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Abstract Heat transfer in solids is modeled in the framework of kinetic theory of the phonon gas. The
microscopic description of the phonon gas relies on the phonon Boltzmann equation and the Callaway model
for phonon–phonon interaction. A simple model for phonon interaction with crystal boundaries, similar to the
Maxwell boundary conditions in classical kinetic theory, is proposed. Macroscopic transport equation for an
arbitrary set of moments is developed and closed by means of Grad’s moment method. Boundary conditions
for the macroscopic equations are derived from the microscopic model and the Grad closure. As example,
sets with 4, 9, 16, and 25 moments are considered and solved analytically for one-dimensional heat transfer
and Poiseuille flow of phonons. The results show the influence of Knudsen number on phonon drag at solid
boundaries. The appearance of Knudsen layers reduces the net heat conductivity of solids in rarefied phonon
regimes.

Keywords Phonon heat transfer · Moment method · Slip boundary conditions

1 Introduction

There has been an increasing focus in the last two decades on miniaturization, as scientists and engineers aim
to utilize the benefits of micro- and nanotechnology. In order to effectively design devices at the corresponding
length scales, it is important to understand the governing equations. As length scale decreases, different effects
become more dominant and others might become less, such that approximations used in classical macroscopic
theories loose validity. As a result, well-known relations, such as Fourier’s law for heat conduction and the
Navier–Stokes equations, begin to break down in certain regimes.

Understanding temperature and heat transfer is important for determining virtually any other property
in a material, such as viscosity, electrical and thermal conductivity, heat capacity, elasticity, and ductility.
Furthermore, the small size of an object and its resultant tiny thermal mass combined with the relative power
of lasers can lead to huge fluctuations in temperature over short periods of time. Understanding temperature
and heat transport will improve the sensitivity of sensors and could also be used for more effective thermal
management of miniaturized devices, including semiconductor systems [1].

Heat in a solid is caused by vibrations of particles in the crystal lattice with respect to their mean position.
These vibrations can be quantized into quasiparticles known as phonons [2,3]. Macroscopic properties such
as temperature, internal energy, and heat flux can be determined by analysis of the phonon properties, such as
energy and quasimomentum. Heat and temperature properties of systems can be determined by tracking all
phonons in a domain (i.e., by molecular dynamics), but this can be prohibitively expensive when large numbers
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of phonons are present. The direct simulation Monte Carlo method (DSMC), which uses a statistical approach
to groups of particles, can be used in situations where large numbers of phonons are present, but it can still be
computationally expensive [4].

Another approach is to extend the classical heat transport equations—i.e., Fourier’s law—by using phonon
kinetic theory to add terms and equations to the existing macroscopic equations. In the case of heat transport
in solids, extended equations are necessary at larger (>0.01) Knudsen numbers, Kn, defined as the ratio of the
mean free path of phonons, λ, to the length scale, L , of the system. The equations are extended by analyzing
microscopic phonon kinetic theory and then integrating the properties to develop macroscopic equations. This
approach was first used by Grad in kinetic theory of classical gases [5] and later extended to phonon kinetic
theory [6].

Earlier moment models did not include a proper theory of boundary conditions, which limited the consid-
eration of the extended transport models to few special cases [6]. Clearly, to render the macroscopic approach
to phonon transport into a useful tool for simulation and understanding of devices, one needs reliable boundary
conditions. Phenomenological boundary conditions to extended thermodynamic equations for phonons have
recently been presented [7–9] for the Guyer–Krumhansl equations [10,11] that correspond to a 9-moment
method.

In the present paper, in order to bridge between the microscopic and macroscopic descriptions of phonon
transport, we present boundary conditions based on a microscopic analysis of model phonon–surface in-
teractions. Three types of interactions are considered: isotropic scattering, specular reflection, and surface
thermalization. The purpose of the model is to be versatile enough, so that proportions of the three types of
interactions can be changed relative to each other to approximate experimental data.

The moment description of phonons in [6] was based on a simplified kinetic description of phonons, which
we shall adhere to as well. The main simplifications are (a) a linear dispersion relation between phonon energy
and momentum, (b) extension of the Brillouin zone to infinity, and (c) modeling of phonon interactions with the
Callaway model [12], with frequency-independent collision frequencies. These simplifications allow relatively
fast access to moment systems of arbitrary moment number. The resulting models describe the rarefied phonon
gas in principle and offer parameters such as the relaxation times that can be used for fitting to experiments.
We note, however, that these underlying assumptions are not valid for the description of systems at room
temperature, where phonon dispersion is nonlinear, and the Brillouin zone cannot be extended to infinity.
Hence, the present models are of limited use for application for many actual systems.

Since it is based on the same assumptions, the model of boundary conditions that we present here com-
plements [6] in that it provides complete boundary conditions for the moment equations presented there. For
self-consistency, we shall recall the model and development of the moment equations in some detail and
then develop the appropriate moment boundary conditions for the moment systems. As a result, we present a
framework of moment equations and boundary conditions for an arbitrary number of moments.

Detailed equations and boundary conditions are then presented and discussed for sets of 4, 9, 16, and 25
moments. The relation of the 4-moment model to Fourier’s law, and of the 9-moment model to the Guyer–
Krumhansl equations is pointed out. One advantage of the moment description of rarefied gases is that one
can find analytical solutions for processes in simple geometry, which is not possible for the kinetic description
through the Boltzmann equation. To show the capabilities of the equations, two simple problems are solved
analytically, one-dimensional heat transfer through a finite crystal, including a case with an interface within
the crystal, and heat flow in a narrow conductor with adiabatic sides, where phonon flow is similar to classical
Poiseuille flow. We study generic cases by considering solutions of the dimensionless equations for a variety of
dimensionless parameters. The solutions agree with Fourier’s law for small Knudsen numbers, but boundary
effects such as temperature jump and Knudsen layers markedly reduce overall conductivity for larger Knudsen
numbers.

Our results show that the macroscopic approach to phonon transport allows the solution of boundary
value problems for technically relevant processes with meaningful results. We refrain from comparison with
actual experimental data, since the present kinetic model relies on too many simplifying assumptions (linear
dispersion, finite Brillouin zone, constant collision frequency). While the present work proves that meaningful
boundary conditions for moment systems for phonons can be derived, we believe that for accurate description
of actual experiments, the model should be based on a more realistic kinetic model.

The remainder of the paper is organized as follows: In Sect. 2 we recall the basic elements of the microscopic
description of phonons through the phonon Boltzmann equation with Callaway model, derive the moment
equations, and use the Grad method for closure. Section 3 details the microscopic model for phonon–boundary
interactions. The Grad distribution function is used to determine the appropriate boundary conditions for the
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moment equations. In Sect. 4, we consider the developed general set of equations for the special cases of 4,
9, 16, and 25 moments, and Sect. 5 shows their applications to heat transfer problems. The paper closes with
some final comments.

2 Kinetic theory of phonons

2.1 The phonon model

Internal energy of a crystalline solid is due to oscillations of particles from their mean position in a crystal
lattice. These oscillations can be represented by quasiparticles known as phonons [13–15], so that the crystal
is essentially described as a box filled with a phonon gas. Phonons with frequency ω have the energy h̄ω and
the momentum h̄k, where k is the phonon wave vector, and h̄ is Planck’s constant. For a phonon with given
wave vector, the frequency follows from the dispersion relation ω (k); phonons travel with the group velocity
vg = ∂ω

∂k .
Phonon number is not conserved, since phonons can be created and annihilated in interactions. In particular,

two phonons may combine to form one phonon, or one phonon may split into two phonons [13]. In both cases,
energy is conserved,

h̄ω′ + h̄ω′′ = h̄ω′′′ or h̄ω′ = h̄ω′′ + h̄ω′′′. (1)

Phonon momentum, sometimes called quasimomentum or crystal momentum, is not always conserved, but
obeys the rules

h̄k′ + h̄k′′ = h̄k′′′ + h̄G or h̄k′ = h̄k′′ + h̄k′′′ + h̄G, (2)

where G is the reciprocal lattice vector. If G is zero, the process is known as a normal process, because
momentum is conserved. If G is nonzero, the process is known as an Umklapp processes. Umklapp processes
occur because of the periodic nature of phonon dispersion. One full period of the dispersion relation is known
as the Brillouin zone. Since the relation is periodic, all phonons can be described with a frequency, ω, and a
wave vector, k, within the Brillouin zone. Any phonon with a wave vector outside of the Brillouin zone can be
described as a phonon inside the Brillouin zone plus an integer multiple of G. In this way, phonon momentum
is created and destroyed [2,3].

Phonons may also interact with electrons and photons, and they are scattered at dislocations and other
impurities. Also, acoustical phonons are produced from decay of optical phonons [16]. Also for these processes,
quasimomentum is not conserved. For the purposes of this paper, these processes and Umklapp processes are
grouped together and denoted as resistive processes. For a more in-depth look at the kinetic properties of
phonons, see [2,3,6].

