
+ ε1−α

τ̃int

)
�q̃i ,

(35g)

ε1

[
DB̃+

Dt
+ 85

39
B̃+ ∂vk

∂xk
+ (23 − δ)

3 + δ
3ρ�θ̃2 ∂vk

∂xk

]
+ ε1−α

[
26δ

3 + δ
ρθ�θ̃

∂vk

∂xk

]
+ ε2−α

[
3

23 − δ

3 + δ
�θ̃σ̃k j

∂v j

∂xk
+ 3

δ − 23

3 + δ
�θ̃

∂ q̃i

∂xi
− δ (δ − 23)

5 + δ
�q̃k

∂θ

∂xk

]
+ε2−α

[
10δ

5 + δ
θ

(
−∂�q̃k

∂xk
+�q̃k

∂ ln ρ

∂xk

)
− 20 − δ

5 + δ
2q̃k

(
∂�θ̃

∂xk
+ �θ̃

∂ ln ρ

∂xk

)
− 62δ

25δ + 42
B̃+

k j

∂v j

∂xk

]
− ε2−2α

[
240 − δ (47 − δ)

2 (3 + δ) (5 + δ)
θ
∂q̃i

∂xi
+ 2

5 + δ
q̃k

(
100 − 8δ

2

∂θ

∂xk
− (20 − δ) θ

∂ ln ρ

∂xk

)
+ 8θσ̃k j

∂v j

∂xk

]
+ ε2

[
− 10δ

5 + δ
�q̃k

[
∂�θ̃

∂xk
+ �θ̃

∂ ln ρ

∂xk

]]
+ ε3−α

[
10δ

5 + δ

�q̃k

ρ

∂σ̃k j

∂x j

]
−
{

ε2

ε3−2α

}
20

39
B̃− ∂vk

∂xk

+ε3−2α

[
− 112 (7−δ) (3+δ)

(14+δ) (42+25δ)
B̃−

k j

∂v j

∂xk
+ 2 (20−δ)

5+δ

q̃k

ρ

∂σ̃k j

∂x j

]
=−39

2

ρ�θ̃2

τ̃tr
−
(

1

τ̃tr
+ ε1−α

τ̃int

)
B̃+.

(35h)

The order of terms with B̃− are shown with two powers of ε in braces; the upper one corresponds
to 0 < α < 0.5 and the lower one corresponds to 0.5 < α < 1.

VI. MODEL REDUCTION

The explicit orders can be used for model reduction such that in each order under consideration
only terms up to corresponding power of ε are kept, while all other terms can be ignored.

As it was discussed earlier, for rarefied gas flows values of α less than 0.5 are relevant and will
be considered from now on, unless stated otherwise. While the expansion series (24) contains all
mixed powers of ε and εα , the final equations ((35a)–(35h) and (A3a)–(A3d)) only contain some
terms. In the following, we are interested in terms up to ε3, and find only the following powers:{

ε0, εα, ε2α, ε1, ε1+α, ε1+2α, ε1+3α, ε2−α, ε2, ε2+α, ε2+2α, ε2+3α, ε2+4α, ε3
}
.

Their order depends on the value of α. For values of α below 0.5 the different sequences of orders
are (up to ε3)

0 < α < 0.25 :
{
ε0, εα, ε2α, ε1, ε1+α, ε1+2α, ε1+3α, ε2−α, ε2, ε2+α, ε2+2α, ε2+3α, ε3

}
,

0.25 < α < 0.33 :
{
ε0, εα, ε2α, ε1, ε1+α, ε1+2α, ε2−α, ε1+3α, ε2, ε2+α, ε2+2α, ε2+3α, ε3

}
, (36)

0.33 < α < 0.5 :
{
ε0, εα, ε2α, ε1, ε1+α, ε2−α, ε1+2α, ε2, ε1+3α, ε2+α, ε2+2α, ε3

}
.

Here, only the underlined terms are changing location between different values of α.
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A. Zeroth order, ε0: Euler equations

As we proceed, we will identify relevant terms in the equations as written for the scaled variables{
�θ̃, σ̃i j , q̃i , . . .

}
, but we will write the final equations for the unscaled variables {�θ , σ ij, qi, . . . }.

We begin the reduction process with the conservation laws, which are required at all orders of
accuracy. Their details, however, depend on the order considered. We write the full equations as

Dρ

Dt
+ ρ

∂vi

∂xi
= 0,

ρ
Dvi

Dt
+ ∂ (ρθ )

∂xi
−
[
∂ (ρ�θ )

∂xi

]
+
[[

∂σi j

∂x j

]]
= 0, (37)

3 + δ

2
ρ

Dθ

Dt
+ ρθ

∂vi

∂xi
−
[
ρ�θ

∂vi

∂xi

]
+
[[

∂qi

∂xi
+ σi j

∂v j

∂xi

]]
= 0.

Comparing with (35a) we see that the terms in single brackets are of order O (εα), while the terms
in double brackets are of order O

(
ε1
)
.

Accordingly, to zeroth order O
(
ε0
)
, all terms with brackets will vanish. Then, the conservations

laws reduce simply to the Euler equations in their typical form for polyatomic gases with constant
specific heat cv = 3+δ

2 R, which corresponds to setting �θ = σ ij = qi = 0. The Euler equations are
a closed set of equations for the variables {ρ, vi , θ}.

For higher orders, however, the terms with brackets must be considered. Since these contain
the variables �θ , σ ij, and qi, additional equations for these are required, which must be carefully
extracted from the full set of equations.

Subsections VI B–VI J will discuss this based on the desired order of accuracy in the powers of ε,
and the different values of the exponent α, which determines the relative importance of contributions.
For this, we will consider the increasing orders as laid out in (36).

B. Order εα: Dynamic temperature

The first non-equilibrium correction appears for α order, where the terms in single brackets
in the conservation laws (37) must be considered, but not the terms in double brackets. Hence,
an additional equation for the dynamic temperature �θ is required, which at this order is simply
the leading term. The heat flux and stress tensor are effectively zero. Accordingly, at α order, the
conservation laws (37) are closed with

�θ = τint
2δ

3 (3 + δ)
θ

∂vi

∂xi
and σi j = qi = 0. (38)

From the conservation laws, we recognize that in a moving gas the pressure is not just the equilibrium
ideal gas pressure ρθ , but p = ρθ − ρ�θ . For this reason, one often denotes the second term as the
dynamic pressure,15, 60 � = −ρ�θ . In the classical Navier-Stokes equations, the dynamic pressure
has the form � = −ν ∂vi

∂xi
where ν is the bulk viscosity. Comparing with the above, we identify a

relation between relaxation time τ int and the bulk viscosity,

v = τint
2δ

3 (3 + δ)
ρθ. (39)

The bulk viscosity is a function of the internal relaxation time, hence it will vanish in the monatomic
gas where no internal energy exchange occurs (δ = 0).

