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Temperature-difference-driven mass transfer through the vapor from a cold to a warm liquid
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Irreversible thermodynamics provides interface conditions that yield temperature and chemical potential
jumps at phase boundaries. The interfacial jumps allow unexpected transport phenomena, such as the inverted
temperature profile [Pao, Phys. Fluids 14, 306 (1971)] and mass transfer from a cold to a warm liquid driven by
a temperature difference across the vapor phase [Mills and Phillips, Chem. Phys. Lett. 372, 615 (2002)]. Careful
evaluation of the thermodynamic laws has shown [Bedeaux et al., Physica A 169, 263 (1990)] that the inverted
temperature profile is observed for processes with a high heat of vaporization. In this paper, we show that cold to
warm mass transfer through the vapor from a cold to a warm liquid is only possible when the heat of evaporation
is sufficiently small. A necessary criterium for the size of the mass transfer coefficient is given.
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I. INTRODUCTION

Conditions for conversion of liquid to vapor, and vice
versa, are of vital importance in a majority of industrial and
natural processes. In dynamic studies of phase transitions,
it has become increasingly clear that the interface and the
interface region can play a decisive role in determining the
rate of transformation. This paper concerns the importance of
jumps in temperature and chemical potential at a vapor-liquid
interface and, in particular, the role of these jumps in the
determination of the mass and heat flows [1].

A recent experimental paper has suggested the possibility
for transfer of mass from a cold to a warm liquid reservoir via
a vapor phase [2]. Specifically, the experiments are conducted
in systems where the temperature difference across the system
is the only driving force, see Fig. 1 (left panel) for an
illustration of the setting and the direction of fluxes in this
case.

It is not obvious that mass transfer against a temperature
difference is in agreement with the second law of thermody-
namics, and it is one aim of this paper to clarify the conditions
for such transport in terms of a criterion for system properties.

The problem has some similarity to the problem of
the inverted temperature profile discussed earlier [3–5]. In
that problem, solved by kinetic theory [3,4] as well as
nonequilibrium thermodynamics [5,6], a temperature gradient
is formed in a vapor layer, which is sandwiched between
two liquid (or solid) layers in a direction opposite the
overall temperature gradient, cf. Fig. 1 (right panel) for flux
directions.

We will see that the observation of cold to warm mass
transfer as well as the inverted temperature profile will depend
on the size of the heat of evaporation. We show here that
cold to warm mass transfer may be observed for low heats of
evaporation. It is already known that the inverted temperature
profile requires a high heat of vaporization [6]. We will
generalize the form of the last criterion somewhat.

*struchtr@uvic.ca

II. SYSTEM CONFIGURATION

The system of interest is, in both cases, contained in a closed
chamber of large base area and low height so that the transport
processes are essentially one dimensional and in the vertical
direction. The upper and lower plates that enclose the chamber
are thermostatted by circulating fluids above and below. The
chamber is filled with a substance, cleaned and degassed so that
only the pure substance is contained in the chamber. Filling
amount and temperatures are such that some of the substance is
liquid and the remainder is in the vapor phase. The temperature
TL of the bottom plate is kept constant, and the temperature
TH of the upper plate is varied where TL < TH . The question
is whether liquid can be transferred from the cold lower to the
warm upper plate when the temperature difference is the only
driving force.

Criteria can be obtained by solving transport equations
for heat and mass in the three bulk layers and the corre-
sponding two boundary layers involved. This was performed
to determine that the existence of an inverted temperature
profile did not violate the second law of thermodynamics
[5,6] and was also performed here. We use standard linear
nonequilibrium thermodynamics to obtain the criteria. It is
sufficient to consider a system close to global equilibrium.
The completely linearized form of the equations can then be
used to find a solution, and this simplifies derivations. The
result in each case is given in terms of an inequality, which
is amenable to an experimental test. It will be compared with
data from the literature.