2.2 Phonon kinetic theory

Since heat transport can be described as energy transport in a phonon gas, it can also be modeled using gas
kinetic theory, albeit with different rules and constraints. Phonons are fully characterized by their location in
space, x, and their wave vector, k. The phonon distribution function f (x, t, k) is defined such that the number
of phonons in an element of phase space, dkdx, at time t is

d N = f (x, k, t)dkdx. (3)

The distribution function follows as the solution of the phonon Boltzmann equation, which, for a rigid body,
reads [6,13]

∂ f

∂t
+ ∂ω

∂ki

∂ f

∂xi
= SN( f ) + SR ( f ), (4)

where SN is the collision term for normal processes, and SR is the collision term for resistive processes.
Macroscopic thermodynamic properties of the phonon system can be determined as suitable averages of

the distribution function. The energy of a phonon is h̄ω, so the energy density of the phonon gas, e, is

e (t, x) =
∫

B Z

h̄ω f (x, k, t)dk, (5)
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where B Z denotes the Brillouin zone of the crystal lattice structure. Similarly, the momentum of a phonon is
h̄ki , so the phonon momentum density, pi , is

pi (t, x) =
∫

B Z

h̄ki f (x, k, t)dk. (6)

Moreover, since the phonons move with the group velocity ∂ω
∂ki

, the energy flux qi is

qi (t, x) =
∫

B Z

∂ω

∂ki
h̄ω f (x, k, t)dk (7)

and the momentum flux—or pressure tensor—�i j , is

�i j (t, x) =
∫

B Z

∂ω

∂ki
h̄k j f (x, k, t)dk. (8)

Higher-order macroscopic properties can be determined by taking higher-order moments of f in ki . Al-
though these quantities do not appear in classical heat transfer, they are important for extending the transport
equations beyond the realm of applicability of the classical laws of heat transfer. We present them as trace-free
moments, so that they remain independent of each other [17,18]. We shall consider the general moments

u〈i1···in〉 =
∫

B Z

h̄
k〈i1 · · · kin〉

kn−1 f (x, k, t) dk, (9)

where indices in angular brackets, as in k〈i1 · · · kin〉, denote the trace-free and symmetric part of a tensor.
Obviously, we have ui = pi ; with the assumption of linear dispersion in the next section, also the moments e,
qi , and �i j will be directly related to (9).

Since phonons are bosons, their entropy density is

η = −kB

∫

B Z

(
f ln

f

y
− y

(
1 + f

y

)
ln

(
1 + f

y

))
dk, (10)

where y is the density of states and kB is Boltzmann’s constant. The phonon distribution function in equilibrium
can be determined by maximizing entropy which yields the Bose distribution [2,6,19],

fBose = y

exp
[

h̄ω
kB T

]
− 1

. (11)

2.3 Linear dispersion and infinite Brillouin zones

Several simplifying assumptions [13–15] are used in order to present the extended transport equations. An
important assumption is that the system is isotropic and homogeneous. This assumption ignores the direction-
ality inherent to crystal lattices and models the Brillouin zone as being spherical [2]. The second assumption
is that the Brillouin zone can be considered as infinitely large. This implies for the definition of the moments

u〈i1···in〉 =
∫

B Z

h̄
k〈i1 · · · kin〉

kn−1 f dk =
∞∫

−∞
h̄

k〈i1 · · · kin〉
kn−1 f dk (12)

Another assumption, which is valid at rather low temperatures, is to approximate the dispersion relation between
frequency and wave vector as a linear function,

ω (k) = ck, (13)
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where c is the Debye velocity of the solid. Then, the group velocity is

∂ω

∂ki
= ∂ (ck)

∂ki
= c

ki

k
. (14)

We note that linear dispersion leads to

e = cu, qi =
∫

B Z

h̄c2ki f dk = c2ui , �i j = c
∫

B Z

h̄
ki k j

k
f dk = cu〈i j〉 + 1

3
eδi j . (15)

Hence, energy, energy flux, and phonon pressure tensor are directly related to the moments u〈i1···in〉 (9). In
particular, the energy flux is proportional to momentum, qi = c2 pi .

2.4 Moments of the Bose distribution

With the assumptions of the last section, we can compute the values of the moments in equilibrium, by
evaluating the integrals with the Bose distribution (11). In particular, we obtain for the energy density the
well-known relation to the fourth power of temperature,

e =
∫

h̄ω fBosedk =
∫

yh̄ck

exp
[

h̄ω
kB T

]
− 1

dk = 4yπ5k4
B

15c3h̄3 T 4 = aT 4. (16)

By definition, temperature is an equilibrium property. It is customary, though, to extend the above relation to the
nonequilibrium case, so that T = (e/a)1/4 in all processes. This definition of temperature in nonequilibrium
mainly simplifies notation.

We also note that due to the isotropy of the Bose distribution, we have u〈i1···in〉|Bose = 0 for n ≥ 1.

2.5 The Callaway model

The right-hand side of the phonon Boltzmann equation is the nonlinear collision term, accounting for resistive
and normal processes. In order to simplify the right-hand side, Callaway introduced a simplified model [12],
which is analogous to the BGK model in the kinetic theory of classical gases [20]. The Callaway model does not
individually resolve phonon interactions but assumes that any phonon interaction increases entropy and thus
drives the distribution function toward the equilibrium distribution. Furthermore, since it is the interactions
themselves that increase entropy, the rate of increasing entropy depends on the mean free time of phonon
interactions, denoted as τN for normal interactions and τR for resistive interactions. We simplify the Callaway
model by using the gray matter assumption whereby the collision frequencies are assumed to be independent
of wave vector or frequency.

The Callaway model states the collision term as

SN( f ) + SR ( f ) = − 1

τN
( f − fN) − 1

τR
( f − fR), (17)

where fN and fR are suitable equilibrium functions. Both collision terms conserve energy, and the term for
normal processes conserves momentum as well, that is,

∫
h̄ωSR( f )dk = 1

τR

∫
h̄ω ( f − fR) dk = 0

∫
h̄ωSN( f )dk = 1

τN

∫
h̄ω ( f − fN) dk = 0 (18)

∫
h̄ki SN( f )dk = 1

τN

∫
h̄ki ( f − fN) dk = 0

The equilibrium functions fN and fR are obtained from maximizing entropy (10) under the constraints of given
values of those moments that are conserved in interaction, i.e., only energy for resistive processes, and energy
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and momentum for normal processes. The Lagrange multipliers of the maximization process are determined
from the above conservation requirements. Then, fR is the Bose distribution (11), and fN is the drifting Bose
distribution [6,12]

fN = y

exp [h̄ω
e + h̄ki
i ] − 1
, (19)

where 
e and 
i are the Lagrange multipliers of the maximization process.
When the deviation from equilibrium is sufficiently small, one can linearize fN around the Bose distribution

to obtain, with ω = ck,

fN = fBose + ∂ fBose

∂ h̄ck
kB T

[
h̄ck

(

e − 1

kB T

)
+ h̄ki
i

]
. (20)

The Lagrange multipliers follow from the conservation requirements (18) which yield 
e = 1
kB T and 
i =

− 45
16

h̄3c5

yπ5k5
B T 5 pi so that

fN = fBose − ∂ fBose

∂k

3

4

cpi

aT 4 ki , (21)

where aT 4 = e is energy density (16).

2.6 Moment equations

Instead of directly solving the phonon Boltzmann equation to find the distribution function f , the moment
method generates a set of moment transport equations by integrating over the phonon Boltzmann equation.
Using the assumptions outlined above and applying the gray matter Callaway model, we first find the energy
transport equation by multiplying the phonon Boltzmann equation (4) by h̄ω and integrating to obtain

∂e

∂t
+ c2 ∂pi

∂xi
= 0. (22)

Note that the right-hand side of equation (22) must be zero because energy is conserved in phonon collisions,
see (18)1,2. We recognize, again, c2 pi as the phonon energy flux.

The transport equation for momentum is obtained by multiplying the phonon Boltzmann equation with
h̄ki and subsequent integration, to read

∂pi

∂t
+ 1

3

∂e

∂xi
+ c

∂u〈i j〉
∂x j

= − 1

τR
pi . (23)

Momentum is conserved in normal processes (see (18)3), but not in resistive processes, which therefore
contribute to the production term on the right-hand side. Note the occurrence of the phonon stress tensor
�i j = cui j under the space derivative.

The general moment transport equation for the moments (9) is

∂u〈i1···in〉
∂t

+ c
n

2n + 1

∂u〈〈i ···in−1〉
∂xin〉

+ c
∂u〈i1···in+1〉

∂xin+1

= −1

τ
u〈i ···in〉, (24)

where
∂u〈〈i1···in−1〉

∂xin 〉 is the trace-free gradient of u〈i1···in−1〉 and the overall mean free time τ is defined as

1

τ
= 1

τR
+ 1

τN
. (25)
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2.7 Closure

Taking moments of the Boltzmann equation generates an infinite set of coupled linear partial differential
equations for the macroscopic properties, i.e., the moments, in a solid. For practical applications, the system
has to be truncated, so that only a finite number of moments, and the corresponding equations, are considered.
We consider a truncated set of moment equations with moments UA = {e, u〈i1···in〉 (n = 1, . . . , N )

}
. The

equation for the highest moment, u〈i1···iN 〉, contains the moment u〈i1···iN+1〉 which is not among the variables;
hence, a constitutive equation for u〈i1···iN+1〉 is required to close the system.

