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Kinetic Model and Moment Method for Polyatomic Gases
Behnam Rahimi and Henning Struchtrup

Dept. of Mechanical Engineering, University of Victoria, Victoria, BC, Canada

Abstract. A model kinetic equation for accurate description of rarefied polyatomic gases is introduced. The collisions of
polyatomic gas particles are modeled by a two term collision operator, one modeling only exchange of translational energy
and the other modeling exchange of both translational and internal energies. The proposed kinetic model, which is an extension
of the Rykov and Shakov models, predicts correct relaxation of higher moments and delivers the accurate Prandtl (Pr) number.
Also, the model has a non-linear H-theorem. The model is used to construct a system of 36 moment equations, which is closed
by the generalized Grad method for polyatomic gases.

Keywords: rarefied gas flows, microflows, polyatomic gases, moment equations, Grad’s 36 equations, S-Model
PACS: 51.10.+y, 47.10.ab, 47.45.Ab, 05.70.Ln, 05.20.Dd

INTRODUCTION

Recently we developed a high order macroscopic model for description of rarefied polyatomic gases [1, 2]. The
proposed model consists of a hierarchy of thirteen different sets of equations for different order of accuracies in the
Knudsen number. This model is obtained using a two term BGK collision model, which is known to give incorrect Pr
number and relaxation time for higher moments. Here we introduce a sophisticated generalized two term model for
polyatomic gases. The model can be be seen as an extension to the the Rykov and Shakov model [3, 4], and like these is
gurantees the correct Prandtl number (Pr). Due to additional terms in the equation, our extended model gurantees also
proper relaxation times for higher moments. Using the proposed collision model, the full set of 36 moment equations
are written and are closed by a generalized form of the Grad’s phase density [1, 5, 6].

The Knudsen number, defined as the ratio of molecular mean free path to the characteristic length of the system(
Kn = λ

L0
= τ

τ0

)
, measures the degree of rarefaction of a gas flow. At the low Knudsen range (Kn < 0.01), the flow

is in the continuum regime and the classical Navier-Stokes-Fourier equations are valid. However, in the transition
flow regime, i.e., at intermediate Kn numbers, the conventional hydrodynamics fails in the description of the gas
behavior. Typically, gas flows in microelectromechanical systems are in the transition regime [7, 8]. The Boltzmann
equation offers accurate description of the gas flow for all Kn numbers through modeling the evolution of velocity
distribution function. However, solving the Boltzmann equation or related kinetic equation directly, deterministically or
stochastically, is expensive and time consuming. As an alternative to the Boltzmann equation, kinetic theory provides
macroscopic models for not too large Knudsen numbers [9]. These models offer high computational speed and explicit
equations for macroscopic variables, which are helpful for understanding and analyzing the flow behavior [10].

A close examination shows that even for a simple realistic microscopic model for polyatomic gases, there are at least
two distinct mean free path in contrast to the one mean free path of monatomic gases [1, 2]. The exchange processes
of colliding particles of a polyatomic gases could either exchange just translational (kinetic) energy or exchange both
translational and internal energy which are characterized by the mean free times τ tr and τ int , respectively. Therefore,
there are two distinct Knudsen numbers associated with above mean free times, Kntr and Knint ; depending on the
physics of the problem their ratio can be several order of magnitude in size .

Compared to the BGK, Shakov and Rykov model, in the model proposed here the number of free parameters is
increased to allow proper ect Pr number and moment relaxation times.