Figure 1 shows a schematic of the cell with two layers
of liquid (thicknesses xL and �) separated by a vapor layer
(thickness xV ). The liquids close to the bottom and to the
upper plates assume the temperatures of the plates. We have
highlighted these temperatures TL and TH . The temperatures
Tl and Tv are those of the liquid and vapor at the lower phase
boundary, and the temperatures TV and T� are those of the
vapor and liquid at the upper phase boundary. We consider a
case where the upper plate is fully wetted. When TH is kept
equal to TL, the system is in equilibrium.

The cited experiments [2] are conducted in fully closed
cells where the process is transient since liquid is removed
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FIG. 1. (Color online) Directions of mass and energy fluxes in
left: cold to warm mass transfer and in right: the inverted temperature
profile. Two layers of liquid (thickness xL and �) are separated by a
vapor layer (thickness xV ). Temperatures TL and TH apply to chamber
walls, temperatures Tl and Tv apply to liquid and vapor at the lower
phase boundary, and temperatures TV and T� apply to vapor and
liquid at the upper phase boundary.

from one layer and is deposited onto the other so that the
layer thicknesses change over time. In order to simplify the
computations, we evaluate an equivalent steady state process
where the liquid that is removed is replenished at the plate
with the temperature of the plate and liquid that is deposited
is removed at the corresponding plate. The important point
in the experiment is that the transport is driven only by the
temperature difference between the plates, and this is the case
for our steady state process. Since the observed mass transfer
rate and, thus, the change in layer thickness is extremely small,
the two systems and, in particular, the interfaces agree at a point
in time when the layer thicknesses are the same.

In recent years, Fang and Ward [7–9], Badam et al. [10], and
Duan et al. [11] published a number of papers on experiment
and theory of nonequilibrium interfaces. Their experiments
differ fundamentally from the setup described here: In our
setup, the vapor is sandwiched between two liquid surfaces.
The only driving force for the transfer of mass and energy
is the temperature difference imposed between the upper and
the lower boundaries. Moreover, the pressure in the cell is not
controlled. In their experiments, on the other hand, the vapor
sits on top of a single liquid layer. For most experiments,
the outer system boundary is kept at constant temperature,
but there are also some experiments with additional heating.
The main driving force is the deviation in pressure from
the saturation pressure, which is controlled by means of a
vacuum pump. For experiments with heating [10,11], there
are two forces, the pressure deviation and the temperature

gradient. Mass transfer from cold liquid to warm vapor is
forced by the vacuum pump. None of these experiments
address the possibility of mass transfer from a cold to a
warm liquid through the vapor driven only by the tempera-
ture difference. A thorough evaluation of these experiments
based on nonequilibrium thermodynamics was presented in
Ref. [12].

III. THERMODYNAMIC DESCRIPTION

We consider only small changes in the stationary state in
TH away from TL and fully linearize the whole description
around their differences. In equilibrium, all fluxes are zero.
Away from equilibrium, the fluxes are, therefore, of linear
order in TH − TL. For linear order, all transport coefficients
have their equilibrium values. The position of the liquid-vapor
interfaces are chosen to be the equimolar or, equivalently,
equimass dividing surfaces [1].

In the stationary state, the mass flux J is constant
throughout the three layers. As the velocities are linear in
the temperature difference, for linear order, one may obtain
them by dividing J by the corresponding equilibrium mass
density for each of the three bulk layers. It follows that the
velocities are constant in all three layers and that they are
equal in the liquid layers. When velocities are constant, there
is no viscous contribution to the pressure. It follows that
the hydrostatic pressure p is constant throughout the system.
Under stationary state conditions, the liquid layer thicknesses
xL and � are also constant. Evaporation on one side of the
system and condensation on the other side means, therefore,
continuous replenishing of liquid at the side where evaporation
occurs and removal of liquid at the side where condensation
occurs. When the temperatures TL and TH differ only slightly,
the flux J through the cell is small so that an experiment
with replenishment and removal of liquid is very close to an
experiment in a closed system where no mass enters or leaves
the cell but where the thicknesses of the liquid’s layers change.

