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ABSTRACT
A macroscopic model for the description of rarefied poly-

atomic gas flows is introduced. Grad’s moment method is used
to construct a closed set of equations for 36 primary moments.
The order of magnitude method is then applied to acquire op-
timized moment definitions. The appropriate sets of equations
corresponding to the desired order of accuracy in the Knudsen
number are derived by reducing the equations. A refined version
of the Navier-Stokes-Fourier (NSF) equations is obtained where
the dynamic temperature is an additional independent variable.

INTRODUCTION
The Navier-Stokes-Fourier (NSF) equations of hydrody-

namics for gases can be derived from the Boltzmann equation
by means of the Chapman-Enskog (CE) method [1–3]. The CE
method relies on an expansion in the Knudsen number, which
must be sufficiently small for the NSF equations to be valid. The
Knudsen number is the ratio between the mean free path of the
gas particles (i.e., the average distance between collisions) and a
macroscopically relevant lengthscale,

Kn =
λ

L0
=

τ

τ0
, (1)

∗Address all correspondence to this author.

where L0 is the characteristic length scale of the process, τ0 is
a typical characteristic time of the process, and λ and τ are the
mean free path and mean free time. Accordingly, the NSF equa-
tions are valid only for lengthscales that are sufficiently larger
than the mean free path.

A closer examination shows that for monatomic gases there
is only a single mean free path. For polyatomic gases, however,
even the simplest realistic microscopic model includes at least
two different mean free paths, since different types of collisions
occur [2, 4]. Indeed, as two gas particles meet, they can either
exchange only translational kinetic energy, or they can exchange
translational energy and energy stored in their internal degrees of
freedom (rotational and vibrational energies). These exchange
processes occur on different characteristic time scales, hence
there are two different relaxation times, τ tr and τ int , and two
distinct Knudsen numbers, Kntr =

τtr
τ0

and Knint =
τ int
τ0

, where
Knint > Kntr; depending on the conditions, the ratio between
both can be several orders of magnitude in size.

The standard NSF equations are derived from the CE
method by accounting for terms of first order in both Knudsen
numbers. However, due to the large ratio possible between the
Knudsen numbers, the underlying multiscale problem might re-
quire more than a simple accounting of first order terms only.
For instance, when Kn2

int 'Kntr, proper accounting to first order
in Kntr might require consideration of different orders in the CE
expansion: expansion to first order in Kntr, but to second order
in Knint .
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It is well known that the CE expansion to higher than first
order leads to unstable equations. Hence, with polyatomic gases
we face two problems: (a) How to properly account for largely
different Knudsen numbers. (b) How to derive stable macro-
scopic equations from the microscopic description. Both prob-
lems are intertwined.

Indeed, we aim for macroscopic equations at higher than
first order, hence the CE expansion cannot be used. Instead
we use the order of magnitude method [3, 6], which mixes el-
ements of the CE method [1] with elements of Grad’s moment
method [3,5] to derive stable sets of moment equations which are
directly tied to orders in the Knudsen numbers. Previously, this
method was used only for monatomic gases, where it yields the
Euler and NSF equations at zeroth and first order, respectively,
Grad’s 13 moment equations (G13) at second order, and the reg-
ularized 13 moment equations (R13) at third order [3, 6–8]. The
application of the method is particularly transparent when the un-
derlying microscopic model is either the Boltzmann equation for
Maxwell molecules, or the BGK model. The generalization to
other molecular models, e.g., hard sphere molecules, is possible,
but adds a high level of complexity [9].

For this first treatment of polyatomic gases, we decided to
base the order of magnitude method on a simple yet meaningful
microscopic description by means of a two-term BGK model,
and a continuous parameter to describe the internal (i.e., rota-
tional and vibrational) particle energies. The two terms in the
BGK model describe collisions in which translational energy
only, and translational and internal energies are exchanged be-
tween the colliding particles [4]. Each term is attached to its own
mean free time, thus the model introduces two Knudsen numbers
as discussed above.