C. Order ε2α: Refined dynamic temperature

For all α < 0.5, the next order appearing in (36) is ε2α . Since σ ij and qi are of order ε > ε2α ,
they are still not relevant. The conservation laws do not contain terms of order 2α, hence they are
unchanged from the previous case (order εα). While the next higher order terms of �θ , which are
of order εα and give overall contributions of order ε2α , must be considered. This gives the closure
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by a full balance equation for �θ , while stress and heat flux can still be ignored,

ρ
D�θ

Dt
+ 2δ

3 (3 + δ)
ρ (�θ − θ )

∂vi

∂xi
= − ρ

τint
�θ and σi j = qi = 0. (40)

This set of 6 field equations agrees with the set of equations used by Taniguchi et al.61 to study shock
waves in rarefied polyatomic gases.

D. Order ε1: Refined Navier-Stokes-Fourier equations

For the first order, terms up to ε1 order are considered in the conservation laws (37), for which
now all terms are relevant. In addition to the balance law for �θ (40), the leading terms of the stress
tensor and total heat flux are required as well,

σi j = −τtr 2ρθ
∂v<i

∂x j>
and qi = −τtr

5 + δ

2
ρθ

∂θ

∂xi
. (41)

These first order equations for σ ij and qi are the classical Navier–Stokes-Fourier (NSF) equations,
which relate the stress deviator and heat flux to the gradients of velocity and temperature. The factors
between them are the shear viscosity μ and the heat conductivity k which we identify as

μ = τtrρθ and κ = τtr
5 + δ

2
ρθ. (42)

The obtained relation for the shear viscosity is identical to that of the monatomic gas. Internal degrees
of freedom affect the heat conductivity, which differs from the monatomic gas as extra means of
energy transport are present in the polyatomic gases.

However, what we have obtained here at first order are not the classical NSF equations, since we
have to use the full balance law (40) for �θ (or dynamic pressure). The classical NSF equations are
a five variables model for {ρ, vi , θ}. However, the refined Navier-Stokes-Fourier (RNSF) equations
obtained have six independent field variables, {ρ, vi , θ,�θ}. This is a result of the scaling, where
we assumed α < 0.5. The classical Navier-Stokes-Fourier equations only arise for 0.5 < α < 1, this
is shown in Sec. VI I. The importance of the refined Navier-Stokes-Fourier equations with the extra
balance law for dynamic pressure will be shown and discussed in the Sec. VII D.

E. Order ε1+α: RNSF equations with first internal DoF corrections

The next order of accuracy (for all α < 0.5) is obtained by considering the next higher terms
in the equations for �θ , σ ij, and qi, which are the contributions with factor ε1 for the dynamic
temperature (35d), and contributions with factor εα for stress (35e) and heat flux (35f), so that at
order 1 + α, the conservation laws (37) must be closed by

ρ
D�θ

Dt
+ 2δ

3 (3 + δ)
ρ (�θ − θ )

∂vi

∂xi
− 2δ

3 (3 + δ)

(
2

5 + δ

∂qi

∂xi
+ σi j

∂v j

∂xi

)
= − ρ

τint
�θ, (43a)

σi j = −τtr 2ρ [θ − �θ ]
∂v<i

∂x j>
and qi = −τtrρ

(
5 + δ

2
[θ − �θ ]

∂θ

∂xi
− θ

∂�θ

∂xi

)
. (43b)

Additional corrections to the NSF equations occur due to the internal degrees of freedom.

F. Cases with 0 < α < 0.25

To proceed to the next order, we now have to distinguish further among the possible values of
α; we begin with the window 0 < α < 0.25.

1. Order ε1+2α: RNSF equations with second internal DoF corrections

Close inspection shows that the next higher terms in the balance for �θ add contributions
to order 1 + 2α. Indeed, at this order the full balance law for dynamic temperature must be
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considered,

ρ
D�θ

Dt
+ 2δ

3 (3 + δ)
ρ (�θ − θ )

∂vi

∂xi
− 2δ

3 (3 + δ)

(
2

5 + δ

∂qi

∂xi
+ σi j

∂v j

∂xi

)
− 2

3

δ

5 + δ

∂�qi

∂xi
= − ρ

τint
�θ. (44a)

This equation now has a contribution with the heat flux difference �qi, which here must be considered
to leading order,

�qi = τtr
5 (3 + δ)

2δ
ρθ

∂�θ

∂xi
. (44b)

At this order, the equation for stress remains unchanged, but the equation for heat flux now has also
the terms with the factor ε2α so that

σi j = −τtr 2ρ [θ − �θ ]
∂v<i

∂x j>
, (44c)

qi = −τtr

(
ρ

(
5 + δ

2
[θ − �θ ]

∂θ

∂xi
− θ

∂�θ

∂xi
− �θ

∂�θ

∂xi

)
− �θ2 ∂ρ

∂xi
− 2

39

∂ B+

∂xi

)
. (44d)

For closing the set of equations, the leading order term of B+ is required,

B+ = −39

2
ρ�θ2. (44e)

Also at this order, all corrections to the NSF equations are due to the internal degrees of freedom.

2. Order ε1+3α: RNSF equations with third internal DoF corrections

The next order of accuracy is obtained by considering the conservation laws (37), the dynamic
temperature equation (44a), the constitutive equations for the heat flux (44d) and stress (44c), and
terms up to α order in the heat flux difference as

�qi = τtr

[
5 (3 + δ)

δ

{
1

2

(
ρ (θ + �θ )

∂�θ

∂xi
+ �θ2 ∂ρ

∂xi

)
+ 1

39

∂ B+

∂xi

}]
. (45)

3. Order ε2−α: RNSF equations with full corrections

The equations at order 2 − α are the full conservation laws (37), the full dynamic temperature
equation (44a), and the following constitutive equations for heat flux and stress (considering terms
up to ε1 − α order),

σi j = − 1[
1

τtr
+ 1

τint

]2ρ [θ − �θ ]
∂v<i

∂x j>
, (46a)

qi = − 1[
1

τtr
+ 1

τint

] (ρ

(
5 + δ

2
[θ − �θ ]

∂θ

∂xi
− θ

∂�θ

∂xi
− �θ

∂�θ

∂xi

)
− �θ2 ∂ρ

∂xi
− 2

39

∂ B+

∂xi

)
.

(46b)

The equations for the heat flux difference �qi and for B+ remain the same as for the previous
case, i.e., (45) and (44e).