The rest of the paper is organized as follows: In the next section, the foundation of the kinetic theory of polyatomic
gases is presented. In Section 3, the two term collision operator is discussed and the generalized S-model is introduced
along with the derivation of the required equilibrium distribution functions. In Section 4, the general moment equation
for polyatomic gases is discussed and the system of Grad’s 36 moment equations is constructed and closed. The
Prandtl number and thermophysical properties are obtained in Section 5. Finally, some concluding remarks are given
in Section 6.
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KINETIC MODEL

A gas particle has three translational degrees of freedom associated with its motion, and additional degrees of
freedom due to its rotation and vibration energies. All degrees of freedom, translational and internal, contribute to the
energy of the molecule due to the laws of quantum mechanics. The molecule is at ground state if it is at lowest energy
level possible, e.g., any molecular structure at absolute zero temperature is at ground state. A molecule is excited when
it has higher energy level than ground state. Temperature increase will result in faster movement of the molecules and,
in average, higher translational energy. This increase also thermally excites the molecule to higher internal energy
levels. In the following, we consider continuous energy levels for translational and rotational energies, and frozen
vibrational degrees of freedom [11, 1].

The energetic state of a molecule changes due to the interaction with other molecules, i.e., collisions; we ignore
radiative processes. While total energy and momentum are conserved, the colliding particles exchange different energy
forms, where the various exchange processes occur on different characteristic time scales. In all collisions, translational
energy is exchanged between particles, but internal energy is exchanged only in some of the collisions. Hence, the
characteristic time scale for equilibration of translational energy is faster than that for the equilibration of internal
energy.

In the model we are presenting, at time t, the gas particles are described by their position xi, velocity ci, and their
internal energy parameter, I � 0, which form a 7-dimensional phase space. The internal energy of a particle is defined

by assuming continuous internal spectrum as eint = I
2
δ , where δ is the number of excited non-translational degrees

of freedom. The number of particles in a phase space element, dxdcdI, is defined through the velocity distribution
function, f (x,c, I, t), as f dxdcdI. The evolution of the distribution function is determined by the Boltzmann equation,
which is a nonlinear integro-differential equation [12].

Macroscopic quantities are moments of the phase density. We define the general trace free moment as

uς ,A
i1...in

= m
∫ ∫

(I2/δ )AC2ςC<i1Ci2 ...Cin> f dcdI , (1)

where the indices between angular brackets indicate the symmetric and trace-free part of a tensor. The moments which
have physical definitions are

mass density ρ = m
∫ ∫

f dcdI =
∫

ρ IdI = u0,0 , velocity ρvi = m
∫ ∫

ci f dcdI , (2a)

stress σ i j = m
∫ ∫

C<iCj> f dcdI = u0,0
i j , trans. energy ρutr =

3

2
p = m

∫ ∫ C2

2
f dcdI =

1

2
u1,0 , (2b)

int. energy ρuint = m
∫ ∫

I2/δ f dcdI = u0,1 , trans. heat flux qi,tr = m
∫ ∫

Ci
C2

2
f dcdI =

1

2
u1,0

i , (2c)

int. heat flux qi,int = m
∫ ∫

CiI2/δ f dcdI = u0,1
i . (2d)

Here, ci is the microscopic velocity, Ci = ci − vi, is the peculiar particle velocity, and ρ I = m
∫

f dc is the density of

molecules with the same internal energy parameter I. Moreover, utr and uint are the translational energy and the energy
of the internal degrees of freedom, respectively, while qi,tr and qi,int are the translational and internal heat flux vectors.

The classical equipartition theorem states that in thermal equilibrium each degree of freedom contributes an energy

of 1
2 θ to the energy of a particle, where θ = kb

m T is temperature in specific energy units. Thus, in equilibrium the
translational and internal energies are

utr|E =
3

2
θ and uint|E =

δ
2

θ . (3)

We extend the definition of temperatures to non-equilibrium, by defining the translational temperature θ tr and the

internal temperature θ int through the energies as utr =
3
2 θ tr and uint =

δ
2 θ int . The ideal gas law in non-equilibrium

using these definitions is p = ρθ tr. The total thermal energy, u = uint + utr, is defined as the sum of the internal and
translational energies, and we use the equipartition theorem to define the overall temperature θ as

u =
3

2
θ tr +

δ
2

θ int =

(
3

2
+

δ
2

)
θ . (4)

In equilibrium, the three temperatures agree, θ tr|E = θ int|E = θ , while in non-equilibrium they will differ.
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S-MODEL