The order of magnitude works, in short, as follows. In the
first step, a larger set of moment equations is obtained from
the underlying kinetic equation (here the two-term BGK model).
The moment system is then closed by the Grad method; this gives
a Grad-type moment system for 36 moments (G36). This num-
ber is chosen so that the model will produce higher order sets
of equations, particularly those at third order, which will be pre-
sented elsewhere. The second step uses the Chapman-Enskog
method to determine the leading order in terms of the two Knud-
sen numbers for all moments. With the orders established, new
moments are introduced by linear combination of the original
moments such that the number of moments at each order in the
Knudsen numbers is as small as possible. The moment equations
are rewritten as equations for the newly introduced moments. In
the final step, all Knudsen number scales of all moments are
introduced into the moment equations. Then, starting from the
lowest order, a hierarchy of sets of equations is build, by adding
terms with higher and higher orders.

In the context of the BGK model for polyatomic gases, the
order of magnitude method yields, among other sets of equa-
tions, the Euler and NSF equations, as well as Grad-type mo-

ment equations for 14 moments (G14) and their regularization
(R14). However, due to the occurrence of two relevant Knudsen
numbers, the ordering of terms by magnitude is not straightfor-
ward, since it depends on the relative size of the Knudsen num-
bers. Anticipating some of our later notation, we write Kntr = ε

and Knint = εα where α < 1. Depending on the value of α ,
the powers of ε must be ordered differently. For instance, when
α < 1

3 , the terms actually occurring in the G36 equations are, by
increasing order,

{
εα ,ε2α ,ε,ε1+α ,ε1+2α ,ε2−α ,ε2,ε2+α ,ε3

}
.

However, when 1
3 < α < 1

2 the same terms must be or-
dered as

{
εα ,ε2α ,ε,ε1+α ,ε2−α ,ε1+2α ,ε2,ε2+α ,ε3

}
. Other

orders of the terms occur when 1
2 < α < 2

3 , where{
εα ,ε,ε2α ,ε2−α ,ε1+α ,ε2,ε1+2α ,ε2+α ,ε3

}
, and when 2

3 <α <

1, where
{

εα ,ε,ε2−α ,ε2α ,ε1+α ,ε2,ε1+2α ,ε2+α ,ε3
}

.

The classical NSF equations have only the leading order
terms in Knint and Kntr, corresponding to {εα ,ε}. From the
above lists follows immediately that validity of classical NSF
for polyatomic gases requires α > 1

2 , so that ε2α < ε which is
equivalent to Knint = εα < τtr

τ int
. Here τ tr and τ int are the two

relaxation times of the BGK model, respectively; their ratio is
equal to the ratio of shear and bulk viscosities. With the ratio of
relaxation times rather small, down to the order of 10−3 in some
cases, this restricts the validity of the NSF equations to rather
small Knudsen numbers Knint . Note that Kntr = Knint

τtr
τ int

, hence
both Knudsen numbers must be small.

A full account of the application of the order of magni-
tude method to polyatomic gases would widely exceed the space
available. Hence, here we concentrate on only one aspect of
the method, which is the correction of the Navier-Stokes-Fourier
equations by a full balance law for what we call the dynamic
temperature, i.e., the dynamic pressure divided by mass density.
Results for speed of sound and damping of sound waves show
that a relatively small correction gives drastically improved pre-
dictions, in the sense of agreement to more refined moment sys-
tems.

The remainder of the paper is structured as follows. In the
next section, the foundation of the kinetic theory of polyatomic
gases is presented. The two term collision operator for the BGK
model is introduced. In Sec. 3, the system of moment equations
is discussed, and Sec. 4, presents the construction of optimized
moments. The model reduction is performed in Sec. 5, which
presents the reduced equations for first order of accuracy in Kntr.
The equations are tested for speed and damping of sound. Fi-
nally, some concluding remarks are given in Sec. 6.

A rather detailed paper on the ideas introduced here is in
preparation and will be published elsewhere.
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KINETIC THEORY OF POLYATOMIC GASES
Microscopic model

In the model we shall pursue, at time t, the gas particles are
described by their position, xi, velocity, ci, and their internal en-
ergy parameter, I ≥ 0, in a 7-dimensional space known as phase
space. We assume that the spectrum of the internal energy is con-
tinuous and the internal energy of a particle is given by [10, 11]

eint = I
2
δ , (2)

where δ is the number of non-translational degrees of freedom
of the gas. The velocity distribution function f (x,c, I, t) is de-
fined such that the number of molecules in a phase space element
dxdcdI is

f (x,c, I, t)dxdcdI . (3)