4. Order ε2: Refined Grad’s 14 moment equations

Starting with the second order of accuracy, balance laws for stress σ ij and heat flux qi must be
considered. To reduce the number of equations shown, we again adopt a notation with brackets and
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write (35e) and (35f) as

Dσi j

Dt
+ 4

5 + δ

∂q<i

∂x j>
+ 2σk<i

∂v j>

∂xk
+ σi j

∂vk

∂xk
− 2ρ�θ

∂v<i

∂x j>

+
[

4

5

δ

5 + δ

∂�q<i

∂x j>

]
+
[[[

∂u0,0
i jk

∂xk

]]]
= −2ρθ

∂v<i

∂x j>
−
(

1

τint
+ 1

τtr

)
σi j , (47a)

Dqi

Dt
+ 1

5 + δ

{
(7 + δ)

(
qk

∂vi

∂xk
+ qi

∂vk

∂xk

)
+ 2q j

∂v j

∂xi

}
+ σi j

(
5 + δ

2

∂θ

∂x j
− θ

∂ ln ρ

∂x j

)
+ θ

∂σi j

∂x j

− ρθ
∂�θ

∂xi
− (δ + 5)

2
ρ�θ

∂θ

∂xi
− ρ�θ

∂�θ

∂xi
− �θ2 ∂ρ

∂xi
− 2

39

∂ B+

∂xi

+
⎡⎣ 4δ

25δ + 42

∂ B+
ik

∂xk
+ δ

5 + δ

(
�qk

∂vi

∂xk
+ �qi

∂vk

∂xk
+ 2

5
�q j

∂v j

∂xi

)
+ σi j�θ

∂ ln ρ

∂x j
+ ∂�θσi j

∂x j

⎤⎦
+
[[

3

26

∂ B−

∂xi

]]
+
⎡⎣⎡⎣⎡⎣ 7 (δ + 3) (14 + 3δ)

(25δ + 42) (14 + δ)

∂ B−
ik

∂xk
− σik

ρ

∂σk j

∂x j
+ u0,0

i jk

∂v j

∂xk

⎤⎦⎤⎦⎤⎦
= − (δ + 5)

2
ρθ

∂θ

∂xi
−
(

1

τint
+ 1

τtr

)
qi . (47b)

For the second order accuracy discussed presently, all terms of the above equations except the
bracketed terms must be included; these are the terms with factors up to ε1 in (35e) and (35f). The
other relevant equations are the conservation laws (37), the dynamic temperature equation (44a),
and the previous constitutive equations for �qi and B+, (45) and (44e).

With balance laws for stress and heat flux, the second order equations form a set of partial
differential equations (PDEs) for the 14 variables

{
ρ, vi , θ,�θ, σi j , qi

}
. Other authors discuss a 14

moment set for polyatomic gases,14, 15, 42 where the equations differ from what we find. Indeed, our
refined Grad’s 14 moment (RG14) equations contain additional terms of order ε1+2α , which are the
single underlined terms in the equations for overall heat flux (47b) and the dynamic temperature
(44a), along with the constitutive equation for B+ (44e) and �qi (45). These terms would not appear
for α > 0.5, where they would give contributions of higher than second order in ε. Hence we can
say that the equations in Refs. 14, 15, and 42 are only relevant for the case that α > 0.5, and second
order accuracy.

The mentioned 14 field theory14, 15, 42 contains the three double underlined nonlinear terms in
(47b), which according to our analysis are of orders ε2+α and ε3, respectively. As will be seen below,
if one wishes to have a theory at these orders, there will be additional terms that must be included
(those that stand in the same bracket, as well as contributions in other equations).

5. Order ε2+α: RG14 equations with internal DoF corrections

In the next order of accuracy, the terms in single brackets in the equations for heat flux (47b)
and stress (47a) must be added, which are those with factors up to ε1+α in (35f)–(35e). Together with
the conservation laws (37) and the full balance law for dynamic temperature (44a), we still have a
set of PDEs for 14 variables, which is closed by the constitutive equations for �qi and B+ up to 1
− α order,

�qi = 1[
1
τtr

+ 1
τint

] [5 (3 + δ)

δ

{
1

2

(
ρ (θ + �θ )

∂�θ

∂xi
+ �θ2 ∂ρ

∂xi

)
+ 1

39

∂ B+

∂xi

}

− 2

5 + δ

(
qi

∂vk

∂xk
+ qk

∂vi

∂xk
+ q j

∂v j

∂xi

)
− θ

(
∂σi j

∂x j
− σik

∂ ln ρ

∂xk

)]
, (48a)
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B+ = − 1[
1
τtr

+ 1
τint

] (39

2

ρ�θ2

τtr
+ 26δ

3 + δ
ρθ�θ

∂vk

∂xk

)
, (48b)

and the leading order contribution to B+
i j ,

B+
i j = τtr

42 + 25δ

δ
ρθ�θ

∂v<i

∂x j>
. (48c)

6. Order ε2+2α: Refined Grad’s 18 moment equations

Increasing the accuracy to 2 + 2α, require the following equations: the conservation laws (37),
the full equation for dynamic temperature (44a), the equations for stress and heat flux (47a) and (47b)
without the terms in triple brackets, and balance laws for �qi and B+,

D�qi

Dt
+ 25 + 7δ

5 (5 + δ)
�qk

∂vi

∂xk
+ 5

2

3 + δ

δ
�θ

∂σi j

∂x j
+ σik�θ

∂ ln ρ

∂xk
+ σik

∂�θ

∂xk

+ 1

5 (5 + δ)

(
(25 + 7δ) �qi

∂vk

∂xk
+ 2δ�qk

∂vk

∂xi

)
+ 15 + 7δ

42 + 25δ

∂ B+
ik

∂xk

−
(

5 (3 + δ)

2δ
ρ�θ

∂�θ

∂xi
+ 5

2

3 + δ

δ
�θ2 ∂ρ

∂xi
+ 5 (δ + 3)

39δ

∂ B+

∂xi

)
+ 2

5 + δ

(
qi

∂vk

∂xk
+ qk

∂vi

∂xk
+ q j

∂v j

∂xi

)
+ θ

(
∂σi j

∂x j
− σik

∂ ln ρ

∂xk

)
+
[

5 (δ − 10)

39δ

∂ B−

∂xi

]
= 5 (3 + δ)

2δ
ρθ

∂�θ

∂xi
−
(

1

τtr
+ 1

τint

)
�qi , (49a)

DB+

Dt
+ 85

39
B+ ∂vk

∂xk
+ (23 − δ)

3 + δ
3ρ�θ2 ∂vk

∂xk
+ 26δ

3 + δ
ρθ�θ

∂vk

∂xk

−
[[

240 − δ (47 − δ)