Kinetic models such as BGK type models [13, 3, 4], which are used here, replace the collision term of the
Boltlzmann equation with the simpler terms. We use a two term collision operator, where the first term only models
the translational exchange processes and the second term models translational and internal exchange processes,

∂ f
∂ t

+ ck
∂ f
∂xk

=− 1

τ tr
( f − ftr)− 1

τ int
( f − fint) . (5)

Here, τ tr and τ int are the corresponding mean free times that we assume to depend only on the macroscopic equilibrium
variables (ρ ,θ ). In the original BGK model [1, 13] ftr and fint are the Maxwellian equilibrium distribution functions
corresponding to different collision types which could not predict correct relaxation of the higher moments and the
Prandtl number. In order to overcome these defects we introduce a generalized and modified S-model for polyatomic
gases. The relaxation times of Boltzmann collision term for Maxwell molecules in the case of monatomic gases for
some higher moments are presented in Table 1.

The relaxation time for all higher moments in the original BGK model are the same as stress tensor. The relaxation

time of u1,0
i j is close to the relaxation time of σ i j, but for other moments the differences are considerable and should not

be ignored. Therefore, we introduce a model which correctly predictd the Pr number and the relaxation of these higher
moments and their internal moment counterparts

{
qi,tr, qi,int , σ i j, u2,0, u1,1

}
. Based on the definition of these higher

moments, we introduce relaxation translational and internal distribution functions by expansion about the equilibrium
Maxwellian functions in corresponding polynomials in specular velocity and particle’s internal energy as

ftr = ftr0

[
1+

(
a0,0 +a0,0

i Ci +a1,0C2 +a0,0
i j C<iCj>+a1,0

i CiC2 +a0,1
i CiI2/δ +a2,0C2C2 +a1,1C2I2/δ

)]
, (6a)

fint = fint0

[
1+

(
b0,0 +b0,0

i Ci +b1+1
(

C2 + I2/δ
)
+b0,0

i j C<iCj>+b1,0
i CiC2 +b0,1

i CiI2/δ +b2,0C2C2 +b1,1C2I2/δ
)]

.

(6b)
Here, ftr0

and fint0 are equilibrium distribution functions that describe the different equilibria to which the distribution
function will finally relax due to the collisions; they depend on the collisional invariants. The maximum entropy
principle will be used to obtain these equilibrium distribution functions. The unknown coefficients in ftr and fint are
obtained based on the conditions that the proposed two term collision model predicts correct relaxation for higher
moments by introducing four free parameters Prqtr , Prqint , Pru2,0 , Pru1,1 as shown in Table 2. These conditions along
with the collision invariants result in coefficients for the translational distribution function as,

a0,0 =
(1−Pru2,0)

(
u2,0 −15ρθ 2

tr
)

8ρθ 2
tr

, a0,0
i =−

⎡
⎣ (1−Prqtr)qi,tr +(1−Prqint )qi,int

2δθ trθ int
4u0,2−δ 2ρθ 2

int

ρθ 2
tr

⎤
⎦ , (7a)

a1,0 =
5
[
4 u0,2

ρ −δ 2θ intθ int

]
(1−Pru2,0)

(
u2,0 −15ρθ 2

tr
)
+8δθ trθ int (1−Pru1,1)

(
u1,1 − 3

2 δρθ trθ int
)

60ρθ 3
tr

(
−4u0,2 +δ 2θ 2

int

) , (7b)

a0,0
i j = 0 , a1,0

i =
(1−Prqtr)qi,tr

5ρθ 3
tr

, a0,1
i =

4(1−Prqint )qi,int

4u0,2θ tr −δ 2ρθ 2
intθ tr

, (7c)

a1,1 =
4(1−Pru1,1)

(
u1,1 − 3

2 δρθ trθ int
)

15θ 2
tr

[
4u0,2 −δ 2ρθ 2

int

] , a2,0 =
(1−Pru2,0)

(
u2,0 −15ρθ 2

tr
)

120ρθ 4
tr

, (7d)
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TABLE 1. Maxwell molecules’s re-
laxation times [14, 9].