In the absence of external forces, the evolution of the distribution
function is determined by the Boltzmann equation. Kinetic mod-
els, such as the BGK model [12] used below, replace the Boltz-
mann collision term by simpler models that preserve the basic
relaxation properties and give the transport coefficients at correct
order, while loosing some of the detailed accuracy. We use a two
term collision operator, where the first term describes collisions
in which only the translational energy is exchanged, and the sec-
ond term describes collisions in which internal and translational
energies are exchanged [4]. The resulting BGK equation reads

∂ f
∂ t

+ ck
∂ f
∂xk

=− 1
τ tr

( f − ftr)−
1

τ int
( f − fint) . (4)

Here, τ tr and τ int are the corresponding mean free times that we
assume to depend only on the macroscopic equilibrium variables,
i.e., mass density ρ and temperature θ (in energy units). More-
over, ftr and fint are equilibrium distribution functions that de-
scribe the different equilibria to which the distribution function
will relax due to the collisions. They depend on the collisional
invariants and are obtained from the maximum entropy principle
as

ftr =
ρ I
m

(
1

2πθ tr

) 3
2

exp
[
− 1

2θ tr
C2
]
,

fint =
ρ

m
1

(2π)
3
2 θ

(δ+3)/2

1

Γ

(
1+ δ

2

) exp
[
− 1

θ

(
C2

2
+ I2/δ

)]
.(5)

The definitions for the densities ρ and ρ I , and the temperatures
θ tr and θ will be shown in the next section.

Macroscopic quantities
Macroscopic quantities such as mass density ρ , momentum

ρvi, energy u, pressure p, stress tensor σ i j, and heat flux vector
qi are moments of the phase density. General trace free central
moments are defined as

uς ,A
i1...in

= m
∫ ∫

(I2/δ )AC2ςC<i1Ci2 ...Cin> f dcdI , (6)

where indices between angular brackets indicated the symmetric
and trace-free part of a tensor. Particular moments that will be
important in the sequel are

mass density ρ = m
∫ ∫

f dcdI =
∫

ρ IdI = u0,0 ,

velocity ρvi = m
∫ ∫

ci f dcdI ,

stress σ i j = m
∫ ∫

C<iC j> f dcdI = u0,0
i j ,

transl. energy ρutr =
3
2

p = m
∫ ∫ C2

2
f dcdI =

1
2

u1,0 ,

int. energy ρuint = m
∫ ∫

I2/δ f dcdI = u0,1 ,

transl. heat flux qi,tr = m
∫ ∫

Ci
C2

2
f dcdI =

1
2

u1,0
i ,

int. heat flux qi,int = m
∫ ∫

CiI2/δ f dcdI = u0,1
i . (7)

Here, ci is the microscopic velocity, Ci = ci − vi is the pecu-

liar particle velocity, and ρ I = m
∫

f dc is the mass density of

molecules with the same internal energy parameter I. Moreover,
utr and uint are the translational energy and the energy of the in-
ternal degrees of freedom, respectively, while qi,tr and qi,int are
the translational and internal heat flux vectors.

The classical equipartition theorem states that in thermal
equilibrium each degree of freedom contributes an energy of 1

2 θ

to the energy of the gas, where θ = RT is temperature in energy
units (R is the gas constant). Thus in equilibrium (E), the trans-
lational and internal energies are

utr|E =
3
2

θ and uint|E =
δ

2
θ . (8)

We extend the definition of temperatures to non-equilibrium, by
defining the translational temperature θ tr and the internal tem-
perature θ int through the energies as

utr =
3
2

θ tr and uint =
δ

2
θ int . (9)
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With these definitions, the ideal gas law in non-equilibrium reads
p = ρθ tr. The total thermal energy, u = uint + utr, is defined as
the sum of the internal and translational energies, and we use the
equipartition theorem to define the overall temperature θ as

u = utr +uint =
3
2

θ tr +
δ

2
θ int =

(
3
2
+

δ

2

)
θ . (10)

In equilibrium the three temperatures agree, θ tr|E = θ int|E = θ ,
while in non-equilibrium they will differ.