2 (3 + δ) (5 + δ)
θ
∂qi

∂xi
+ 2

5 + δ
qk

(
100 − 8δ

2

∂θ

∂xk
− (20 − δ) θ

∂ ln ρ

∂xk

)
+ 8θσk j

∂v j

∂xk

]]
= −39

2

ρ�θ2

τtr
−
(

1

τtr
+ 1

τint

)
B+. (49b)

Once more we use square brackets to distinguish between terms at different orders. At the order
(2 + 2α), presently discussed, only the terms outside the brackets in Eqs. (49a) and (49b) must be
included. Closure of this set of equations requires constitutive equations for B+

i j (up to α order) and
B− (at leading order), which read,

B+
i j = τtr

[
42 + 25δ

δ

(
ρθ�θ + 2

39
B+
)

∂v<i

∂x j>

]
, (49c)

B− = τtr

[
2

13
B+ + 3ρ�θ2

]
∂vi

∂xi
. (49d)

At this order, we have PDEs for the 18 variables
{
ρ, vi , θ,�θ, σi j , qi ,�qi , B+}, which are the

refined Grad’s 18 moment (RG18) equations based on the proper ordering.

7. Order ε2+3α: RG18 equations with internal DoF corrections

At the next order, 2 + 3α, the equations are the same as for 2 + 2α, only that now one additional
term, which is the single-bracket term in (49a), must be included.
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8. Order ε3: Regularized 18 (R18) equations

Finally, we present the equations at third order of accuracy, which are: the conservation laws
(37); the full equation for the dynamic temperature (44a); Eqs. (47a), (47b), (49a), and (49b)—with
all terms—for stress, heat flux, heat flux difference, and B+. These 18 PDEs are closed with the
constitutive equations for B+

i j up to 1 − α order,

B+
i j = 1[

1
τtr

+ 1
τint

] [−θ

(
12σ<i j

∂vk>

∂xk
+ 56

5
σk<i

∂vk

∂x j>
− 14 + δ

3 + δ
σi j

∂vk

∂xk

)

+42 + 25δ

δ

(
ρθ�θ + 2

39
B+
)

∂v<i

∂x j>
− 2 (14 + δ)

5 + δ

(
θ

∂q<i

∂x j>
+ q<i

∂θ

∂x j>
− θq<i

∂ ln ρ

∂x j>

)]
,

(50a)

for B− up to 1 − 2α order,

B− = τtr

[(
2

13
B+ + 3ρ�θ2

)
∂vi

∂xi
− 12

5
θσk j

∂v j

∂xk

− 1

2 (5 + δ)

(
(24 − δ) θ

∂qi

∂xi
+ 4qk

[
(15 + 4δ)

∂θ

∂xk
− (6 + δ) θ

∂ ln ρ

∂xk

])]
, (50b)

and for u0,0
i jk and B−

i j at their leading orders,

u0,0
i jk = −τtr

[
3θ

∂σ<i j

∂xk>

− 3σ<i jθ
∂ ln ρ

∂xk>

+ 12

5 + δ
q<i

∂v j

∂xk>

]
, (50c)

B−
i j = τtr

[
−2

14 + δ

5 + δ
θ

∂q<i

∂x j>
− 2

14 + δ

5 + δ
q<i

∂θ

∂x j>

+2
14 + δ

5 + δ
θq<i

∂ ln ρ

∂x j>
− δ + 14

δ + 3

6

7
θ

(
σk<i

∂v j>

∂xk
+ σk< j

∂vk

∂xi>
− 2

3
σi j

∂vk

∂xk

)]
. (50d)

This is the set of regularized 18 (R18) equations corresponding to the third order of accuracy.

G. Cases with 0.25 < α < 0.33

The ordering of terms depends on the value of α, as outlined in Eq. (36). Above, we considered
the model reduction for α < 0.25, which gave a hierarchical sequence of equations. When we consider
slightly larger values of α, those in the interval 0.25 <α < 0.33, the ordering of contributions changes.
Specifically, only two orders change position in the ordering sequence (36), namely, ε2−α and ε1+3α .
The difference is relatively small: all set of equations corresponding to orders {ε0, εα , ε2α , ε1, ε1+α ,
ε1+2α , ε2, ε2+α , ε2+2α , ε2+3α , ε3} are the same as those in Subsection VI F. The two changed sets of
equations are discussed below.

1. Order ε2−α

The 2 − α order of accuracy requires the full conservation laws (37), the dynamic temperature
equation (44a), the constitutive equations for the heat flux and stress (46), the heat flux difference
(44b), and the leading term of B+ (44e). To save space, we will not show the equations in detail.

2. Order ε1+3α

At order 1 + 3α one must consider the full conservation laws (37), the dynamic temperature
equation (44a), the constitutive equations for the heat flux and stress (46), the leading order of B+

(44e), and the equation for heat flux difference (45).
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H. Cases with 0.33 < α < 0.5

At even larger values of α, in the range of 0.33 < α < 0.5, four orders change position in the
ordering sequence (36), viz. ε2−α , ε1+2α , ε2, and ε1+3α . Moreover, the 2 + 3α order is greater than
third order and is not further considered. The changed sets of equations are presented below, the
equations at all other orders remain same as those of Sec. VI G.

1. Order ε2−α

The 2 − α order of accuracy is gained by considering the full conservation laws (37), the
dynamic temperature equation (44a) without terms in double brackets (i.e., terms up to 2 − 2α

order), and terms up to 1 − α order in the heat flux and stress tensor,

σi j = − 1[
1

τtr
+ 1

τint

]2ρ [θ − �θ ]
∂v<i

∂x j>
, (51a)

qi = − 1[
1

τtr
+ 1

τint

]ρ

(
5 + δ

2
[θ − �θ ]

∂θ

∂xi
− θ

∂�θ

∂xi

)
. (51b)

2. Order ε1+2α

At order 1 + 2α the polyatomic gas must be described by the conservation laws (37), the
dynamic temperature equation (44a), the constitutive equations for the heat flux difference (44b),
and the following equations for stress and heat flux:

σi j = − 1[
1

τtr
+ 1

τint

]2ρ [θ − �θ ]
∂v<i

∂x j>
, (52a)

qi = − 1[
1

τtr
+ 1

τint

] (ρ

(
5 + δ

2
[θ − �θ ]

∂θ

∂xi
− θ

∂�θ

∂xi
− �θ

∂�θ

∂xi

)
− �θ2 ∂ρ

∂xi
− 2

39

∂ B+

∂xi

)
.

(52b)

For closing the set of equations, the leading order term of B+ (44e) is required.