σ i j qi u2,0 u1,0
i j

τ Pr τ 2
3 τ 7

6 τ

TABLE 2. Correct relaxation times for higher moments based on four new free parameters.

σ i j qi,tr qi,int u2,0 u1,1

1
τ tr

+ 1
τ int

Prqtr

[
1

τ tr
+ 1

τ int

]
Prqint

[
1

τ tr
+ 1

τ int

]
Pru2,0

[
1

τ tr
+ 1

τ int

]
Pru1,1

[
1

τ tr
+ 1

τ int

]

and internal distribution function as,

b0,0 = (6+δ )
28(1−Pru1,1)

[
u1,1 − 3

2 δρθ 2
]
+(5−δ )(1−Pru2,0)

[
u2,0 −15ρθ 2

]
8ρθ 2 (30+δ (3+δ ))

, (8a)

b0,0
i =−

[
(1−Prqtr)qi,tr +(1−Prqint )qi,int

ρθ 2

]
, (8b)

b1+1 =
−28(1−Pru1,1)

[
u1,1 − 3

2 δρθ 2
]− (5−δ )(1−Pru2,0)

[
u2,0 −15ρθ 2

]
2ρθ 3 (30+δ (3+δ ))

, (8c)

b0,0
i j = 0 , b1,0

i =
(1−Prqtr)qi,tr

5ρθ 3
, b0,1

i =
2(1−Prqint )qi,int

δρθ 3
, (8d)

b2,0 =
20(6−δ )(1−Pru1,1)

[
u1,1 − 3

2 δρθ 2
]
+(30−δ (7−δ ))(1−Pru2,0)

[
u2,0 −15ρθ 2

]
120ρθ 4 (30+δ (3+δ ))

, (8e)

b1,1 =
24(1+δ )(1−Pru1,1)

[
u1,1 − 3

2 δρθ 2
]
+δ (3−δ )(1−Pru2,0)

[
u2,0 −15ρθ 2

]
6δρθ 4 (30+δ (3+δ ))

. (8f)

Equilibrium Distribution Functions

The energy of internal states of molecules does not change during translational collisions. So, the number of
molecules with the same internal energy level is an invariant for this type of collisions. However, in internal processes
due to exchange of the internal energy, only the total number of the molecules is an invariant. Also, momentum is
conserved in all the collisions. Conservation of the energy for the translational processes consists of two parts as the
translational and internal energies do not convert to one another. Only the total energy is conserved for the internal
processes.

The problem of finding the equilibrium distribution function which maximizes the entropy,

ρs =−kb

∫ ∫
f ln

f
y

dcdI , (9)

under the collision invariants constraints is solved using the Lagrange multipliers method [9]. This method is based on
the fact that finding the extremum of a function, L, under constraints Gi = 0, is the same as finding the extremum of L−
∑i λ iGi, where λ is the Lagrange multiplier. The unknown multipliers are obtained using the constraints. Substituting
the multipliers back into the distribution function and using the definition of the translational temperature, utr =

3
2 θ tr,

the equilibrium distribution function of the translational processes is obtained to be a Maxwellian distribution function,

ftr0
=

ρ I
m

(
1

2πθ tr

) 3
2

exp

[
− 1

2θ tr
C2

]
. (10)
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A similar procedure gives the internal processes equilibrium distribution function. The final result is also a
Maxwellian like function,

fint0 =
ρ
m

1

(2π)
3
2 θ (δ+3)/2

1

Γ
(

1+ δ
2

) exp

[
− 1

θ

(
C2

2
+ I2/δ

)]
. (11)

Important Properties of the Proposed Model

Now we examine some important properties of our proposed model. We consider equilibrium first. In equilibrium
we have zero collision term and all moments of the collision term must vanish, e.g., qi,tr = qi,int = 0. Using the
Maxwellian distribution functions, we get

u1,1
|E,tr = m

∫ ∫
C2I2/δ ftr0

dcdI =
3

2
δρθ intθ tr and u2,0

|E,tr = m
∫ ∫

C4 ftr0
dcdI = 15ρθ 2

tr , (12a)

u1,1
|E,int = m

∫ ∫
C2I2/δ fint0dcdI =

3

2
δρθ 2 and u2,0

|E,int = m
∫ ∫

C4 fint0dcdI = 15ρθ 2 . (12b)