Moment equations
Moment methods replace the kinetic equation by a finite

set of differential equations for the moments of the distribution
function. The set of moment equations approximates the kinetic
equation and can be used to describe rarefied gas flows. The
moment equations are obtained by taking weighted averages of
the kinetic equation. Multiplying the kinetic equation (4) with
m(I2/δ )AC2ςC<i1Ci2 ...Cin>, and subsequent integration over ve-
locity space and internal energy parameter gives the general mo-
ment equation as (with the convective derivative D

Dt =
∂

∂ t +vk
∂

∂xk
)

Duς ,A
i1...in

Dt
+2ςuς−1,A

i1...ink
Dvk

Dt
+2ςuς−1,A

i1...ink j
∂v j

∂xk

+
n

2n+1
2ςuς ,A

j<i1...in−1

∂v j

∂xin>
+

∂uς ,A
i1...ink

∂xk

+
n

2n+1

∂uς+1,A
<i1...in−1

∂xin>
+2ς

n
2n+1

uς ,A
<i1...in−1

Dvin>

Dt

+2ς
n+1
2n+3

uς ,A
<i1...in

∂vk>

∂xk
+

n−1
2n−1

nuς+1,A
<i1...in−2

∂vin−1

∂xin>

+nuς ,A
<i1...in−1

Dvin>

Dt
+uς ,A

i1...in
∂vk

∂xk

+
n

2n+1
n−1

2n−1
2ςuς+1,A

<i1...in−2

∂vin−1

∂xin>
+nuς ,A

k<i1...in−1

∂vin>

∂xk

=
1

τ tr

[
uς ,A

i1...in|E,tr
−uς ,A

i1...in

]
+

1
τ int

[
uς ,A

i1...in|E,int −uς ,A
i1...in

]
. (11)

The conservation laws for mass (ς = A = n = 0), momen-
tum (ς = A = 0, n = 1), and the balance laws for translational
(ς = 1, A = n = 0) and internal (ς = 0, A = 1, n = 0) energies
are obtained by the appropriate choice of ς , A, and n. The con-
servation of the total energy results from summation of the laws
for internal and translational energies.

Later, we will replace the translational temperature θ tr as
variable by its non-equilibrium part ∆θ = θ −θ tr, which we de-
note as dynamic temperature. Then, instead of the balances of

translational and internal energies, we shall consider the conser-
vation law for total energy, and the equation for dynamic temper-
ature.

The moment equations for stress tensor, σ i j = u0,0
i j , transla-

tional heat flux, qi,tr =
1
2 u1,0

i , and internal heat flux, u0,1
i = qi,int ,

which all are present in the conservation laws, are obtained from
the general moment equation by the appropriate choice of ς , A,
and n. These equations contain the higher moments u1,0

i j , u2,0,

u0,0
i jk , u0,1

i j and u1,1 for which full moment equations can be ob-
tained. Choosing all moments mentioned so far as variables will
construct a set of 36 moments,{

ρ,vi,θ tr,θ int ,σ i j,qi,tr,qi,int ,u
1,0
i j ,u2,0,u0,1

i j ,u1,1,u0,0
i jk

}
. (12)

The equations for these 36 moments contain the higher moments{
u1,0

i jk ,u
2,0
i ,u0,0

i jkl ,u
0,1
i jk ,u

1,1
i

}
, (13)

hence the 36-moment system is not closed a priori. To close the
system of 36 equations, we used the appropriate from of Grad’s
distribution function [5] for 36 moments. Here, we show only
the results which are

u1,0
i jk = 9θu0,0

i jk , u2,0
i = 28θqi,tr , u0,0

i jkl = 0 ,

u0,1
i jk =

δ

2
θu0,0

i jk , u1,1
i = (5qi,int +δqi,tr)θ . (14)

Substituting these equations into the 36 balance laws gives the
closed set of equations for the 36 variables (12). We shall not
show the rather lengthy equations here, to save some space.

RECONSTRUCTING MOMENTS
Smallness parameters

The expansion parameter in the Chapman-Enskog method
is the Knudsen number, of which we have two, Kntr and Knint ,
to account for translational and internal energy exchange. Kntr
should be less than Knint , since internal energies are exchanged
only in a smaller portion of collisions and τ int > τ tr. Considering
both Knudsen numbers to be less than unity, we define

Kntr = ε and Knint = ε
α . (15)

With this, the two Knudsen numbers are replaced by a single
smallness parameter, ε , and a magnifying parameter, α , with 0 <
α < 1. The lower limit of the internal smallness parameter is
recovered when α = 1 and the upper limit is reached when α = 0.
Particularly for higher Knudsen numbers, mostly values of α less
than 1