The thermal energy is conserved, making the energy flux
Q̇ a constant through the three layers where Q̇ = hJ +
q, h being the specific enthalpy density and q being the
measurable heat flux. In the approximation for linear order
in the overall temperature difference, we should use the
equilibrium enthalpies in the liquid layers h�(TL) = h0, and
in the vapor hv(TL) = hL

fg + h0, where hL
fg is the specific

heat of evaporation. For convenience, we choose a reference
enthalpy such that h0 = 0, making Q̇ = q�. The measurable
heat fluxes in the liquid q� = −κLdT /dx and in the vapor
qv = −κV dT /dx are also constant at linear order. Here,
κL and κV are the equilibrium thermal conductivities. As a
consequence, the temperature gradients in the three layers are
also constant at linear order.

For the given geometry, the second law of thermodynamics
states that the divergence of the entropy flux must be non-
negative,

d

dx

[
J s(T ) + q

T

]
� 0. (1)

As we explained above, J is constant everywhere, whereas,
q is constant in the three layers. For linear order, one should
furthermore use the equilibrium specific entropy densities in
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the liquid and the vapor. Upon integration over the three layers,
using standard thermodynamic relations, this gives, for the
total entropy production,

q�

(
1

TH

− 1

TL

)
� 0 (2)

valid up to second order in the temperature difference (TH −
TL). Equation (2) contains the measurable heat flux in the
liquid q� = Q̇ − Jh0 = Q̇ and does, as required, not depend
on the choice of the reference value for the enthalpy. The
integrated energy balance in the three bulk layers becomes, for
the bottom liquid (0,xL),

Q̇ = q� = −κL

Tl − TL

xL

(3)

for the vapor (xL,xV ),

Q̇ = JhL
fg + qv = JhL

fg − κV

TV − Tv

xV

, (4)

and for the upper liquid (xL + xV ,xL + xV + �),

Q̇ = q� = −κL

TH − T�

�
. (5)

We refer to Q̇, which is constant throughout the system, and
which determines the total entropy production, as the overall
energy flow.

To determine the full solution, we need the conditions
provided by classical irreversible thermodynamics [1,5,13] for
both interfaces. For small differences in temperatures, we have,
for the lower interface,

psat(Tl) − p√
2πRTL

= r̂11J + r̂12
qv

RTL

,

psat(TL)√
2πRTL

Tl − Tv

TL

= r̂21J + r̂22
qv

RTL

, (6)

where psat(T ) is the saturation pressure at temperature T and
R = Ru/M is the gas constant per unit of mass (Ru is the
universal gas constant, and M is the molecular weight). The
above equations are written such that the Onsager resistivities
r̂αβ are dimensionless [13]. The second law of thermodynamics
requires the resistivity matrix to be non-negative definite, r̂11 �
0, r̂22 � 0, r̂11r̂22 − r̂12r̂21 � 0 [1,14]. Due to the microscopic
reversibility of the evaporation and condensation processes,
the Onsager reciprocity relations hold [15], which state that
the resistivity matrix is symmetric. While molecular dynamics
experiments hint at symmetry [16], the scatter in the data does
not allow a firm statement, see the discussion in Ref. [13].
Nevertheless, the arguments for Onsager symmetry are strong
and convincing, and thus, we assume it from now on, that is,
we set r̂21 = r̂12.