Therefore, we will get f = ftr = ftr0
when we have equilibrium in translational processes only, and f = fint = fint0

when we have equilibrium in both internal and translational processes.
Next we consider conservation of moments: For the translational exchange processes the mass of particles with the

same internal energy level, I, should be conserved. Internal exchange processes conserves the total mass. Both internal
and translational exchange processes conserve the momentum. The total energy is conserved in the internal exchange
processes, where the translational processes conserves the translational and internal energies separately. The above
conditions imply that the three phase densities, f , ftr and fint , have the moments in common,

ρ I = m
∫

ftrdc = m
∫

f dc and 0 = m
∫ ∫

Ci ftrdcdI = m
∫ ∫

Ci f dcdI ,

3

2
ρθ tr =

m
2

∫ ∫
C2 ftrdcdI =

m
2

∫ ∫
C2 f dcdI . (13a)

ρ = m
∫ ∫

fintdcdI = m
∫ ∫

f dcdI and 0 = m
∫ ∫

Ci fintdcdI = m
∫ ∫

Ci f dcdI ,
(

3

2
+

δ
2

)
ρθ = m

∫ ∫ (
C2

2
+ I2/δ

)
fintdcdI = m

∫ ∫ (
C2

2
+ I2/δ

)
f dcdI . (13b)

Therefore, the conservation of mass, momentum and energy is guaranteed by using the proposed model
The full non-linear H-theorem for the model was proved too, however, due to the lack of space this will be presented

elsewhere.

MOMENT METHOD

Moment methods replace the kinetic equation by a finite set of differential equations for the moments of the distri-
bution function. The set of moment equations approximates the kinetic equation and can be used to describe rarefied
gas flows. The moment equations are obtained by taking weighted averages of the kinetic equation. Multiplying the
kinetic equation (5) with m(I2/δ )AC2ςC<i1Ci2 ...Cin>, and subsequent integration over velocity space and internal en-
ergy parameter gives the general moment equation. We will construct an explicit set of moment equations for the first

36 moments
{

ρ ,vi,θ tr,θ int ,σ i j,qi,tr,qi,int ,u
1,0
i j ,u2,0,u0,1

i j ,u1,1,u0,0
i jk

}
.

The generalized version of the Grad’s phase density for polyatomic gases and 36 moments is used to obtain

constitutive equations and close the set of equations [1]. There appear higher moments,
{

u1,0
i jk ,u

2,0
i ,u0,0

i jkl ,u
0,1
i jk ,u

1,1
i

}
,

in the set of moment equations and their constitutive equations are obtained as

u1,0
i jk = 9θu0,0

i jk , u2,0
i = 28θqi,tr , u0,0

i jkl = 0 , u0,1
i jk =

δ
2

θu0,0
i jk , u1,1

i = (5qi,int +δqi,tr)θ . (14)
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Using these equations and the definitions of total and dynamic temperatures
(

θ = δθ int+3θ tr
3+δ and Δθ = θ −θ tr

)
, we

write the full set of closed 36 moment equations for accurate description of polyatomic gases. The conservation laws
for mass (ς = A = n = 0), momentum (ς = A = 0, n = 1), and the balance laws for translational (ς = 1, A = n = 0)
and internal (ς = 0, A = 1, n = 0) energies are obtained by the appropriate choice of ς , A, and n from the general
moment equation. The conservation of the total energy results from summation of the laws for internal and translational
energies. The conservations laws and the equation for dynamic temperature read

Dρ
Dt

+ρ
∂vi

∂xi
= 0 , (15a)

Dvi

Dt
+

1

ρ
∂σ i j

∂x j
+

∂θ
∂xi

− ∂Δθ
∂xi

+
[θ −Δθ ]