The solution to the closure problem was first proposed in kinetic theory by Grad [5] and adapted to phonon
kinetic theory later in [6]. The idea is to construct f such that it is a function of only the chosen variables, and
of the wave vector, so that the distribution function for closure is of the form fG = f (k, UA (x, t)). Note that
the dependence on space-time is only through the space-time dependence of the variables UA (x, t). With a
proper expression for fG, the higher moment u〈i1···iN+1〉 can be determined as a function of the lower moments.
The function fG will also be needed to construct boundary conditions for the moments.

We follow the approach in [6], where that distribution function is chosen which maximizes phonon entropy
in nonequilibrium under constraints of given values for the moments UA that are considered as variables. The
maximization yields

fG = y

exp
[
h̄ck�e +∑N

n=1

{
�〈i1···in〉h̄

( 1
k

)n−1
k〈i1ki2 · · · kin〉

}]
− 1

, (26)

where the Lagrange multipliers, �e and �〈i1···in〉(n = 1, 2, . . . , N ), must be determined from the definition of
the moments (9). Again, we consider only small deviations from the equilibrium distribution, which allows
us to linearize in the Lagrange multipliers. Then, their computation is straightforward, and the distribution
function for closure is

fG = fBose − ∂ fBose

∂k

N∑
n=1

(2n + 1)!!
4n!

cu〈i1···in〉
aT 4

k〈i1 · · · kin〉
kn−1 . (27)

The required constitutive relation for u〈i1···iN+1〉 follows from evaluation of (9) with the Grad distribution (27),
which gives

u〈i1···iN+1〉 =
∞∫

−∞
h̄

k〈i1 · · · kiN+1〉
k N

fGdk = 0. (28)

The closure method thus reduces the number of unknowns to the number of equations. For a more in-depth
look into Grad closure, see [21].

3 Boundary conditions

3.1 Boundary condition for the phonon Boltzmann equation

Boundary conditions are required to solve the Boltzmann equation, or the moment equations, for processes
in finite systems. We introduce microscopic boundary conditions based on a simple microscopic model for
interactions of phonons with the crystal surface. Later, these will be used to create macroscopic boundary
conditions for the state variables UA, i.e., the moments.

Our model for phonon–surface interaction is similar to the well-known Maxwell boundary condition for
classical gases [18], which models gas–wall interactions as a mix of specular reflection (exchange of normal
momentum only, no exchange of energy) and diffusive reflection (exchange of energy and momentum). It also
is a combination of the boundary conditions discussed in [4].

We assume there are three possible interactions between a phonon and the crystal surface: thermalization,
specular reflection, and scattering (see Fig. 1). The purpose of this model is to capture the general characteristics
of phonon–surface interactions with a model that is simple enough for analytical mathematical modeling. The
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Incoming Heat Flux

Wall Has Surface
Temperature T

Incident Phonon
With Distribution f(T,k)
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With Distribution f(T,k)

Incident Phonon
With Distribution f(T,k)

s

s

Reflected Phonon With
Distribution f(T, k - 2k v v)i ijj

Fig. 1 Phonon interaction processes at the crystal boundary

model is also flexible so that the relative amounts of each type of interaction can be changed to fit experimental
results.

For the discussion of thermalization, we recall that phonons may be created or destroyed. Thermalization
is a process where (a) incoming phonons are absorbed at the surface and (b) new phonons are emitted from
the surface into the crystal. The emitted phonons are in thermal equilibrium with the surface, that is, they
leave in a Bose distribution centered on the surface temperature Ts. This process allows for heat transfer across
the crystal surface. Note also that quasi-momentum will not be conserved; there will be a phonon radiative
pressure on the surface. For instance, when the crystal is exposed to radiation, photons will be absorbed, and
emitted, on the outside, while phonons will be absorbed and emitted on the inside. The result is energy transfer
across the crystal boundary, as well as normal force and drag due to nonconservation of phonon momentum.

In specular reflection, a phonon strikes the surface and returns to the bulk with a reflection angle equal and
opposite to the incidence angle. The phonon energy is conserved, and the momentum normal to the surface
is inverted, while tangential momentum is conserved. Phonon energy is conserved; hence, there is no energy
transfer across the boundary. Since tangential momentum is conserved, there is no drag associated with this
process.

Thermalization and specular reflection are as in the Maxwell mode for classical gases. For increased
generality, we also consider isotropic scattering of phonons, where incoming phonons are reflected in a random
direction, while keeping their energy. Note that due to the phonon dispersion relation, the magnitude of the
phonon momentum is conserved, but not the direction. Since phonon energy is conserved, there is no transfer of
energy across the boundary. Phonon momentum changes direction, however, and hence, there is an associated
drag on the phonon gas.

To proceed, we define f̄ as the particle distribution function for all phonons that have just interacted with the
boundary, thus are moving from the boundary into the crystal. The distribution f̄ depends on the distribution
of incident phonons, f , as well as the surface temperature, Ts, and other parameters describing the proportion
of phonons that are thermalized, reflected, or scattered.

We define α as the proportion of phonons that are scattered either isotropically or by specular reflection. Of
the scattered phonons, γ are specularly reflected and 1 − γ are scattered. Moreover, β is the relative amount
of thermalized phonons. The function f̄ then reads

f̄ = β fBose (Ts, k) + αγ f
(
ki − 2k jν jνi

)+ α
(1 − γ )

π

1

c

∫

nkνk<0

c (−nkνk) f
(
k j
)

dk�, (29)
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where νi is the surface normal unit vector pointing into the crystal and ni = ki/k is the unit direction vector
of the phonons. The first term describes thermalized phonons leaving in the Bose distribution at surface
temperature Ts. The second term describes phonons after specular reflection, which have the same distribution
f (ki ), albeit with inverted normal momentum. The last term describes the isotropic scattering of incoming
phonons. The factor α

(1−γ )
π

ensures conservation of the number of scattered phonons [21].
The coefficients α and β cannot be chosen independently from each other. Indeed, in the case of thermal

equilibrium, both the incoming and the outgoing distribution functions must be Bose distributions with the
same temperature Ts = T , in which case (29) assumes the form

fBose (Ts, k) = β fBose (Ts, k) + αγ fBose (Ts, k) + α
(1 − γ )

π

1

c

∫

nkνk<0

c (−nkνk) fBose (Ts, k) d�. (30)

Since fBose is isotropic, the integral can be solved easily, and the above yields

β = 1 − α. (31)

The parameters α, β, and γ describe, in terms of probabilities, how individual phonons interact with the
surface. We assume that a phonon that interacts with the surface is not at the same time interacting with other
phonons, which indeed would be rather unlikely. Then, the surface interaction is not affected by the state of
the phonon gas in the bulk; hence, the coefficients α, β, and γ are properties of the surface alone. It follows
that the above relation between α and β, which was derived for equilibrium, is valid also in nonequilibrium.

To summarize this section, the distribution function fB directly at the crystal boundary is the bulk distri-
bution f (x, t, k) for incoming phonons (νi ni < 0), and it is the distribution function f̄ (x, t, k) as given in
(29) for outgoing phonons; we write

fB =
{

f (x, t, k), νi ni < 0
f̄ (x, t, k), νi ni > 0

(32)

3.2 Boundary conditions for moments

We proceed with finding boundary conditions for the moment equations from the boundary condition for the
phonon Boltzmann equation. Thus, from now on, we assume that the phonons in the bulk are described by the
Grad distribution, that is, we set f = fG. The distribution function directly at the crystal boundary, fB in Eq.
(32), must now be evaluated with fG.