The heat of transfer of the surface is defined by

q∗
fg

RTL

≡ 1

RTL

(
qv

J

)
Tv=Tl

= − r̂12

r̂22
. (7)

The values of the resistivities depend on the material and the
temperature. If the vapor behaves as an ideal gas with constant
condensation coefficient ψ , it follows, using kinetic theory
[1,17], that the dimensionless resistivities r̂αβ are constants

with the values,

r̂αβ =
[ 1

ψ
− 0.400 44 0.126

0.126 0.294

]
. (8)

The resulting heat of transfer q∗
fg = −0.429RTL is negative

when the vapor behaves as an ideal gas.
According to the interface conditions (6), mass and/or heat

transfer through an interface lead to temperature differences
between liquid and vapor and deviations from the saturation
pressure. Molecular dynamics simulations for simple two-
phase fluids of particles with a short attractive potential confirm
the values found using kinetic theory [18]. For longer-range
potentials, the diagonal coefficients decrease a bit, whereas,
the coupling coefficient increases [1,19]. The resulting heat of
transfer becomes about a factor of 3 larger compared to the
value from kinetic theory and is still negative.

In special geometries, temperature jumps of up to 8◦ were
found in open system experiments where the pressure was con-
trolled by pumping vapor out [7–9,11,12]. Such jumps require
values of the interfacial resistances between 1 and 2 orders
larger than those found using kinetic theory [20] . In other
experiments [10,11], temperature jumps of more than 20◦ were
found. In particular, in smaller systems, jumps in the tempera-
ture and deviations from the saturation pressure can be signif-
icant compared to other temperature and pressure differences.

The corresponding conditions for the upper interface read

p − psat(T�)√
2πRTL

= r̂11J + r̂12
qv

RTL

,

psat(TL)√
2πRTL

TV − T�

TL

= r̂12J + r̂22
qv

RTL

. (9)

The signs of fluxes relative to the interface are inverted
compared to the lower interface. The heats of transfer of
the upper and the lower interfaces are the same in the fully
linearized case, and the saturation pressures at Tl and T� must
be expanded around TL as

psat(T ) = psat(TL)

[
1 + Ẑ

hL
fg

RTL

T − TL

TL

]
. (10)

The Clausius-Clapeyron relation was used to express the
derivative of the saturation pressure as

d ln psat(TL)

d ln T
= Ẑ

hL
fg

RTL

, Ẑ = RTL

psat(TL)(vg,L − vf,L)
, (11)

with vg,L and vf,L as the specific volumes of saturated vapor
and liquid at TL. The coefficient Ẑ is dimensionless. Far from
the critical point (cr), the liquid volume can be ignored against
the vapor volume, and the vapor behaves as an ideal gas so that
Ẑ = 1. Approaching the critical point, the value of Ẑ increases
toward infinity, and the latent heat vanishes. The slope of the
saturation pressure stays finite so that [ẐhL

fg]cr is finite.

IV. SOLUTION

Equations (3)–(6) and (9) provide a linear system of seven
equations for the seven unknowns Tl, Tv, TV , T�, Q̇, J , and
p. The solution for J and Q̇ is cumbersome but straightfor-
ward. The resulting lengthy expressions are best written with
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several abbreviations,

J = −A

2[C + D] + EB

[
psat(TL)

TL

√
2πRTL

(TH − TL)

]
, (12)

Q̇ = −B

2[C + D] + EB

[
psat(TL)R√

2πRTL

(TH − TL)

]
, (13)

where

A = Ẑ
hL

fg

RTL

(
1

2

xV

λ0
+ r̂22

)
− r̂12,

B = Ẑ
hL

fg

RTL

[
hL

fg

RTL

(
1

2

xV

λ0
+ r̂22

)
− Ẑ + 1

Ẑ
r̂12

]
+ r̂11,

C = r̂11
1

2

xV

λ0
� 0, D = r̂11r̂22 − r̂2

12 � 0,

E = κV

κL

xL + �

λ0
� 0. (14)

From their definitions, it is clear that C, D, and E are always
positive. The signs for A and B will, therefore, lead to the
criterion for cold to warm mass transfer.