ρ
∂ρ
∂xi

= 0 , (15b)

ρ
(

3+δ
2

)
Dθ
Dt

+
∂qi,tr

∂xi
+

∂qi,int

∂xi
+σ i j

∂v j

∂xi
+ρ [θ −Δθ ]

∂vi

∂xi
= 0 , (15c)

3

2
ρ

DΔθ
Dt

− δ
3+δ

∂qi,tr

∂xi
+

3

2

(
2

3+δ

)
∂qi,int

∂xi
− δ

3+δ
σ i j

∂v j

∂xi
− δ

3+δ
ρ [θ −Δθ ]

∂vi

∂xi
=− 3ρ

τ int

Δθ
2

. (15d)

The moment equations for stress tensor, σ i j = u0,0
i j , translational heat flux, qi,tr = 1

2 u1,0
i , and internal heat flux,

u0,1
i = qi,int , which all are present in the conservation laws, are obtained from the general moment equation by the

appropriate choice of ς , A, and n, as

Dqi,tr

Dt
− 5

2
ρ [θ t −Δθ ]

∂θ t

∂xi1
−σ i1k

∂θ t

∂xk
+

5

2
ρ [θ t −Δθ ]

∂Δθ
∂xi1

+σ i1k
∂Δθ
∂xk

− 1

ρ
σ i1k

∂σ k j

∂x j
− 5

2
[θ t −Δθ ]

∂σ i1 j

∂x j
+

1

2

∂u1,0
i1k

∂xk
+

1

6

∂u2,0

∂xi1
+u0,0

i1 jk
∂v j

∂xk

+
7

5
qi1,tr

∂vk

∂xk
+

7

5
qk,tr

∂vi1
∂xk

+
2

5
q j,tr

∂v j

∂xi1
− 5

2

[
θ 2

t −2θ tΔθ +Δθ 2
] ∂ρ

∂xi1

−σ i1k [θ t −Δθ ]
∂ lnρ
∂xk

=−Pr
qtr

[
1

τ tr
+

1

τ int

]
qi,tr , (15e)

Dqi,int

Dt
− δ

2

[
θ +

3

δ
Δθ

]
∂σ i j

∂x j
− δ

2
ρ
[

θ +
3

δ
Δθ

]
∂θ
∂xi

+
δ
2

ρ
[

θ +
3

δ
Δθ

]
∂Δθ
∂xi

+
1

3

∂u1,1

∂xi

− δ
2

ρ [θ −Δθ ]
[

θ +
3

δ
Δθ

]
∂ lnρ
∂xi1

+
∂u0,1

ik
∂xk

+qk,int
∂vi

∂xk
+qi,int

∂vk

∂xk
=− Pr

qint

[
1

τ tr
+

1

τ int

]
qi,int , (15f)

Dσ i j

Dt
+

∂u0,0
i jk

∂xk
+

4

5

∂q<i,tr

∂x j>
+2σ k<i

∂v j>

∂xk
+σ i j

∂vk

∂xk
+2ρ [θ −Δθ ]

∂v<i

∂x j>
=−

[
1

τ tr
+

1

τ int

]
σ i j . (15g)