3. Order ε2

The second order of accuracy requires all terms in the stress and heat flux balance up to factors
ε1, which are Eqs. (47a) and (47b) without all terms in brackets, as well as the conservation laws
(37), the dynamic temperature equation (44a), and the constitutive equations for B+ (44e) and the
heat flux difference (44b). the second order equations form a set of PDEs for the 14 variables{
ρ, vi , θ,�θ, σi j , qi

}
.

4. Order ε1+3α

In 1 + 3α order of accuracy, almost all equations are the same as at second order, only that,
in order to include the proper higher order terms, the constitutive equation for heat flux difference
must be replaced by (45).

5. Order ε3

The third order of accuracy corresponds to the 0.33 < α < 0.5, the only change from the set of
R18 equations at lower α (0 < α < 0.33) is the balance law for the heat flux difference, which now
only terms outside brackets in the Eq. (49a) are needed.
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I. Classical Navier-Stokes-Fourier equations, 0.5 < α < 1

The classical Navier-Stokes-Fourier equations arise only for cases with 0.5 < α < 1, where
they are the appropriate system at order ε. Here, the powers ε0, εα , and ε1 are required, while the
corrections to dynamic temperature of order ε2α and higher must be discarded. Accordingly, the
proper first order set is the conservation laws (37), together with the stress and heat flux as given in
(41), while the equation for dynamic temperature is (38),

�θ = 2

3

δ

3 + δ
τintθ

∂vi

∂xi
. (53)

The classical NSF equations give a five variables model for {ρ, vi , θ}. As discussed in Sec. IV, α

will assume values below 0.5 for rarefied flows. Thus, the classical Navier-Stokes-Fourier equations
have rather limited applicability in the rarefied regime. As was shown earlier, for 0 < α < 0.5,
the refined NSF equations are the appropriate model at first order in ε. These use the full balance
law for dynamic temperature (40) instead of (38), and have the six independent field variables,
{ρ, vi , θ,�θ}.

J. Intermediate summary

The relaxation of the internal degrees of freedom leads to various ordering sequences for different
values of α, which differ in particular in the terms associated with the dynamic temperature �θ . The
accounting of these terms, which depends on the value of α and the accuracy under consideration,
needs great care.

At the first order of accuracy, a refined version of the classical Navier-Stokes-Fourier equations
is obtained, which includes the balance lawfor the dynamic temperature (Sec. VI D).

At the second order, a refined variant of Grad’s 14 moment equations is obtained, which includes
some corrections and two extra constitutive equations for �qi and B+. We note that the higher order
terms in the dynamic temperature introduce higher space derivatives into these equations, which are
not present in the typical Grad 14 moment system.14, 15

At order 2 + 2α, a refined variant of Grad’s 18 moment equations is obtained which consists of
18 PDEs and two constitutive equations.

Finally at the third order, the regularized 18 moment equations (R18) are obtained which consist
of 18 PDEs and four constitutive equations, and contribute regularizing terms similar to what appears
in the R13 equations for monatomic gases.20

In order to decide which set of equations we need to consider for a particular problem, the
relaxation times and their ratios must be known. Therefore, the particular problem under consider-
ation determines which set of equations should be used. This choice depends on the values of both
Knudsen numbers: If the value of Kntr is rather small while Knint is relatively large, one will choose
a model with high power in εα and low power in ε; these are models with corrections to the NSF
equations, i.e., the set of 1 + 3α order equations (Sec. VI F 2). On the other hand, if both Knudsen
numbers are small, one can use a lower accuracy model, like the refined NSF equations (Sec. VI D).
In problems when both Knudsen numbers are large, particularly order unity values of Kntr, a higher
order of accuracy is an essential choice, e.g., one would choose the third order R18 equations
(Sec. VI F 8).

VII. LINEAR WAVE ANALYSIS

As a first application of the introduced model, we study the behavior of one-dimensional linear
waves as forecasted in the obtained different orders of equations. We compare the predictions
of the various equations in the hierarchies among each other as well as to those of the classical
Navier-Stokes-Fourier equations, and its modification containing the balance law for the dynamic
temperature. Moreover, we study the influence of excitations of the internal degrees of freedom by
comparing with results for monatomic gases, where we will highlight the influence of the ratio of
collision times, τ tr/τ int.
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A. Linearized equations

Sound waves are small disturbances of an equilibrium ground state {ρ0, v
0
i = 0, θ0}, and hence

it suffices to study the linearized equations. For this, we write all variables in terms of their ground
state values plus a small deviation, denoted by a hat, as

ρ = ρ0 + ρ̂, θ = θ0 + θ̂ , vi = v̂i , �θ = �θ̂ , σi j = σ̂i j , qi = q̂i ,

�qi = �q̂i , B+
i j = B̂+

i j , B− = B̂−, B−
i j = B̂−

i j , B− = B̂−, u0,0
i jk = û0,0

i jk . (54)

All deviations are considered to be very small, and the systems of equations are being linearized by
keeping only linear terms in the deviations.

The equilibrium rest state {ρ0, θ0} is used to non-dimensionalize all quantities and equations.
Specifically, we set

x̄i = xi

τ0
√

θ0
, t̄ = t

τ0
, τ̄int = τint

τ0
, τ̄tr = τtr

τ0
, ρ̄ = ρ

ρ0
− 1 ,

θ̄ = θ

θ0
− 1 , �θ̄ = �θ

θ0
, v̄i = vi√

θ0
, σ̄i j = σi j

ρ0θ0
, q̄i = qi

ρ0
√

θ0
3 , �q̄i = �qi

ρ0
√

θ0
3 , (55)

ū0,0
i jk = u0,0

i jk

ρ0
√

θ0
3 , B̄+

i j = B+
i j

ρ0θ
2
0

, B̄−
i j = B−

i j

ρ0θ
2
0

, B̄+ = B+

ρ0θ
2
0

, B̄− = B−

ρ0θ
2
0

.

Note that the dimensionless relaxation times, τ̄int and τ̄tr , are the Knudsen numbers. In order to do
the one-dimensional wave analysis, all variables should depend only on time and x-direction. For
simplicity we use the following notation for the relevant elements of vectors and tensors:

v1 = v, σ11 = σ , q1 = q, �q1 = �q, u0,0
111 = u0,0. (56)

To avoid complexity, the over bars and hats are dropped from now on, wherever applicable. For
deriving the trace free tensors in the 1D equations, care must be taken. For instance, the trace
free parts of derivatives of stress and velocity are ∂σ<11

∂x1>
= 3

5
∂σ
∂x and ∂v<1

∂x1>
= 2

3
∂v
∂x . The final set of

one-dimensional linear dimensionless equations are presented next.