Macroscopic boundary conditions for the moments are obtained from the requirement that normal fluxes
of moments formed with fB and with the bulk distribution f agree; this idea is well known in classical kinetic
theory [5,22]. The resulting requirement reads

∫
kni1 · · · nin cnkνk fB dk =

∫
kni1 · · · nin cnkνk f dk; (33)

where n runs from 0 to N . Note that we consider the fluxes of full moments, not of the trace-free parts. Since
f and fB agree for incident particles, this simplifies to

∫

nkνk>0

kni1 · · · nin cnkνk f̄ dk =
∫

nkνk>0

kni1 · · · nin cnkνk f dk. (34)

To proceed, we consider a frame where the normal on the boundary points in 3-direction, such that the
phonon direction vector is nk = {τA, ν}k with the normal component ν = nkνk = cos θ and the tangential
vector τA = {sin θ cos φ, sin θ sin φ}A. In this notation, capital indices denote 2-D tangential components.
Accordingly, we replace ni1 · · · nin �⇒ τA1 · · · τAr ν

n−r , which yields the boundary conditions as
∫

nkνk>0

kτA1 · · · τAr ν
n−r+1 f̄ dk =

∫

nkνk>0

kτA1 · · · τAr ν
n−r+1 f dk; (35)

here, r ∈ (0, n) and n ∈ (0, N ).
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Equation (35) provides more equations than required. In [5] Grad provided further restriction on the
conditions by considering the special case where there is only specular reflection (i.e., α = 1, β = 1 − α =
0, γ = 1). Then, with (29), Eq. (35) reduces to

∫

ν>0

kτA1 · · · τAr ν
n−r+1 f (−ν) dk =

∫

ν>0

kτA1 · · · τAr ν
n−r+1 f (ν) dk (36)

where f (−ν) is the distribution function with inverted normal direction, since ki −2k jν jνi = k
(
ni − 2n jν jνi

)
= k {τA, −ν}. Distinguishing between even and odd values of (n − r), this can be written as

0 =
∫

kτA1 · · · τAr ν
n−r+1 f (ν) dk (n − r) even

0 =
∫

ν>0

kτA1 · · · τAr ν
n−r+1 ( f (ν) − f (−ν)) dk (n − r) odd (37)

Grad argued that if f is even in ν, and (n − r) is odd, the condition is just an identity and therefore provides no
information and must be rejected. Grad argued further that if a condition has to be rejected in a special case, it
must be rejected in the general case as well. Hence, only those conditions (35) where (n − r) is even should
be considered.

Details for the evaluation are given in “Appendices A and B,” where we give only the final expression,
which reads, with e = aT 4 and es = aT 4

s ,

[
(1 − α) (es − e) + α (1 − γ )

N∑
m=1

ϑmcu〈ν···ν〉|m

]
σ̂ n

r δ{A1 A2···Ar }

−
N∑

m=1

m∑
s=0

r+s even

[
1 − (−1)m−s αγ

] (2m + 1)!!
s! (m − s)!cu〈B1···Bsν···ν〉|m σ̂ n+m

r+s δ{A1 A2···Ar B1 B2···Bs } = 0, (n − r) even

(38)

The notation is respective to the boundary considered, capital indices refer to tangential directions, while
indices ν refer to the normal direction. Thus, u〈B1···Bsν···ν〉|m denotes the s-fold tangential and (m − s)-fold
normal component of the moment with m indices. The general unit tensor δ{A1···An} is defined as the sum of
all Kronecker deltas in a fully symmetric tensor (see Eq. (82) in “Appendix A”).

4 Specific systems of equations and boundary conditions

The transport equations are presented here in their general form for the 4, 9, 16, and 25 moment equations along
with their boundary conditions. For better readability, we introduce the variables energy density e = cu = aT 4,
phonon momentum pi = ui , reduced phonon stress tensor N〈i j〉 = u〈i j〉 = �〈i j〉/c, and the higher moments
M〈i jk〉 = u〈i jk〉, and R〈i jkl〉 = u〈i jkl〉.

4.1 25-Moment equations (N = 4)

The largest system we shall consider here is the 25-moment system, for the variables
{
e, pi , N〈i j〉, M〈i jk〉,

R〈i jkl〉
}
. Smaller systems are obtained from removing terms from these, as will be pointed out below. The

moment equations for the 25-moment case read
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∂e

∂t
+ c2 ∂pi

∂xi
= 0

∂pi

∂t
+ 1

3

∂e

∂xi
+ c

∂ N〈ik〉
∂xk

= − 1

τR
pi

∂ N〈i j〉
∂t

+ 2

5
c
∂p〈i
∂x j〉

+ c
∂ M〈i jk〉

∂xk
= −1

τ
N〈i j〉 (39)

∂ M〈i jk〉
∂t

+ 3

7
c
∂ N〈〈i j〉
∂xk〉

+ c
∂ R〈i jkl〉

∂xl
= −1

τ
M〈i jk〉

∂ R〈i jkl〉
∂t

+ 4

9
c
∂ M〈〈i jk〉

∂xl〉
= −1

τ
R〈i jkl〉

The first equation is the energy balance, with the energy flux c2 pi , and the second is the momentum balance,
which can also be interpreted as balance equation for the energy flux.

The required boundary conditions are obtained from (38) for the following choices of n and r :
For n = r = 0, we find

pν = −1

2

1 − α

1 + α

[
e − es

c
+ 15

8
N〈νν〉 − 105

64
R〈νννν〉

]
. (40)

This relation is analogous to the temperature jump boundary condition in rarefied gases [22]. The normal
energy flux c2 pν is proportional to the energy jump es − e and affected by higher moments as well. Notably,
the energy flux is proportional to the amount (1 − α) of thermalization processes. This reflects that in specular
reflection and isotropic scattering, phonon energy is conserved; in particular, when no thermalization occurs,
i.e., for α = 1, the boundary is adiabatic (pν = 0).

For n = r = 1, we find

N〈Aν〉 = −3

8

1 − αγ

1 + αγ

[
pA + 35

12
M〈Aνν〉

]
+ 3

2
R〈Aννν〉. (41)

This relation is analogous to the slip condition in rarefied gases [22]. The shear stress at the crystal surface is
proportional to the tangential momentum and affected by higher moments as well. Note that (1 − αγ ) is the
relative amount of thermalization and isotropic scattering processes.

The other boundary conditions relate higher moments. In particular, we find:
For n = 2, r = 0, after using (40) to eliminate es − e,

M〈ννν〉 = − 1

10
pν − 15

32

1 − αγ

1 + αγ

[
N〈νν〉 + 35

16
R〈νννν〉

]
; (42)

for n = 2, r = 2, after using (40, 42),

M〈ABν〉 + 1

2
M〈ννν〉δAB = − (1 − αγ )

(1 + αγ )

5

16

[
N〈AB〉 + 1

2
N〈νν〉δAB + 63

16

(
R〈νν AB〉 + 1

2
R〈νννν〉δAB

)]
;

(43)

note that the 2-trace of this relation is an identity, since, e.g., N〈AB〉δAB = −N〈νν〉 and δABδAB = 2.
For n = 3, r = 1,

R〈ννν A〉 = 1 − αγ

1 + αγ

3

4

[
pA + 105

16
M〈νν A〉

]
+ 18

7
N〈ν A〉, (44)

for n = 3, r = 3, with (44),

R〈ABCν〉 = 1 − αγ

1 + αγ

3

16

[
p(AδBC) + 175

16
M〈νν(A〉δBC) − 35

24
M〈ABC〉

]
+ 6

7
N〈ν(A〉δBC) (45)

Equation sets with fewer moments are obtained from the above by removing moments and their equations and
boundary conditions. The resulting equations will be discussed next.
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4.2 4-Moment equations (N = 1)

The simplest moment system has the variables {e, pi } with the transport equations

∂e

∂t
+ c2 ∂pi

∂xi
= 0 (46)

∂pi

∂t
+ 1

3

∂e

∂xi
= − 1

τR
pi .

There is only one boundary condition,

pν = −1

2

1 − α

1 + α

[
e − es

c

]
. (47)

The Knudsen number for resistive processes is defined as

KnR = τR

L/c
, (48)

where L is a relevant length scale of the process or device. For small KnR, the equations can be simplified by a
Chapman–Enskog expansion. We omit all details on the expansion and just state that the momentum balance
reduces to Fourier’s law, which we write for the energy flux c2 pi as

c2 pi = −c2τR

3

∂e

∂xi
= −4

3
c2τRaT 3 ∂T

∂xi
= −κ (T )

∂T

∂xi
. (49)

Here, κ (T ) = 4
3 c2τRaT 3 is the heat conductivity; its measurement allows the determination of the relaxation

time τR as a function of temperature.
The full 4-moment system—with the time derivative ∂pi

∂t —would be relevant when 1
τR

is finite, but 1
τ

=
1
τR

+ 1
τN

goes to infinity, which happens for τN → 0. In this case, all higher moments u〈i1···in〉(n ≥ 2) must
vanish, since else the production terms u〈i1···in〉/τ in the moment equations (24) become infinite. To be more
specific, the requirement is vanishing overall Knudsen number Kn = τ

L/c , and finite Knudsen number KnR,
or a rather large rate of normal processes and low rate of resistive processes. The resulting equations describe
second sound, that is, wavelike heat transfer, with wave speed vI I = c√

3
[6]. It seems that no physical system

exits, where the relevant conditions are met [6].

4.3 9-Moment equations (N = 2)

An often discussed system [6,8] is the 9-moment case, with the variables
{
e, pi , N〈i j〉

}
. The transport equations

are

∂e

∂t
+ c2 ∂pi

∂xi
= 0,

∂pi

∂t
+ 1

3

∂e

∂xi
+ c

∂ N〈ik〉
∂xk

= − 1

τR
pi , (50)

∂ N〈i j〉
∂t

+ 2

5
c
∂p〈i
∂x j〉

= −1

τ
N〈i j〉,

with the boundary conditions

pν = −1

2

1 − α

1 + α

[
e − es

c
+ 15

8
N〈νν〉

]
,

N〈Aν〉 = −3

8

1 − αγ

1 + αγ
pA.