2 are relevant.
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Chapman-Enskog expansion
The Chapman-Enskog expansion on the moment equations

must be performed for both Knudsen numbers, that is for all pow-
ers of ε and εα . The variables related to conservation laws, i.e.,
mass density, velocity and total temperature, have equilibrium
values and hence are of zeroth order in the Knudsen number. The
remaining variables are expanded in the smallness parameters ε

and εα as

ψ = ε
0α

[
ε

0
ψ

(0,0)+ ε
1
ψ

(0,1)+ ε
2
ψ

(0,2)+ ε
3
ψ

(0,3)+ · · ·
]

+ ε
1α

[
ε

0
ψ

(1,0)+ ε
1
ψ

(1,1)+ ε
2
ψ

(1,2)+ ε
3
ψ

(1,3)+ · · ·
]

+ ε
2α

[
ε

0
ψ

(2,0)+ ε
1
ψ

(2,1)+ ε
2
ψ

(2,2)+ ε
3
ψ

(2,3)+ · · ·
]
+ · · ·

(16)

Here, ψ stands for any of the variables that must be expanded,
and ψ(i, j) is the contribution at order ε(iα+ j). The ψ(i, j) are found
by inserting the above expansion into the closed moment equa-
tions, and equating terms that are of the same order. The leading
order terms of the moments are found as the first non-vanishing
terms in their expansion. For instance, ψ is of order ε(k+lα) if
ψ(i, j) = 0 for i < k, l < j and ψ(k,l) 6= 0.

It turns out that to leading order the heat fluxes, q(0,1)i,tr and

q(0,1)i,int , are proportional to the temperature gradient, and hence to
each other. In the order of magnitude method we aim at having
the smallest number of moments at each order [3,6]. The vectors
qi,tr and qi,int , which are of first order, can be combined into one
first order vector, the total heat flux,

qi = qi,tr +qi,int , (17)

and one unique higher order variable, the heat flux difference,

∆qi = qi,tr−
5
δ

qi,int . (18)

With this, the two first order vectors {qi,tr,qi,int} are replaced by
the equivalent quantities {qi,∆qi}, where only one (the smallest
possible number) is of first order.

The same idea of using linear combinations of original vari-
ables to create a set of variables, so that the number of variables at
each order is as small as possible, is applied to all variables. Af-
ter going through several rounds at increasing orders, this cum-
bersome procedure creates a unique set of optimized variables,
which are linear combinations of the original 36 variables (12).

The final balance laws, which are the closed form of the 36
moment equations, are obtained from the original moment equa-
tions by the appropriate linear combinations based on the defini-

tions of the optimized moments. The leading order of all (opti-
mized) moments occurring in these final equations can now be
used for model reduction.

MODEL REDUCTION
Scaled equations

While the expansion series (16) contains all mixed powers
of ε and εα , not all orders of magnitude occur in the 36 moment
equations for the optimized variables. For this short account of
the approach, we are interested in the subset of equations that
is accurate up to order ε1. We shall differentiate between the
cases where α is below and above 1

2 . For the case α < 1
2 , the

subsequent orders up to ε1 are
{

ε0,εα ,ε2α ,ε1
}

, while for the
case α > 1

2 the orders are
{

ε0,εα ,ε1
}

For the model reduction by orders, it is required to clearly
assign the orders of magnitude of all terms in the equations con-
sidered. For this, we write the conservation laws and the equation
for dynamic temperature ∆θ in a notation that indicates the rela-
tive order of magnitude of the occurring terms by underlining:

Dρ

Dt
+ρ

∂vi

∂xi
= 0 ,

ρ
Dvi

Dt
+

∂ (ρθ)

∂xi
− ∂ (ρ∆θ)

∂xi
+

∂σ i j

∂x j
= 0 , (19)

3+δ

2
ρ

Dθ

Dt
+ρθ

∂vi

∂xi
−ρ∆θ

∂vi

∂xi
+

∂qi

∂xi
+σ i j

∂v j

∂xi
= 0 .