These equations contain the higher moments u1,0
i j , u2,0, u0,0

i jk , u0,1
i j and u1,1 for which full moment equations are obtained

as

Du1,0
i1i2

Dt
−2u0,0

i1i2k [θ t −Δθ ]
∂ lnρ
∂xk

− 28

5
[θ t −Δθ ]q<i1,tr

∂ lnρ
∂xi2>

+2u0,0
i1i2k

∂Δθ
∂xk

+
28

5
q<i1,tr

∂Δθ
∂xi2>

+7u0,0
i1i2k

∂θ t

∂xk
+

28

5
q<i1,tr

∂θ t

∂xi2>
+9θ t

∂u0,0
i1i2k

∂xk
+

2

5
28θ t

∂q<i1,tr

∂xi2>
+

6

7
u1,0
<i1i2

∂vk>

∂xk

+
4

5
u1,0

j<i1

∂v j

∂xi2>
+2u1,0

k<i1

∂vi2>

∂xk
+u1,0

i1i2

∂vk

∂xk
+

14

15
u2,0 ∂v<i1

∂xi2>

−2
1

ρ
u0,0

i1i2k
∂σ k j

∂x j
− 28

5

1

ρ
q<i1,tr

∂σ i2> j

∂x j
=−

[
1

τ tr
+

1

τ int

]
u1,0

i1i2
, (15h)
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Du2,0

Dt
−8qk,tr [θ t −Δθ ]

∂ lnρ
∂xk

+28θ t
∂qk,tr

∂xk
−8

qk,tr

ρ
∂σ k j

∂x j
+20qk,tr

∂θ t

∂xk
+8qk,tr

∂Δθ
∂xk

+4u1,0
k j

∂v j

∂xk
+

7

3
u2,0 ∂vk

∂xk
=

Pru2,0

τ tr

[(
15ρ [θ −Δθ ]2

)
−u2,0

]
+

Pru2,0

τ int

[(
15ρθ 2

)−u2,0
]
, (15i)

Du0,0
i jk

Dt
−3σ<i j

1

ρ
∂σ k>l

∂xl
+

3

7

∂u1,0
<i j

∂xk>
−3σ<i j

∂θ
∂xk>

+3σ<i j
∂Δθ
∂xk>

−3σ<i j [θ −Δθ ]
∂ lnρ
∂xk>

+3u0,0
l<i j

∂vk>

∂xl
+u0,0

i jk
∂vl

∂xl
+

12

5
q<i,tr

∂v j

∂xk>
=−

[
1

τ tr
+

1

τ int

]
u0,0

i jk , (15j)

Du0,1
i1i2

Dt
−2

1

ρ
q<i1,int

∂σ i2> j

∂x j
−2

[θ t −Δθ ]
ρ

q<i1,int
∂ρ

∂xi2>
+

δ
2

θ t
∂u0,0

i1i2k

∂xk
+

δ
2

u0,0
i1i2k

∂θ t

∂xk

+
2

5
δq<i1,tr

∂θ t

∂xi2>
+2q<i1,int

∂Δθ
∂xi2>

+2θ t
∂q<i1,int

∂xi2>
+

2

5
δθ t

∂q<i1,tr

∂xi2>

+2u0,1
k<i1

∂vi2>

∂xk
+u0,1

i1i2

∂vk

∂xk
+

2

3
u1,1 ∂v<i1

∂xi2>
=−

[
1

τ tr
+

1

τ int

]
u0,1

i1i2
, (15k)

Du1,1

Dt
−2

1

ρ
qk,int

∂σ k j

∂x j
−2qk,int [θ t −Δθ ]

∂ lnρ
∂xk

−2qk,int
∂θ t

∂xk
+2qk,int

∂Δθ
∂xk

+
(
5qk,int +δqk,tr

) ∂θ t

∂xk
+5θ t

∂qk,int

∂xk
+δθ t

∂qk,tr

∂xk

+2u0,1
k j

∂v j

∂xk
+

5

3
u1,1 ∂vk

∂xk
=

Pru1,1

τ tr

[
ρ

3

2

[
δθ 2 +(3−δ )θΔθ −3Δθ 2

]−u1,1

]
+

Pru1,1

τ int

[(
ρ

3

2
δθ 2

)
−u1,1

]
. (15l)

THE PRANDTL NUMBER

The Prandtl number is defined as the dimensionless ratio of shear viscosity and heat conductivity,

Pr =
5+δ

2

μ
k
. (16)

This is a measure of the importance of momentum over thermal diffusivity. We applied the Chapman-Enskog expan-
sion on the heat fluxes and stress tensor equations and obtained their leading order terms as

q(1)i,tr =− 5

2
[

Prqtr
τtr

]ρθ
∂θ
∂xi

and q(1)i,int =− δ

2
[

Prqint
τtr

]ρθ
∂θ
∂xi

,

σ (1)
i j =−τ tr2ρθ

∂v<i

∂x j>
and Δθ (1) = τ int

2δ
3(3+δ )