(51)

This system describes phonon hydrodynamics including the effects of the phonon stress tensor �〈i j〉 = cN〈i j〉;
it was used successfully to describe the measurements of second sound in [6]. The boundary conditions
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describe the energy (or temperature) jump at the boundary due to the energy flow crossing the boundary, and
the tangential slip of the phonon gas due to shear stress.

In case that the overall Knudsen number Kn = τ
L/c is small, but the resistive Knudsen number KnR is not

small, the equation for N〈i j〉 can be reduced by means of a Chapman–Enskog expansion in Kn, which yields
a Navier–Stokes-like law for the stress tensor [6],

N〈i j〉 = −2

5
τc

∂p〈i
∂x j〉

. (52)

When this is inserted into the momentum equation, we obtain a system very similar to the well-known Guyer–
Krumhansl equations for phonon hydrodynamics [10,11],

∂e

∂t
+ c2 ∂pi

∂xi
= 0 (53)

∂pi

∂t
+ 1

3

∂e

∂xi
− 1

5
τc2
(

∂2 pi

∂xk∂xk
+ 1

3

∂2 pk

∂xi∂xk

)
= − 1

τR
pi . (54)

The difference to the original Guyer–Krumhansl equations is the factor on the derivative ∂2 pk
∂xi ∂xk

, which is
( 1

3

)
in

our equations, while Guyer and Krumhansl report the factor 2. This difference is due to the occurrence of a bulk
viscosity term in the Guyer–Krumhansl equations, which appears as a result of having frequency-dependent
relaxation times in the Callaway model. The boundary conditions for this set of equations follow from (51)
with the expression (52) for N〈i j〉; they read

pν = −1

2

1 − α

1 + α

[
e − es

c
− τc

1

4

(
2
∂pν

∂xν

− ∂pA

∂xA

)]
,

pA = 8

15

1 + αγ

1 − αγ
τc

(
∂pA

∂xν

+ ∂pν

∂xA

)
.

(55)

The slip condition was used in [7], however, without the term ∂pν

∂xA
that describes slip due to a gradient of normal

heat flux along the boundary. A term like this does not appear in classical gas kinetic theory, since there the
gas velocity appears instead of momentum, and the normal velocity must vanish at an impermeable wall. The
term in question does vanish only for an adiabatic boundary, where pν = 0 so that the slip condition reduces
to pA = 1+αγ

1−αγ
8
15τc ∂pA

∂xν
.

4.4 16-Moment equations (N = 3)

When the flux of the stress tensor is considered as another variable, the set of variables is
{
e, pi , N〈i j〉, M〈i jk〉

}
with the transport equations

∂e

∂t
+ c2 ∂pi

∂xi
= 0,

∂pi

∂t
+ 1

3

∂e

∂xi
+ c

∂ N〈ik〉
∂xk

= − 1

τR
pi ,

∂ N〈i j〉
∂t

+ 2

5
c
∂p〈i
∂x j〉

+ c
∂ M〈i jk〉

∂xk
= −1

τ
N〈i j〉, (56)

∂ M〈i jk〉
∂t

+ 3

7
c
∂ N〈〈i j〉
∂xk〉

= −1

τ
M〈i jk〉,

and the boundary conditions

pν = −1 − α

1 + α

1

2

[
e − es

c
+ 15

8
N〈νν〉

]

N〈ν A〉 = −1 − αγ

1 + αγ

3

8

[
pA + 35

12
M〈νν A〉

]
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M〈ννν〉 = − 1

10
pν − 15

32

1 − αγ

1 + αγ
N〈νν〉

M〈ABν〉 + 1

2
M〈ννν〉δAB = − (1 − αγ )

(1 + αγ )

5

16

[
N〈AB〉 + 1

2
N〈νν〉δAB

]
(57)

We note the occurrence of the term 35
12 M〈νν A〉 in the slip boundary condition (57)2. By means of the Chapman–

Enskog expansion, this term can be related to second-order derivatives of phonon momentum. Indeed, we
have performed a similar analysis in kinetic theory of classical gases [23], where the boundary conditions
of extended moment equations were reduced to second-order boundary conditions for the Navier–Stokes
equations as discussed in [24]. The corresponding treatment of the above equations will yield second-order
boundary conditions for the Guyer–Krumhansl equations (53, 54); for space reasons, we shall not go into
details. Hence, this boundary condition can be used to support the second-order boundary condition suggested
and evaluated in detail in [8,9].

5 Analytical solutions in simple geometries

The transport equations for phonons will now be used to solve specific problems. With the current assumptions,
the set of equations are linear ordinary differential equations with linear boundary conditions. The equations
can be used to analytically solve some simple problems with specific geometries. Below, we present solutions
for one-dimensional heat transfer and phonon Poiseuille flow. We shall not aim at aligning the equations with
actual measurements, but rather study the general behavior of the various sets of equations in dependence of
the modeling parameters α, β, γ, KnR, and Kn.

5.1 One-dimensional heat transfer

We consider one-dimensional steady heat transfer in the x-direction in a crystal of length L and infinite
extension in the other directions. Hence, there are no effects of boundaries along the flow; indeed, the effect of
these will be considered in the Poiseuille flow problem. The temperatures at x = − L

2 and x = L
2 are controlled,

which correspond to prescribed values of the surface energy es
(± L

2

)
. We shall evaluate the problem with the

4, 9, 16, and 25 moment equations presented in the previous section and assume constant relaxation times.
In this 1-D case, at steady state, the equations can be simplified considerably. It is convenient to introduce

dimensionless variables and coordinates, such that L = 1 and c = 1, and we use the average energy ē =
1
2

(
es
(− L

2

)+ es
( L

2

))
to nondimensionalize energy and the other moments. With p = px , N = N〈xx〉, etc.,

the dimensionless 25-moment equations reduce to

∂p

∂x
= 0

1

3

∂e

∂x
+ ∂ N

∂x
= − 1

KnR
p

4

15

∂p

∂x
+ ∂ M

∂x
= − 1

Kn
N (58)

9

35

∂ N

∂x
+ ∂ R

∂x
= − 1

Kn
M

16

63

∂ M

∂x
= − 1

Kn
R

With the dimensionless energies prescribed at the crystal boundaries denoted as E± = es
(± 1

2

)
, the boundary

conditions at x = ± 1
2 are:

p = −ν
1

2

1 − α

1 + α

[
(e − E±) + 15

8
N − 105

64
R

]
,

M = − 1

10
p − ν

15

32

1 − αγ

1 + αγ

[
N + 35

16
R

]
;

(59)
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with the normal factor ν = ∓1 to account for the fact that at x = − 1
2 the surface normal points into positive

direction, while at x = 1
2 it points into negative direction. For the 4-, 9-, and 16-moment cases, the above

equations and boundary conditions must be reduced in an obvious manner.
According to (58)1, the energy flux is constant, p = const. The integration of the momentum balance then

gives

1

3
e + N = C1 − px

KnR
(60)

where C1 is a constant of integration. This equation holds for all moment systems (but with N = 0 for the
4-moment case).

We first consider the cases with 4 and 9 moments. Due to geometry, shear stress vanishes in the 9-field
case, N = 0, and hence, 4- and 9-field theories give the same result. The explicit solutions for energy and
energy flux read

e = 1

2
(E+ + E−) + E+ − E−

1 + 4
3 KnR

1+α
1−α

x, (61)

p = KnR

3

E+ − E−
1 + 4

3 KnR
1+α
1−α

. (62)

Accordingly, the energy is linear in space, and, of course, the energy flux is constant. Note that since e = aT 4,
the temperature curve is nonlinear.

In the 16-moment case, the equations for N and M can be combined into

N = 9

35
Kn2

∂2 N

∂x2 , M = −Kn
9

35

∂ N

∂x
(63)

which is easy to solve for stress,

N = C2 cosh

√
35

9

x

Kn
+ C3 sinh

√
35

9

x

Kn
; (64)

M then follows from differentiation. With this, the general solution for energy is

e = 3C1 − 3px

KnR
− 3

(
C2 cosh

√
35

9

x

Kn
+ C3 sinh

√
35

9

x

Kn

)
, (65)

where {p, C1, C2C3} are constants of integration that must be determined from the boundary conditions (59)
(with R = 0). We shall not show the resulting expressions to save space. Due to symmetry of the problem, we
find C2 = 0.