ρ
D∆θ

Dt
+

2
3

δ

3+δ
ρ∆θ

∂vi

∂xi

− 2
3

δ

3+δ

(
2

5+δ

∂qi

∂xi
+σ i j

∂v j

∂xi

)
− 2

3
δ

5+δ

∂∆qi

∂xi︸ ︷︷ ︸
=

2
3

δ

3+δ
ρθ

∂vi

∂xi
− ρ

τ int
∆θ . (20)

Here, all terms that are not underlined are of zeroth order in ε ,
single underlined terms are of order εα , double underlined terms
are of order ε , and the term underlined by a curly bracket is of
order ε1+α . The order of all terms in the moment equations for
higher moments (σ i j, qi, ∆qi, etc) can be identified and indicated
in a similar fashion. The following subsections will show how
the recognized orders are used for model reduction.

5 Copyright © 2014 by ASME



Zeroth order, ε0 : Euler equations
If we are interested in zeroth order contributions only, we

need to consider only the un-underlined terms in the conservation
laws (19). This gives the Euler equations in their typical form for
polyatomic gases with constant specific heat cv =

3+δ

2 R:

Dρ

Dt
+ρ

∂vi

∂xi
= 0 ,

ρ
Dvi

Dt
+

∂ (ρθ)

∂xi
= 0 , (21)

3+δ

2
ρ

Dθ

Dt
+ρθ

∂vi

∂xi
= 0 .

The Euler equations are a closed set of equations for the variables
{ρ,vi,θ}. The equations for higher moments are not needed at
this order, they only contribute at higher order.

Order εα : Dynamic temperature
Since α < 1 and ε < 1, we have εα > ε . Accordingly, if

we want to consider the first correction to the Euler equations,
we have to add the terms that are of order εα . Considering the
conservation laws (19) with the single underlined terms only, we
find

Dρ

Dt
+ρ

∂vi

∂xi
= 0 ,

ρ
Dvi

Dt
+

∂ (ρθ)

∂xi
− ∂ (ρ∆θ)

∂xi
= 0 , (22)

3+δ

2
ρ

Dθ

Dt
+ρθ

∂vi

∂xi
−ρ∆θ

∂vi

∂xi
= 0 .

These equations contain the dynamic temperature ∆θ , and the
appropriate expression for closure comes from the leading con-
tribution of equation (20), i.e., the un-underlined terms,

∆θ =
2
3

δ

3+δ
τ intθ

∂vi

∂xi
. (23)

In the literature one often finds the dynamic pressure π =
−ρ∆θ used instead of the dynamic temperature [2, 14]. Here,
we find the dynamic pressure as

π =−ρ∆θ =−ν
∂vi

∂xi
. (24)

with the bulk viscosity

ν =
2
3

δ

3+δ
τ intρθ . (25)

Order ε2α (α < 1
2 ) : Refined dynamic temperature

For α < 1
2 , the next correction is to consider terms of or-

der ε2α . The conservation laws do not contain terms of that or-
der, hence they are unchanged from the previous case (order εα).
The equation for dynamic temperature (20) provides corrections
to ∆θ . The un-underlined terms, which are of order ε0, give the
leading contribution to ∆θ , which itself is of order εα . The single
underlined terms, which are of order εα , therefore give contribu-
tions to ∆θ of order ε2α , which are the single underlined terms—
these must be considered. All other terms in (20) contribute to
∆θ at higher orders and must be discarded.

Thus, the relevant equations at this order are the conserva-
tion laws in the form (22) with a full balance equation for the
dynamic temperature,

D∆θ

Dt
+

2
3

δ

3+δ
(∆θ −θ)

∂vi

∂xi
=− ∆θ

τ int
. (26)

This set of equations was used by Arima et al. [13] to study poly-
atomic gases as an extension of Meixner’s theory, in which they
defined their pressure as the equilibrium pressure, p = ρθ .

Order ε1 (α < 1
2 ) : Refined Navier-Stokes-Fourier

To account for first order terms (ε1) in the conservation laws,
the double underlined terms in (19) must be considered, that is
now we need the full conservation laws,

Dρ

Dt
+ρ

∂vi

∂xi
= 0 ,

ρ
Dvi

Dt
+

∂ (ρθ)

∂xi
− ∂ (ρ∆θ)

∂xi
+

∂σ i j

∂x j
= 0 , (27)

3+δ

2
ρ

Dθ

Dt
+ρθ

∂vi

∂xi
−ρ∆θ

∂vi

∂xi
+

∂qi

∂xi
+σ i j

∂v j

∂xi
= 0 .