B. One-dimensional linear dimensionless equations

For having the Grad’s 36 moment equations, the conservation laws,

∂ρ

∂t
+ ∂v

∂x
= 0, (57a)

∂v

∂t
+ ∂ρ

∂x
+ ∂θ

∂x
+ ∂σ

∂x
− ∂�θ

∂x
= 0, (57b)

∂θ

∂t
+ 2

3 + δ

∂v

∂x
+ 2

3 + δ

∂q

∂x
= 0, (57c)

full balance laws for the dynamic temperature, heat flux and stress,

∂�θ

∂t
− 2δ

3 (3 + δ)

∂v

∂x
− 4δ

3 (3 + δ) (5 + δ)

∂q

∂x
− 2δ

3 (5 + δ)

∂�q

∂x
= −�θ

τint
, (57d)

∂σ

∂t
+ 4

3

∂v

∂x
+ 8

3 (5 + δ)

∂q

∂x
+ 8δ

15 (5 + δ)

∂�q

∂x
+ ∂u0,0

∂xk
= −

[
1

τint
+ 1

τtr

]
σ, (57e)

∂q

∂t
+ 5 + δ

2

∂θ

∂x
+∂σ

∂x
− ∂�θ

∂x
+ 4δ

25δ + 42

∂ B+
11

∂x
− 2

39

∂ B+

∂x

+ 7 (14 + 3δ) (3 + δ)

(14 + δ) (42 + 25δ)

∂ B−
11

∂x
+ 5

13

∂ B−

∂x
= −

[
1

τint
+ 1

τtr

]
q, (57f)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

142.104.86.60 On: Mon, 05 May 2014 20:27:14



052001-23 B. Rahimi and H. Struchtrup Phys. Fluids 26, 052001 (2014)

should be considered along with balance laws,

∂�q

∂t
− 5 (3 + δ)

2δ

∂�θ

∂x
+ ∂σ

∂x
+ 15 + 7δ

42 + 25δ

∂ B+
11

∂x
− 5 (3 + δ)

39δ

∂ B+

∂xi

+5 (δ − 10)

39δ

∂ B−

∂x
− 7

3 + δ

14 + δ

δ + 6

42 + 25δ

∂ B−
11

∂x
= −

[
1

τint
+ 1

τtr

]
�q, (57g)

∂ B+

∂t
− 240 − δ (47 − δ)

2 (3 + δ) (5 + δ)

∂q

∂x
− 10δ

5 + δ

∂�q

∂x
= −

[
1

τint
+ 1

τtr

]
B+, (57h)

∂ B+
11

∂t
+ 4 (14 + δ)

3 (5 + δ)

∂q

∂x
+ 4

∂u0,0

∂x
+ 4 (70 + 23δ)

15 (5 + δ)

∂�q

∂x
= −

[
1

τint
+ 1

τtr

]
B+

11, (57i)

∂u0,0

∂t
+ 9

5

∂σ

∂x
+ 18δ

5 (25δ + 42)

∂ B+
11

∂x
+ 18 (14 − δ) (3 + δ)

5 (14 + δ) (42 + 25δ)

∂ B−
11

∂x
= −

⎡⎣ 1

τint
+ 1

τtr

⎤⎦ u0,0,

(57j)

∂ B−

∂t
+ (24 − δ)

2 (5 + δ)

∂q

∂x
+ 2δ

5 (5 + δ)

∂�q

∂x
= −

⎡⎣ 1

τint
+ 1

τtr

⎤⎦ B−, (57k)

∂ B−
11

∂t
+ 4 (14 + δ)

3 (5 + δ)

∂q

∂x
+ 3 (14 + δ)

7 (3 + δ)

∂u0,0

∂x
− 8δ (14 + δ)

15 (3 + δ) (5 + δ)

∂�q

∂x
= −

⎡⎣ 1

τint
+ 1

τtr

⎤⎦ B−
11.

(57l)

The set of equations for first, second, and third order could be obtained by zeroing the corre-
sponding underlined terms, e.g., zeroing the second and third underlined terms reproduce the second
order set of equations.

C. Plane harmonic waves

All sets of linearized one-dimensional equations can be written in the general form

AAB
∂uB

∂t
+ CAB

∂uB

∂x
= L ABuB, (58)

with the coefficients matrices AAB, CAB, and LAB corresponding to the equations and variables vector
defined as

u[14] = {ρ, vi , θ, σi j ,�θ, qi } first and second order, (59a)

u[36] = {ρ, vi , θ, σi j ,�θ, qi ,�qi , B+, B−, u0,0
i jk , B+

i j , B−
i j } third order and G36. (59b)

Making the harmonic wave ansatz,

u A(x, t) = ŭ A exp[i(ωt − kx)], (60)

with the complex amplitude ŭ A, frequency ω, and wave number k, and inserting the harmonic wave
into the general form of the equations results in an algebraic equation,

[iωAAB − ikCAB − L AB] ŭ B = 0. (61)

The only non-trivial solution for this equation is obtained when the determinant of the complex
matrix inside the bracket becomes zero, which gives the dispersion relation. For different set of
equations, the dispersion relation has different numbers of branches.
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D. Phase velocity and damping factor

The phase velocity and damping factor are defined as

vph = ω

kr
and φ = −ki . (62)

We found 2, 3, 4, and 4 pairs of branches for first, second, and third order set of equations, and
G36, respectively. Each of these pairs consist of two waves with the same damping and velocity
magnitude moving in opposite direction.

The frequency is made dimensionless such that it can be considered as a Knudsen number,62

ω̄ = ωτ0 = Kn. (63)

For convenience, the internal Knudsen number is set to unity, Knint = 1, so that the reference time
scale is the internal mean free time, τ 0 = τ int. This means frequency is a measure of the internal
Knudsen number.

Figure 2 shows the branches associated with the lowest damping, this is the sound wave,62 for
the different sets of equations, where only one branch is plotted. The dimensionless inverse phase
velocity and the reduced damping factor φ/ω for a wide range of dimensionless frequency and two
different ratios of Knudsen numbers, 10−2 and 10−3, are shown as functions of inverse frequency.

All sets of equations agree for low frequency (i.e., small Knudsen number). However, as the
Knudsen number rises (i.e., for smaller inverse frequency), first the refined NSF equations start
to deviate, followed by the second order set of equations. The third order equations, R18, have
agreement with the full set of 36 equations up to higher Knudsen numbers. Therefore, the range
of validity for the set of R18 equations is near 1/ωτ int = Kntr/Knint; this value of dimensionless
frequency corresponds to the case of Kntr = 1. Based on Fig. 2, the expected validity of the R18 is
up to Kntr = 0.6.