For the 25-moment case, the equations for N , M , and R can be reduced to read

23

45
Kn2 ∂2 N

∂x2 = N , M = −23

45
Kn

∂ N

∂x
, R = 16

63
N (66)

Again, the stress N is obtained by integration,

N = C2 cosh

√
45

23

x

Kn
+ C3 sinh

√
45

23

x

Kn
(67)

and with this, M and R can be determined easily. The solution for energy reads

e = 3C1 − 3px

KnR
− 3

(
C2 cosh

√
45

23

x

Kn
+ C3 sinh

√
45

23

x

Kn

)
. (68)

Again, {p, C1, C2C3} are constants of integration that must be determined from the boundary conditions (59);
because of symmetry C2 = 0, other results are not shown.
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Fig. 2 Energy profiles for solutions of the 4/9-, 16-, and 25-moment equations for Kn = 0.25, KnR = 0.5, α = 0.5, γ = 0.
Energy values at the boundaries are E− = 1.05 and E+ = 0.95. The right figure shows a closer look at the curves in the vicinity
of the right boundary
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Fig. 3 The 16-moment solution for heat conduction between parallel surfaces with varying Knudsen number. In all cases,
E− = 1.05, E+ = 0.95, KnR = 2Kn, α = 0.5 and γ = 0

While the 4- and 9-moment cases give the simple linear function (61) for the energy, the 16- and 25-moment

systems in addition exhibit a term C3 sinh λx
Kn (with λ =

√
35
9 and λ =

√
45
23 , respectively). This additional

term describes Knudsen boundary layers, as discussed in [25].
To highlight the differences in the solutions, Fig. 2 shows the energy profiles of the 4/9-, 16-, and 25-

moment equations for Kn = 0.25, KnR = 0.5, α = 0.5, γ = 0, and E− = 1.05, E+ = 0.95. As can be seen
in the figure, the jump at the boundary is the dominant effect in the solution as opposed to the Knudsen layers.
Due to the Knudsen layers, the curves differ in the vicinity of the boundary, but the differences are small. In
the bulk, which is sufficiently away from the boundary, the curves agree well. The dimensionless energy flux
p is very close for all three solutions, with the numerical values of {0.00556, 0.00549, 0.00549} for 4/9, 16,
and 25 moments, respectively.

Obviously, the solution is dependent on a number of parameters, i.e., the Knudsen numbers KnR and Kn and
the boundary parameters α and γ . Figure 3 shows the 16-moment solution for a variety of Knudsen numbers.
As Knudsen number increases, the temperature jump increases as well. The Knudsen layer contributes to the
result, but cannot be resolved by the eye.

Moreover, the temperature jump is affected by the proportion of phonons that bounce off the wall without
energy change (α) and thermalize at the wall (1 − α). Figure 4 shows the 16-moment solution for Kn = 0.1
for various values of α. When α is small, most phonons thermalize at the wall, allowing more effective heat
transfer, and therefore, the temperature jump is smaller. As α grows, more phonons are reflected, so that less
phonons contribute to the heat transfer at the boundary, and heat transfer is inhibited. When α = 1, the wall is
adiabatic and no heat transfer occurs into the bulk phonon gas, which therefore has homogeneous temperature.

The overall heat flux through the domain can be determined and compared to what would be expected by
Fourier’s law without jump, pF = KnR

3 (E+ − E−), which is the appropriate value for systems with small
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Fig. 4 The 16-moment solution for heat conduction between parallel surfaces for various values of α. In all cases, KnR =
2Kn, Kn = 0.1 and γ = 0
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Fig. 5 Relative heat conductivity κrel for the 4/9-, 16-, and 25-moment equations compared to Fourier’s law without jump for
varying Knudsen number; KnR = 2Kn, α = 0.5, and γ = 0

Knudsen numbers. For larger Knudsen numbers, the heat flux will be proportional to the energy difference
(E+ − E−), but with a different factor, i.e., p ∼ (E+ − E−). This can be used to determine a relative heat
conductivity for a system with larger Knudsen number as

κrel = p

pF
= 3p

KnR (E+ − E−)
. (69)

Figure 5 shows the relative heat conductivity κrel for the 4/9-, 16-, and 25-moment equations. There is no
visible difference between the theories; they all give a decreasing relative conductivity for increasing Knudsen
number. The main reason for the decrease is the increasing temperature jump at the boundaries. Obviously,
the exact results depend on the parameter in the models, in particular the relaxation times τ and τR (or the
respective Knudsen numbers Kn and KnR), and the coefficients α and γ that appear in the boundary conditions.
These must be determined from careful experiments, or through first-principle consideration of the material,
and the crystal boundaries. The goal of this paper is general exploration of moment equations with boundary
conditions, and we shall not attempt to determine realistic values for the parameters.

5.2 Heat transfer across a junction

Many microdevices have a sandwich-like structure. Each boundary between different materials, or different
grains of the same material, is an obstacle for phonons and thus inhibits heat transfer. For the description of
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this, our model of boundary conditions must be applied at each interface. We note that in its present form,
the model does not allow for phonon transmission across the interface, as it would occur in a single lattice of
different species to both sides of the interface.

As an example, we consider one-dimensional heat transfer across a junction in a system of length L , with the
junction in the middle. For simplicity, we consider this problem with the 9-moment system, in dimensionless
coordinates. To be specific, we split the system into the domain a, where x ∈ (− 1

2 , 0
)
, and the domain b,

where x ∈ (0, 1
2

)
. The integrated momentum balance in domains a and b reads

e = 3Ca − 3
px

Kna
R

, e = 3Cb − 3px

Knb
R

(70)

where p is the constant energy flux, 1
3 Kna,b

R are the dimensionless heat conductivities in the domains, and Ca,b
are constants of integration. The boundary conditions for domain a are

p = −1

2

1 − αa

1 + αa
(e − E−) at x = −1

2
,

p = 1

2

1 − αa, j

1 + αa, j
(e − E0) at x = 0,

where αa and αa, j are the scattering coefficients at the left boundary and the junction, respectively, E− is
the energy prescribed at the left boundary, and E0 is the unknown energy of the junction. In domain b, the
boundary conditions are correspondingly

p = −1

2

1 − αb, j

1 + αb, j
(e − E0) at x = 0,

p = 1

2

1 − αb

1 + αb
(e − E+) at x = 1

2
.

The constants of integration of the problem are the energy flux p, the junction energy E0, and the constants
Ca, Cb. The solution is straightforward; for the energy flux and the energy of the junction, we find

p =
1
2 (E− − E+)

3
4

1
Kna

R
+ 1+αa

1−αa
+ 1+αa, j

1−αa, j
+ 3

4
1

Knb
R

+ 1+αb
1−αb

+ 1+αb, j
1−αb, j

,

E0 =
E+
(

3
4

1
Kna

R
+ 1+αa

1−αa
+ 1+αa, j

1−αa, j

)
+ E−

(
3
4

1
Knb

R
+ 1+αb

1−αb
+ 1+αb, j

1−αb, j

)

3
4

1
Kna

R
+ 1+αa

1−αa
+ 1+αa, j

1−αa, j
+ 3

4
1

Knb
R

+ 1+αb
1−αb

+ 1+αb, j
1−αb, j

(71)

and the energy in domains a and b is

e (x) = E− −
(

3
2Kna

R

( 1
2 + x

)+ 1+αa
1−αa

)
(E− − E+)

3
4

1
Kna

R
+ 1+αa

1−αa
+ 1+αa, j

1−αa, j
+ 3

4
1

Knb
R

+ 1+αb
1−αb

+ 1+αb, j
1−αb, j

, x ≤ 0

e (x) = E+ +

(
3

2Knb
R

( 1
2 − x

)+ 1+αb
1−αb

)
(E− − E+)

3
4

1
Kna

R
+ 1+αa

1−αa
+ 1+αa, j

1−αa, j
+ 3

4
1

Knb
R

+ 1+αb
1−αb

+ 1+αb, j
1−αb, j

, x ≥ 0

(72)

As an example for the influence of the junction on heat transfer, we consider a system where αa = αb = 0.5
at the outer boundaries and αa, j = αb, j = α j at the junction; the Knudsen numbers in both domains are the
same, Kna

R = Knb
R = KnR. Figure 6 shows the influence of the interface parameter α j on the dimensional

heat flux p (with E− = 1.05, E+ = 0.95). The junction lowers heat transfer considerably for larger Knudsen
numbers, the more so when the reflection rate α j is larger.