The appropriate equation for dynamic temperature is again ex-
tracted from (20). Following up on the discussion of this equa-
tion in the previous subsection, we see that the double underlined
terms, which are of order ε , contribute corrections to ∆θ of order
ε1+α , while the terms with the curly bracket underneath con-
tribute to order ε1+2α . Accordingly, at first order, and α < 1

2 , we
need to use the same reduced balance law for ∆θ as before,

D∆θ

Dt
+

2
3

δ

3+δ
(∆θ −θ)

∂vi

∂xi
=− ∆θ

τ int
. (28)

Finally, for closure at first order, the leading terms of the stress
tensor and total heat flux are required, which are found from
their respective moment equations which were not shown above.
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These first order equations for σ i j and qi are the classical Navier–
Stokes-Fourier (NSF) equations, which relate the stress deviator
and heat flux to the gradients of velocity and temperature,

σ i j =−2τ trρθ
∂v<i

∂x j>
, qi =−

5+δ

2
τ trρθ

∂θ

∂xi
. (29)

We identify the shear viscosity µ and the heat conductivity κ as

µ = τ trρθ , κ =
5+δ

2
τ trρθ . (30)

Order ε1 (α > 1
2 ) : Classical Navier-Stokes-Fourier

The classical Navier-Stokes-Fourier equations arise for 1
2 <

α < 1. In this case, the correction to dynamic temperature of
order ε2α can be discarded, i.e., the proper first order equation
for dynamic temperature is (23) instead of (28),

∆θ =
2
3

δ

3+δ
τ intθ

∂vi

∂xi
, (31)

The classical NSF equations is a five variables model for
{ρ,vi,θ}. However, the refined NSF equations obtained have
six independent field variables, {ρ,vi,θ ,∆θ}.

PHASE VELOCITY AND DAMPING
The kinetic model (4), and hence the macroscopic equations,

contain the two relaxation times τ int and τ tr. In the Navier-
Stokes-Fourier equations, the relaxation times directly determine
the bulk and shear viscosities ν and µ , and the heat conductivity
κ . These coefficients are accessible to measurements: shear vis-
cosity µ can be measured in Couette flows, and heat conductivity
κ can be measured in simple heat transfer experiments. The di-
mensionless ratio between both is known as the Prandtl number,
Pr = cpµ

κ
, where cp = 5+δ

2 is the specific heat at constant pres-
sure. The BGK model used above yields Pr = 1, which is above
the proper value of ∼ 0.7 for polyatomic gases; this inaccuracy
is inherent in the BGK model [2]. Hence, there will be discrep-
ancy to measurements and the presented model. At present, our
main goal is to understand the principles of modeling and model
reduction for polyatomic gases, and for this the BGK model pro-
vides a solid base, that is relatively easy to use.

The best way to measure bulk viscosity is through speed
and attenuation of sound waves. Here, due to the inaccuracy of
the underlying BGK model, we do not aim to adjust the above
equations to measurements, but to increase the understanding of
the influence of the relaxation time τ int , which describes the ex-
change of internal and translational energies in collisions, and

is directly related to bulk viscosity. In particular, we shall com-
pare the standard Navier-Stokes-Fourier model, where the dy-
namic temperature is proportional to the divergence of velocity,
Eq. (31), to the refined equations, where the dynamic tempera-
ture is determined by the full balance equation (28). Attenuation
and damping for both cases are compared to the predictions of
the full Grad 36 moment equations, which serve as the bench-
mark case.

To be specific, we consider the one-dimensional propaga-
tion of plane waves of low amplitude. Hence, we have to solve
the linearized, one-dimensional equations. These can be brought
into the general form

AAB
∂uB

∂ t
+CAB

∂uB

∂x
= LABuB , (32)

with the appropriate choice of the coefficients matrices AAB, CAB
and LAB corresponding to the equations, and the variables uA ={

ρ,vi,θ ,∆θ ,σ i j,qi
}

. Making the harmonic wave ansatz,

uA(x, t) = ŭA exp[i(ωt− kx)] , (33)

with the complex amplitude ŭA, real frequency ω and complex
wave number k = kr + iki, and inserting the harmonic wave into
the general form of the equations results in an algebraic equation,

[iωAAB− ikCAB−LAB] ŭB = 0 . (34)