FIG. 2. Inverse dimensionless phase velocity
√

(5 + δ) / (3 + δ)/vph (left) and reduced damping φ/ω (right) as functions
of inverse frequency 1/ω for various Knudsen number ratios and different sets of equations: refined NSF (orange dashed),
second order (green dotted), R18 (black continuous), G36 (black dashed-dotted).
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FIG. 3. Inverse dimensionless phase velocity
√

(5 + δ) / (3 + δ)/vph (left) and reduced damping φ/ω (right) as functions of
inverse frequency 1/ω for two Knudsen number ratios and different sets of equations: R18 (black continuous), classical NSF
(red dashed-dotted), refined NSF (orange dashed).

A comparison between the refined and classical NSF equations is made in Fig. 3. The difference
between the two sets is simply the time derivative ∂�θ

∂t in Eq. (57d), which is there for the refined case,
but not for the classical NSF equations. Original NSF deviates from R18 for almost all frequencies
plotted, while refined NSF agrees to R18 for dimensionless inverse frequencies 1/(ωτ int) down to
the values of Kntr/Knint. Considering the proposed refined version of the NSF equations, instead of
the classical one, will extend the range of validity of the NSF equations considerably.

E. Monatomic limit

The cases with very low relaxation time ratio, so that τ tr < τ 0 	 τ int, correspond to frozen
internal exchange processes. Therefore, if the internal mean free time becomes much larger than the
macroscopic time and translational mean free time, the internal degrees of freedom are frozen and
the polyatomic gas acts like a monatomic gas.

For convenience, now the translational Knudsen number is set to unity, Kntr = 1, so that the
reference time scale is the translational mean free time, τ 0 = τ tr. This means frequency is a measure
of the translational Knudsen number. In Fig. 4 results from the R18 equations for three different
relaxation times ratios are compared with the result from monatomic counterpart, which are the R13
equations.20 The three relaxation times considered here correspond to two extreme cases, excited (τ tr

≈ τ int) and frozen (τ tr 	 τ int) internal degrees of freedom, and one case in between τ tr/τ int = 0.5,
0.05, 10−5. The case with τ tr/τ int = 10−5 corresponds to the frozen internal state and exhibits a good
agreement with the monatomic results from the R13 equations. A polyatomic gas with δ = 2 behaves
like a monatomic gas with δ = 0, if the internal degrees of freedom are frozen. For intermediate
values of τ tr/τ int, the speed of sound is strongly dependent on frequency. If the frequency is small
(large 1/ωτ ), the internal degrees of freedom have time to relax, and the speed of sound is that for δ
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FIG. 4. Inverse dimensionless phase velocity
√

(5 + δ) / (3 + δ)/vph (left) and reduced damping φ/ω (right) as functions of
inverse frequency 1/ω for set of R18 equations for Knudsen number ratios, 0.5 (black dotted), 0.05 (black dashed-dotted),
10−5 (red dashed), and for the set of R13 equations corresponds to the monatomic gas (green continuous).

= 2, but for larger frequency, the internal degree of freedom does not have sufficient time to relax,
which results in an increased speed of sound.

Here, we reproduce the monatomic gas behavior as an asymptotic solution of the equations,
without setting the internal degrees of freedom to zero, as was done in Ref. 43.

VIII. CONCLUSIONS AND OUTLOOK

The present paper introduced new macroscopic models for the accurate description of poly-
atomic gas flows in the transition regime by employing the order of magnitude method. Different
energy exchange processes have been described using the two term BGK collision model. We defined
optimized moment definitions such that only linearly independent variables at each order exists. The
final closed form of the Grad’s 36 moments equations for polyatomic gasses has been presented.
We applied the model reduction and obtained 13 different set of equations associated with various
order of accuracy. Also, we discussed the changes in the equations due to the ratio of the Knudsen
numbers. A brief discussion on the appropriate set of equations which should be used to model
different physical problems and some examples on the determining parameters have been given.

The emphasis of the present paper is on the derivation of the equations and introducing a
comprehensive model for polyatomic gases in the transition regime. As the first application of the
introduced model, we studied the linear wave analysis.

A modification of the classical Navier-Stokes-Fourier equations, which we denoted as refined
Navier-Stokes-Fourier (RNSF) equations, was obtained at the first order of accuracy. This modifica-
tion, which includes the full balance law for the dynamic temperature, extends the range of validity
of the classical NSF equations considerably. At the second order of accuracy, a corrected version,
RG14, of the existing 14 field theory of moments has been obtained by considering two additional
constitutive equations. At order 2 + 2α, a refined variant of Grad’s 18 moment (RG18) equations
is obtained which consists of 18 PDEs and two constitutive equations. The regularized 18 (R18)
equations, consisting of 18 PDEs and 4 constitutive equations, have been acquired at the third order
of accuracy as the final reduced set of stable equations which describes the polyatomic gas flows in
the transition regime with high order of accuracy. Based on the results for sound waves, the expected
validity of the R18 equations is up to Kntr = 0.6. Several sets of equations for in-between orders of
accuracy have been presented as well.

Finally, as an asymptotic solution to our model, we reproduced the monatomic gas behavior by
considering frozen internal exchange processes, and not the zero internal DoF as in Ref. 43.

The next important steps in this research program are: (a) development of suitable boundary
conditions for the equations, including boundary conditions for the refined NSF model and (b)
analytical and numerical solutions of the equations, and a careful evaluation of their merits. Finally,
it must be noted that the equations considered here were based on the BGK model, fully developed,
or frozen, internal energy states. Rederivation of the basic moment equations based on more accurate
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kinetic equations will be required in the future, to obtain better matching of transport coefficients
(e.g., the Prandtl number, and temperature dependent specific heat).
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APPENDIX: GRAD’S DISTRIBUTION FUNCTION AND MOMENT EQUATIONS

1. Coefficients of Grad’s distribution function

The generalized Grad phase density for polyatomic molecules is

f|Grad = fint

∑
n=0

∑
ς=0

∑
A=0

λ
ς,A
〈i1i2...in〉 I A(2/δ)C2ςC<i1 Ci2 . . . Cin>. (A1)

This distribution function for 36 moments (17) must reproduce the set of 36 moments as

u A = m
∫ ∫

�A f|36dcd I, (A2)

with

u A = {ρ, ρθtr , ρθint , σi j , qi,tr , qi,int , u1,0
i j , u2,0, u0,0

i jk , u0,1
i j , u1,1},

�A ={1, Ci ,
C2

3
,

2

δ
I 2/δ , C<i C j>,

Ci C2

2
, Ci I 2/δ , C<i C j>C2, C4, C<i C j Ck>, C<i C j> I 2/δ , C2 I 2/δ}.