For some insight into the energy distribution, we consider the case where Kna
R = Knb

R = 0.1, and the other
parameters are as before, shown in Fig. 7. We observe energy jumps at the junction and the outer boundaries.
The jump at the junction increases with the reflection coefficient α j .
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Fig. 6 Total dimensionless heat flux p in a system with junction for various interface parameters α j as function of the Knudsen
number KnR = Kna

R = Knb
R. Other parameters are αa = αb = 0.5, E− = 1.05, E+ = 0.95
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Fig. 7 Dimensionless energy e (x) in a system with junction for various interface parameters α j . Other parameters are Kna
R =

Knb
R = 0.1, αa = αb = 0.5, E− = 1.05, E+ = 0.95

Fig. 8 One-dimensional Poiseuille flow

5.3 1-D Poiseuille flow

Another problem for which an analytical solution can be obtained is one-dimensional Poiseuille flow in a
heat conductor of thickness H . In this case, there is a constant energy gradient ∂e

∂x in the x-direction inside a
semi-infinite solid with adiabatic boundaries at y = ± H

2 (see Fig. 8 for the geometry). This flow is analogous
to pressure-driven flow in fluid dynamics (see, e.g., Ref. [26] for a discussion of Poiseuille flow in rarefied
gases).
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The simplified equations for the 25-moment case to describe this problem read

1

3

∂e

∂x
+ ∂ N〈xy〉

∂y
= − 1

KnR
px

1

5

∂px

∂y
+ ∂ M〈xyy〉

∂y
= − 1

Kn
N〈xy〉

8

35

∂ N〈xy〉
∂y

+ ∂ R〈xyyy〉
∂y

= − 1

Kn
M〈xyy〉

5

21

∂ M〈xyy〉
∂y

= − 1

Kn
R〈xyyy〉

(73)

We have introduced dimensionless variables, such that c = 1, H = 1; the Knudsen numbers are formed with
the channel height, KnR = τR

H/c , Kn = τ
H/c . The relevant boundary conditions are

N〈xy〉 = −ν
3

8

1 − γ

1 + γ

[
px + 35

12
M〈xyy〉

]
+ 3

2
R〈xyyy〉,

R〈xyyy〉 = ν
3

4

1 − γ

1 + γ

[
px + 105

16
M〈xyy〉

]
+ 18

7
N〈xy〉.

(74)

where ν is 1 at the lower boundary and −1 at the upper boundary. Note that adiabatic boundaries require that
no thermalization occurs, that is, α = 1.

The solution for this problem is straightforward for all moment numbers considered. For the 4-moment
case, the boundaries have no influence, and the heat flux is constant across the system,

p4 = −KnR

3

∂e

∂x
. (75)

In the 9-moment case, due to isotropic scattering at the boundary, the phonon flow experiences drag at the

boundary, which leads to a Knudsen layer correction. With the abbreviation λ9 =
√

1
5 KnRKn, the solution

reads

p9 = −KnR

3

∂e

∂x

⎛
⎝1 − 1

1 + 8
3

1+γ
1−γ

λ9
KnR

tanh
[

1
2λ9

] cosh
[

y
λ9

]

cosh
[

1
2λ9

]
⎞
⎠ , (76)

Note that for a specularly reflecting wall, where γ = 1, the Knudsen layer vanishes.
The solution for the 16-moment case is rather similar, with a single Knudsen layer. With the abbreviation

λ16 =
√

KnKnR
1
5

(
1 + 8

7
Kn

KnR

)
, the solution reads

p16 = −KnR

3

∂e

∂x

⎛
⎝1 − 1

1 + 2
3

Kn
KnR

+ 8
3

1+γ
1−γ

λ16
KnR

tanh
[

1
2λ16

] cosh
[

y
λ16

]

cosh
[

1
2λ16

]
⎞
⎠ (77)

Comparison with the 9-field case shows that the difference between the two solutions vanishes when there are
far more normal processes as compared to resistive processes, so that Kn

KnR
� 1.

Finally, the 25-moment equation adds a second Knudsen layer. With the abbreviation

λ25a,b =
√√√√1

2
KnKnR

((
1

5
+ 7

15

Kn

KnR

)
± 1

5

√
1 − 2

21

Kn

KnR
+ 49

9

Kn2

Kn2
R

)
(78)

the solution can be written as

p25 = −1

3
KnR

∂e

∂x

(
1 − C1 cosh

y

λ25a
− C2 cosh

y

λ25b

)
(79)

where the expressions for the constants of integration C1 and C2 are too lengthy to show here.
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Fig. 9 Poiseuille flow solutions for the 4-, 9-, 16-, and 25-moment equations with Kn = 0.2, KnR = 2Kn, α = 1, and γ = 0.5
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Fig. 10 The 25-moment solution to phonon Poiseuille flow for various Knudsen numbers. In all cases KnR = 2Kn, α = 1, and
γ = 0.5. At low Knudsen number, the solution approaches Fourier’s law (plug flow). At higher Knudsen numbers, drag induced
at the boundary becomes apparent

Figure 9 shows the phonon heat flux (= momentum, since c = 1) for Fourier’s law (4 moments) and the
9-, 16-, and 25-moment equations for K n = 0.2, normalized with the Fourier heat flux p4 = −KnR

3
∂e
∂x . The

graph shows well-developed Knudsen layers for the larger moment sets, which differ in detail but are relatively
similar.

Figure 10 shows the effect that the Knudsen number has on the solution, for the 25-moment case. As
Knudsen number decreases, the 25-moment solution approaches plug flow, as would be expected from Fourier’s
law, which indeed is valid for this case. At higher Knudsen numbers, the Knudsen layer becomes more apparent
as boundary effects begin to dominate the solution.

The Knudsen layer is also affected by the relative proportion γ of scattered and specularly reflected phonons
as shown in Fig. 11. As the proportion of scattered phonons is increased, the drag on the boundary becomes
more dominant, increasing the size of the Knudsen layer. If more phonons are specularly reflected, the Knudsen
layer diminishes. It is important to note that even though pure specular reflection achieves plug flow and the
same result as Fourier’s law, this effect is independent of Fourier heat conduction. The Fourier solution has
plug flow no matter what proportion of phonons are scattered or reflected.

Much like the heated parallel plates’ problem, a relative heat conductivity can be defined for the Poiseuille
flow case by integrating the phonon heat flux over the domain to get the total heat flux

P =
1/2∫

−1/2

p (y) dy. (80)
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Fig. 11 The 25-moment solution to Poiseuille flow for various values of γ . In all cases Kn = 0.2, KnR = 2Kn, and α = 1.
Phonon drag at the boundary is influenced by the proportion of phonons that scatter and reflect. In the case of specular reflection
(γ = 1), plug flow is achieved, while drag is increased as scattering increases
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Fig. 12 Relative heat conductivity for the 9-, 16-, and 25-moment equations compared to Fourier’s law for Poiseuille flow. In all
cases, KnR = 2Kn, α = 1, and γ = 0.5

In Fig. 12, we see that as Knudsen number increases, the relative heat conductivity, defined as the ratio of the
total energy flux to the 4-moment case (Fourier’s law), P/P4, decreases because of phonon drag in the Knudsen
layer. The reduction in conductivity is significant, in particular for narrow devices, where the Knudsen number
is larger. We note that the results are for γ = 0.5, so that a significant portion of boundary interactions are
specular reflections. If isotropic scattering is more dominant, so that γ is smaller, conductivity is even smaller.
Figure 12 shows that the different moment sets give the same energy flow only at small Knudsen numbers, but
give different values as Kn becomes larger. Since higher moment numbers typically give a finer resolution, we
expect that the result for 25 moments is more realistic.

6 Conclusion and recommendations

At very small phonon Knudsen number, heat transfer is governed by Fourier’s law. As Knudsen number
increases, nonequilibrium effects become more significant, making Fourier’s law increasingly inaccurate. For
a more accurate set of transport equations, a microscopic analysis of heat transfer is needed.

Phonons are quasiparticles derived from quantum mechanics representing lattice vibrations of particles
relative to their mean position. All phonon interactions conserve energy, but they do not always conserve
quasimomentum. Phonon gas kinetics can be described using the phonon Boltzmann equation; however, its
nonlinear characteristics make it difficult to solve on its own. The Boltzmann equation can be approximated
by taking a finite number of moments of the equation to develop macroscopic transport equations.
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We presented a set of linear transport equations based on several assumptions: The phonon dispersion
relation was assumed to be linear with an infinite Brillouin zone. The gray matter Callaway model was used to
approximate the phonon collision term on the right-hand side of the Boltzmann equation. The Grad moment
closure was used to reduce the number of unknown variables to make the system of equations well posed.

Boundary conditions were derived by considering three simple microscopic interactions with the crystal
boundary: thermalization, isotropic scattering, and specular reflection. The boundary conditions are set up
so that the proportion of phonons in each interaction can be easily changed to match known conditions or
other models. The microscopic boundary conditions were integrated to create boundary conditions for the
macroscopic transport equations. The boundary conditions were reduced using Grad’s boundary reduction
method so that there would not be too many boundary conditions for the number of constants of integration.
Boundary conditions were macroscopically derived for an arbitrary number of moments in three dimensions.

Analytic solutions for simple geometries can be determined with the transport equations. One-dimensional
heat transfer and Poiseuille flow were both solved in one dimension for the 4-, 9-, 16-, and 25-moment
equations and compared with each other. The solutions depend on the Knudsen number; cases with small
Knudsen number had solutions similar to Fourier’s law, while rarefaction effects became apparent as Knudsen
number got larger. As Kn is increased, the temperature jump (and slip) at the wall increases and the Knudsen
layer becomes larger. The cumulative effect of rarefaction is an overall decrease in heat flux, which can be
related to Fourier heat flux by defining a relative heat conductivity for systems with large Knudsen number.