Non-trivial solutions are obtained when the determinant of the
complex matrix inside the bracket vanishes, which gives the dis-
persion relation k (ω). For different set of equations, the disper-
sion relation has different numbers of branches, and we consider
only the branch corresponding to the lowest damping—this is the
sound wave [15]. Phase velocity and damping factor are defined
as

vph =
ω

kr
and φ =−ki . (35)

The speed of sound in the low frequency limit, where the

damping vanishes, is a =
√

5+δ

3+δ
RT0, T0 is the reference state

equilibrium temperature. Figures 1 and 2 show, in dimensionless
form, the ratio a/vph and the reduced damping φ/ω as functions
of the dimensionless inverse frequency 1/(ωτ int). Hence, the
limit of low frequency undamped sound is toward the right of the
plots, while higher frequencies are to the left. The figures show
results for two ratios of Knudsen numbers, or relaxation times,
Kntr/Knint = τ tr/τ int = {0.001,0.01}. Comparing the results
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FIGURE 1. Inverse dimensionless phase velocity√
(5+δ )/(3+δ )/vph as functions of inverse frequency 1/(ωτ int)

for two Knudsen number ratios and different sets of equations: G36
(black continuous), classical NSF (red dash-dotted), modified NSF
(blue dashed).

of original NSF (red dash-dotted) to the refined NSF equations
(blue dashed) and the G36 equations (black continuous) shows
marked deviation of original NSF from the other two models.
Original NSF deviates from G36 for almost all frequencies plot-
ted, while refined NSF agrees to G36 for dimensionless inverse
frequencies 1/(ωτ int) down to the values of Kntr/Knint . This
marked agreement is solely due to the time derivative D∆θ

Dt which
appears in the refined NSF model (28), but not in the classical
NSF model (31).

Considering the refined version of the NSF equations, in-
stead of the classical one, will extend the range of validity of the
NSF equations considerably.

CONCLUSION AND OUTLOOK
Our general goal is the derivation and examination of an ex-

tended system of moment equations for polyatomic gases, i.e.,
the generalization of the R13 equations, which so far are avail-
able only for mon-atomic gases [3]. The present paper gave a
brief overview over the ideas behind that derivation, but the de-
tails and full development of the extended moment system will
be presented elsewhere. The extended moment equations are ob-
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FIGURE 2. Reduced damping φ/ω as functions of inverse frequency
1/(ωτ int) for two Knudsen number ratios and different sets of equa-
tions: G36 (black continuous), classical NSF (red dash-dotted), modi-
fied NSF (blue dashed).

tained from the order of magnitude method, which reduces a
large moment system to only those contributions that are rele-
vant up to a certain order in the Knudsen number. Above, we
have based the method on a system of 36 moment equations—
closed by the Grad method—and have reduced it to the Navier-
Stokes-Fourier (NSF) order. Polyatomic gases are governed by
at least two distinct time scales, the mean free times for pro-
cesses that exchange only translational energy, or translational
and internal energies. Our analysis has shown that the classi-
cal NSF equations must be refined, if the respective Knudsen
numbers fulfill the condition Kn2

int < Kntr. In this case, it is not
sufficient to use the usual NSF expression for dynamic temper-
ature (or dynamic pressure), which describes bulk viscosity ef-
fects, but a full balance law for dynamic temperature has to be
used instead. We emphasize that this refinement will be needed
in particular at somewhat larger, but still small enough, Knud-
sen numbers. We also point out that bulk viscosity effects do not
play a role in many classical flows, e.g., Couette and Poiseuille
flows, and quasi-incompressible flows. Therefore, the full bal-
ance law for dynamic temperature might not be needed for some
flow configurations. As an example where it plays an important
role, we showed speed and attenuation of sound waves, where
the refinement leads to significant improvements. The next im-
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portant steps in this research program are: (a) the development
of extended moment equations based on the ordering of Knud-
sen numbers, (b) development of suitable boundary conditions
for the equations, including boundary conditions for the refined
NSF model, (c) analytical and numerical solutions of the equa-
tions, and a careful evaluation of their merits. Finally, it must be
noted that the equations considered here were based on the BGK
model. Re-derivation of the basic moment equations based on
more accurate kinetic equations will be required in the future, to
obtain better matching of transport coefficients (e.g., the Prandtl
number).
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