The coefficients of the distribution function, Eq. (17), are obtained using the above equations as

λ0,0 = 4u1,1 + u2,0

8ρθ2
+ 5

8
− 3 (2 + δ) θtr

4θ
, λ0,1 = − u1,1

δρθ3
+ 15

2δθ
− 3 (5 − δ) θtr

2δθ2
,

λ1,0 = −2u1,1 + u2,0

12ρθ3
− 1

θ
+ (9 + δ) θtr

4θ2
, λ2,0 = u2,0

120ρθ4
+ 1

8θ2
− θtr

4θ3
,

λ1,1 = u1,1

3δρθ4
− 3

2δθ2
+ (9 − δ) θtr

6δθ3
, λ

0,0
i = −qi,tr + qi,int

ρθ2
,

λ
1,0
i = qi,tr

5ρθ3
, λ

0,1
i = 2qi,int

δρθ3
,

λ
0,0
<i j> = −2u0,1

i j + u1,0
i j

4ρθ3
+ (9 + δ) σi j

4ρθ2
, λ

1,0
<i j> = − u1,0

i j

28ρθ4
− σi j

4ρθ3
,

λ
0,0
<i jk> = u0,0

i jk

6ρθ3
, λ

0,1
<i j> = u0,1

i j

δρθ4
− σi j

2ρθ3
.

2. Moment equations

The moment equations for higher 18 moments, B−, B+
i j , u0,0

i jk , and B−
i j , are presented here. The

moment equations for lower 18 moments, ρ, vi , θ , �θ , σ ij , qi , B+, and �qi were presented in
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Eqs. (35a)–(35h).

ε1

[
DB̃−

Dt
+ 71

39
B̃− ∂vk

∂xk

]
+
{

ε1

ε2α

}[
2δ

5 (5 + δ)
�q̃k

(
∂�θ̃

∂xk
+ �θ̃

∂ ln ρ

∂xk

)]

+
{

ε1−2α

ε0

}[
1

2 (5 + δ)

(
(24−δ) θ

∂q̃i

∂xi
+4q̃k

[
(15+4δ)

∂θ

∂xk
− (6 + δ) θ

∂ ln ρ

∂xk

])
+ 12

5
θσ̃k j

∂v j

∂xk

]

+
{

ε1−α

εα

}[
2 (6 + δ)

5 + δ
q̃k

(
∂�θ̃

∂xk
+ �θ̃

∂ ln ρ

∂xk

)
+ 3�θ̃

(
∂ q̃i

∂xi
+ σ̃k j

∂v j

∂xk

)]

+
{

ε1−α

εα
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ũ0,0

i jk

∂θ

∂xk
− 14 + δ

5 + δ

2

ρ
q̃<i

∂σ̃ j>k

∂xk

]
− ε3−α

[
4

ρ
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+ 3ũ0,0
l<i j

∂vk>

∂xl
+ ũ0,0
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∂ ũ0,0

i jk

∂xk
− ũ0,0
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ũ0,0

i jk

2

∂θ

∂xk
− 2

(5 + δ)

q̃<i

ρ

∂σ̃ j>k

∂xk

)
+ B̃−

i j

∂vk

∂xk

]

+ εα

[
(14 + δ)

(
2

5 + δ

[
δ

5
�q̃<i

∂θ

∂x j>
+ �θ̃ q̃<i

∂ ln ρ

∂x j>
+ q̃<i

∂�θ̃

∂x j>

]
+ �θ̃σ̃i j

3 + δ

∂vk

∂xk

)]
+ εα

[
4δ (14 + δ)

5 (δ + 3) (δ + 5)
θ

(
�q̃<i

∂ ln ρ

∂x j>
− ∂�q̃<i

∂x j>

)
+ 3δ

25δ + 42

(
6

7
B̃+

<i j

∂vk>

∂xk
+ 4

5
B̃+

k<i

∂vk

∂x j>

)]

+
{

ε2α

ε1

}
2 (14 + δ)

3 (3 + δ)
B̃− ∂v<i

∂x j>
− ε2α

[
4δ (14 + δ)

5 (δ + 3) (δ + 5)
�q̃<i

(
�θ̃

∂ ln ρ

∂x j>
+ ∂�θ̃

∂x j>

)]

+ ε1+α

[
14 + δ

3 + δ

(
3

7
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27 E. Eucken, “Über das Wärmeleitverm ögen, die spezifische Wärme und die innere Reibung der Gase,” Phys. Z. 14, 324–332

(1913).
28 C. Wang Chang and G. Uhlenbeck, “Transport phenomena in polyatomic gases,” University at Michigan Research Report,

CM-681, 1951.
29 C. Wang Chang, G. Uhlenbeck, and J. de Boer, “The heat conductivity and viscosity at polyatomic gases,” in Studies

Statistical Mechanics, edited by J. de Boer and G. Ulhenbeck (North-Holland, Amsterdam, 1964), Vol. 2.
30 J. F. Bourgat, L. Desvillettes, P. Le Tallec, and B. Perthame, “Microreversible collisions for polyatomic gases and Boltz-

mann’s theorem,” Eur. J. Mech. B-Fluid 13, , 237–254 (1994).
31 C. Cercignani, The Boltzmann Equation and Its Applications (Springer-Verlag, New York, 1988).
32 G. A. Bird, Molecular Gas Dynamics and the Direct Simulation at Gas Flows (Oxford University Press, New York, 1998).
33 E. A. Mason and L. Monchick, “Heat conductivity of polyatomic and polar gases,” J. Chem. Phys. 36, 1622–1639

(1962).
34 L. Monchick, K. S. Yun, and E. A. Mason, “Relaxation effects in the transport properties of a gas of rough spheres,”

J. Chem. Phys. 38, 1282–1287 (1963).
35 L. Monchick, R. J. Munn, and E. A. Mason, “Thermal diffusion in polyatomic gases: A generalized Stefan–Maxwell

diffusion equation,” J. Chem. Phys. 45, 3051–3058 (1966).
36 T. F. Morse, “Kinetic model for gases with internal degrees of freedom,” Phys. Fluids 7, 159–169 (1964).
37 F. B. Hanson and T. F. Morse, “Kinetic models for a gas with internal structure,” Phys. Fluids 10, 345–353 (1967).
38 E. Nagnibeda and E. Kustova, Non-Equilibrium Reacting Gas Flows: Kinetic Theory at Transport and Relaxation Processes

(Springer, 2009).
39 L. Monchick, “Small periodic disturbances in polyatomic gases,” Phys. Fluids 7, 882–896 (1964).
40 L. Monchick, K. S. Yun, and E. A. Mason, “Formal kinetic theory of transport phenomena in polyatomic gas mixtures,” J.

Chem. Phys. 39, 654–669 (1963).
41 T. Arima, S. Taniguchi, T. Ruggeri, and M. Sugiyama, “Dispersion relation for sound in rarefied polyatomic gases based

on extended thermodynamics,” Contin. Mech. Thermodyn. 25, 727–737 (2013).
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