The macroscopic transport equations for phonons in a solid are a simple and efficient way for solving
nonequilibrium heat transfer systems, but more research is necessary to both improve the model and compare
it to existing models and experiments. In particular, the model must be improved by removing some of the
assumptions used: Use of a realistic nonlinear dispersion relation for phonons, and consideration of the finite
Brillouin zone will better approximate reality and will also increase the model’s usefulness to regimes above
the Debye temperature. Removing the gray matter assumption for the Callaway model will lead to a more
realistic description of moment relaxation. Experimental data have shown that mean free path can be strongly
dependent on wave vector and that this is important for overall heat transfer properties in nonequilibrium
systems [27]. Considering the proper frequency-dependent relaxation times in the Callaway model will add
another nonlinearity to the system. We have developed and used appropriate methods in classical kinetic theory
[28,29], where the resulting macroscopic equations give meaningful results as long as the Knudsen number
does not get too large [26,30]. The same ideas will be used in the future for kinetic theory of phonons to derive
a reliable set of macroscopic moment equations which then should paint a more realistic picture.

Verification of the moment method is necessary. A first step would be to compare the model with solutions
of the phonon Boltzmann equation, e.g., by means of the DSMC [4]. Comparison with experimental results
can be used to determine transport parameters for the equations, such as temperature dependence of relaxation
times, and the parameters in the boundary conditions. These comparisons should be done for refined moment
equations that are derived accounting for the detailed frequency-dependent behavior; hence, they are left for
future work.
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Appendix A: Computation of the scattering integral from Grad distribution

In this Appendix, we determine the integral in (29) with the Grad distribution (27), that is,

fG,scatter = 1

πc

∫

nkνk<0

c (−nkνk) fGd�

Insertion of the expression of fG and simplification gives at first

fG,scatter = fBose − ∂ fBose

∂k

ck

aT 4

N∑
n=1

(2n + 1)!!
4n! u〈i1···in〉

1

π

∫

nkνk<0

(−nkνk) ni1 · · · nin d�,

we used the identity u〈i1···in〉n〈i1 · · · nin〉 = u〈i1···in〉ni1 · · · nin .
For further evaluation, we now chose coordinates where the surface normal points into the 3-direction, so
that νi = {0, 0, 1}i . For the phonon direction vector, we write nk = {τA, ν}k with the normal component
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ν = nkνk = cos θ and the tangential vector τA = {sin θ cos φ, sin θ sin φ}; hence, we use capital indices for
the 2-D tangential components. With this notation, we can write tensors in terms of normal and tangential
components. For instance, the second-order moment u〈i j〉 can be written as

u〈i j〉 =
[

u〈AB〉 u〈Aν〉
u〈νB〉 u〈νν〉

]
i j

with the trace-free condition u〈AA〉 + u〈νν〉 = 0, and, because of symmetry, u〈Aν〉 = u〈ν A〉. Extension to
higher-order tensors is evident. With this notation, we have

u〈i1···in〉ni1 · · · nin =
n∑

r=0

n!
r ! (n − r)!u〈A1···Ar ν···ν〉τA1 · · · τAr ν

n−r ,

and accordingly

fG,scatter = fBose + ∂ fBose

∂k

ck

aT 4

N∑
n=1

(2n + 1)!!
4n!

n∑
r=0

n!
r ! (n − r)!u〈A1···Ar ν···ν〉

1

π

∫

ν<0

τA1 · · · τAr ν
n−r+1d�.

The integral has contributions only for even number of tangential indices r , and it must be an isotropic tensor.
We write

1

π

∫

ν<0

τA1 · · · τAr ν
n−r+1d� =

{
σ n

r δ{A1 A2···Ar } (r even)
0 (r odd)

(81)

Here, δ{A1 A2···Ar } is a generalized tangential unit tensor which has (r − 1)!! terms, e.g.,

δ{AB} = δAB

δ{ABC D} = δABδC D + δACδB D + δADδBC
(82)

For the traces of these, we find the rules

δAA = 2

δ{A1 A2···Ar }δAr−1 Ar = rδ{A1 A2···Ar−2}

δ{A1 A2···Ar }δA1 A2 · · · δAr−1 Ar =
r−2

2∏
k=0

(r − 2k) = r !!

By taking r
2 traces in (81), we find for the coefficients (r even), with τAτA = τ 2 = sin2 θ, ν = cos θ and

d� = sin θdθdφ,

σ n
r = 1

πr !!
π∫

θ= π
2

2π∫

φ=0

sinr+1 θ cosn−r+1 θdθdφ = (−1)n−r+1 �
(
1 + n−r

2

)
�
(
1 + r

2

)
r !!� (2 + n

2

)

We also need to consider the tensor product

u〈A1···Ar ν···ν〉δ{A1 A2···Ar } = (r − 1)!!u〈A1 A1···Ar/2 Ar/2ν···ν〉 = (r − 1)!! (−1)
r
2 u〈ν···ν〉|n

where the subscript n denotes the moment with n indices. Then

fG,scatter = fBose − ∂ fBose

∂k

ck

4aT 4

N∑
n=1

ϑnu〈ν···ν〉|n . (83)

with the full normal components of the moments

u〈ν···ν〉|n = u〈i1···in〉νi1 · · · νin
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and the coefficient

ϑn =
n∑

r=0
r even

(−1)n− r
2

(r − 1)!!
r !!

(2n + 1)!! ( r
2

)!
r ! (n − r)!

�
(
1 + n−r

2

)
�
(
2 + n

2

) , (84)

which has the values

ϑn =
{

1, −2,
15

8
, 0, −105

64
, 0,

3003

1024
, 0,−109395

16384
, 0, · · ·

}
(85)

Appendix B: Evaluation of Eq. (34)

We insert fB and fG into (35),∫

nkνk>0

kτA1 · · · τAr ν
n−r+1 f̄ dk =

∫

nkνk>0

kτA1 · · · τAr ν
n−r+1 fG dk; (86)

With n̂i = (ni − 2n jν jνi
)

and dk = k2dkd�, we obtain, after some reordering (cancel c), and use of the
result of “Appendix A,”

(1 − α)

∫
( fBose (Ts, k) − fBose) k3dk

∫

nkνk>0

τA1 · · · τAr ν
n−r+1d�

−αγ

N∑
m=1

(2m + 1)!!
4m!

cu〈 j1··· jm 〉
aT 4

∫
∂ fBose

∂k
k4dk

∫

nkνk>0

n̂〈 j1 · · · n̂ jm 〉τA1 · · · τAr ν
n−r+1d�

−α (1 − γ )
c

4aT 4

N∑
m=1

ϑmu〈ν···ν〉|m
∫

∂ fBose

∂k
k4dk

∫

nkνk>0

τA1 · · · τAr ν
n−r+1d�

+
N∑

m=1

(2m + 1)!!
4m!

cu〈 j1··· jm 〉
aT 4

∫
∂ fBose

∂k
k4dk

∫

nkνk>0

n〈 j1 · · · n jm 〉τA1 · · · τAr ν
n−r+1d� = 0.

The integrals over the Bose distribution give
∫

fBosek3dk =
∫

y

exp h̄ck
kB T − 1

k3dk = aT 4

4π h̄c
∫

∂ fBose

∂k
k4dk =

(
kB T

h̄c

)4 ∫
∂

∂x

(
y

exp x − 1

)
x4dx = −aT 4

π h̄c

Moreover, we introduce the decomposition into tangential and normal components of tensors,

nkνk = ν

u〈 j1··· jm 〉n j1 · · · n jm =
m∑

s=0

m!
s! (m − s)!u〈B1···Bsν···ν〉|mτB1 · · · τBs ν

m−s

so that[
(1 − α)

(
aT 4

s − aT 4)+ α (1 − γ )

N∑
m=1

ϑmcu〈ν···ν〉|m

]
1

π

∫

ν>0

τA1 · · · τAr ν
n−r+1d�

−
N∑

m=1

m∑
s=0

[
1 − (−1)m−s αγ

] (2m + 1)!!
s! (m − s)!cu〈B1···Bsν···ν〉|m

1

π

∫

ν>0

τA1 · · · τAr τB1 · · · τBs ν
n+m−r−s+1 d� = 0
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The integrals are as in “Appendix A,” only that integration is for different sign. We have

1

π

∫

ν>0

τA1 · · · τAr ν
n−r+1d� =

{
σ̂ n

r δ{A1 A2···Ar } (r even)
0 (r odd)

with

σ̂ n
r = 1

πr !!
π∫

θ= π
2

2π∫

φ=0

sinr+1 θ cosn−r+1 θdθdφ = �
(
1 + n−r

2

)
�
(
1 + r

2

)
r !!� (2 + n

2

) . (87)

Putting it all together, we finally obtain the result (38) given in the main text.
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