θ
∂vi

∂xi
. (17)

Therefore, the shear viscosity μ , bulk viscosity v and heat conductivity k are

k =
(

5

Prqtr

+
δ

Prqint

)
τ tr

2
ρθ , μ = τ trρθ and v = τ int

2δ
3(3+δ )

ρθ . (18)

The calculated Prandtl number using our model is

Pr =
5+δ(

5
Prqtr

+ δ
Prqint

) . (19)

The values of the modelling parameters Prqtr , Prqint thus are restricted by the Prandtl number. Therefore the model
provides the freedom to fit three paramteres (Pru2,0 , Pru1,1 and Prqtr or Prqint ). These values can be found from fitting
to experimental or numerical data for rarefied flows, such as damping of ultrasound, light scattering experiments, or
shockwave structure.
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CONCLUSION AND OUTLOOK

Our general goal is the derivation and examination of an extended system of moment equations for polyatomic
gases, i.e., the generalization of the G26 equations [9]. The present paper gave a brief overview over the ideas behind
that derivation, but the details and full development of the extended moment system will be presented elsewhere.
Above, we have based the method on a system of 36 moment equations, which is closed by the generalized Grad
method. Polyatomic gases are governed by at least two distinct time scales, the mean free times for processes that
exchange only translational energy, or translational and internal energies. We introduced a generalized S-model
which have the ability to predict correct relaxation of higher moments. The correct relaxation of the model towards
equilibrium phase density is shown. Also, we showed that the model conserves the collision invariants and allows to
predict the correct Prandtl number. The proof of the H-theorem is omitted due to the lack of space. The next important
steps in this research program are: (a) the development of extended moment equations based on the ordering of
Knudsen numbers [1], (b) development of suitable boundary conditions for the equations, (c) analytical and numerical
solutions of the equations, and a careful evaluation of their merits.

REFERENCES

1. B. Rahimi, and H. Struchtrup, Phys. Fluids 26, 052001 (2014).
2. B. Rahimi, and H. Struchtrup, “Refined Navier-Stokes-Fourier equations for rarefied polyatomic gases,” in Proceedings of the

ASME 4th Joint US-European Fluids Engineering Division Summer Meeting (FEDSM), Chicago, USA, Paper No. 21055,
2014.

3. E. M. Shakhov, Fluid Dynam. 3, 95–96 (1968).
4. V. Rykov, Fluid Dynam. 10(6), 959–966 (1975).
5. H. Grad, Comm. Pure Appl. Math. 2(4), 331–407 (1949).
6. H. Grad, Principles at the kinetic theory at gases, in Handbuch der Physik XII: Thermodynamik der Gase, Springer, Berlin,

1958.
7. B. Rahimi, and H. Niazmand, Heat Transfer Eng. 35 (18), 1528–1538 (2014).
8. H. Niazmand, and B. Rahimi, Comput. Therm. Sci. 5 (4), 261–272 (2013).
9. H. Struchtrup, Macroscopic Transport Equations for Rarefied Gas Flows, Springer-Verlag, New York, 2005.
10. A.S. Rana, M. Torrilhon, and H. Struchtrup, J. Comput. Phys. 236, 169–186 (2013).
11. R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics: Mainly Mechanics, Radiation, and Heat,

Addison-Wesley, 1963.
12. E. Nagnibeda, and E. Kustova, Non-equilibrium reacting gas flows: kinetic theory at transport and relaxation processes,

Springer, 2009.
13. P. L. Bhatnagar, E. P. Gross, and M. Krook, Phys. Rev. 94 (3), 511–525 (1954).
14. C. Truesdell, and R. G. Muncaster, Fundamentals of Maxwell’s kinetic theory of a simple monatomic gas, Academic Press,

1980.

625 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

142.104.86.97 On: Mon, 15 Dec 2014 18:35:28