In the above result, the characteristic length scale for heat
transfer in the vapor appears, which is defined as

λ0 = κV

√
2πRTL

psat(TL)R
. (15)

This length scale is on the order of several mean free paths of
the vapor. For a vapor layer of a macroscopic thickness so that
xV � λ0, its total resistance is much larger than the interfacial
resistivities. The resistivity for heat transfer in the vapor then
plays the dominant role for the values of J and Q̇. In this case,
A and B are positive so that the energy flux Q̇ and mass flux
J both go from warm to cold, i.e., the usual warm to cold
mass transfer is observed. Only if the thickness of the vapor
layer is on the order of 2λ0r̂22, do the interfacial resistivities
have a comparable influence on the mass and energy transport
across the cell. It is important to realize that the condition
xV � 2λ0r̂22 does not imply that the interfacial resistances can
be ignored in the calculation of the temperature and pressure
jumps at the liquid-vapor surfaces. Both the size and the sign
of qv depend crucially on the interface conditions [21]. The
inverted temperature profile, for which qv > 0, occurs also
when xV is large.

V. ENERGY FLOW

We first consider the direction of the overall energy flow
Q̇ − Jh0 = Q̇, which, according to the second law (2), must
point from warm to cold. In the present geometry, this means
that the dimensionless factor in (13) must be positive. Since
the coefficients C, D, and E are always positive, the second
law requires B � 0. By completing the square and some
manipulation, this condition can be written as(

hL
fg

RTL

)2 1

2

xV

λ0
+ 1

Ẑ

r̂11r̂22 − r̂2
12

r̂22

+ r̂22

{[
Ẑ + 1

2Ẑ

r̂12

r̂22
− hL

fg

RTL

]2

−
[
Ẑ − 1

2Ẑ

r̂12

r̂22

]2}
> 0.

(16)

The first two terms are positive (D � 0, r̂22 � 0). Far from the
critical point where Ẑ � 1, the expression in the curly brackets
is positive so that the above inequality is always fulfilled. Close
to the critical point hL

fg → 0 and Ẑ → ∞, but their product
remains finite, this implies that the expression in curly brackets
goes to zero. Furthermore, as the interfacial resistances go
to zero, only the first term remains, which is positive. Thus,
B � 0, that is, the overall energy flux is always from the hot
to the cold liquid.

VI. MASS FLOW

Consider now the possibility for warm to cold mass transfer
far from the critical point. Evaporation and subsequent conden-
sation at a warmer liquid means that the mass flux is directed
opposite the heat flux. Irreversible thermodynamics does not
exclude this phenomenon, for which J > 0. Equation (12)
shows that this is the case for A < 0 or

Ẑ
hL

fg

RTL

[
1

2

xV

λ0
+ r̂22

]
< r̂12. (17)

Using the heat of transfer of the liquid-vapor interface, Eq. (7),
this inequality can be written as

ẐhL
fg < (−q∗

fg)
r̂22

1
2

xV

λ0
+ r̂22

. (18)

When the vapor is close to ideal (Ẑ = 1), kinetic theory
gives (−q∗

fg) = 0.429RTL. The factor (xV /2λ0) + r̂22 is the
integrated dimensionless resistance of half the vapor layer
plus one liquid-vapor interface. For an ideal vapor next to its
liquid, one always has hL

fg > (−q∗
fg). The last factor is clearly

smaller than unity. It follows that cold to warm mass transfer
is not possible far from the critical point, independent of the
thickness of the ideal vapor layer when interface resistivities
are given by kinetic theory [18].

For more realistic systems [19], the diagonal resistivities
decreased a bit, whereas, the heat of transfer increased by
a factor near 3. This increase is not enough to make cold
to hot mass transfer possible. The few experiments that,
so far, are available [9], seem to indicate [20] that the
diagonal resistivities are between 1 and 2 orders of magnitude
larger than those predicted by kinetic theory. This surprising
difference still needs to be clarified. For this reason, we are
not able to fully reject the possibility of cold to warm mass
transfer far away from the critical point.

Nevertheless, the criterion (17) leads to some further
insight, related to the layer thickness: Cold to warm mass
transfer might be possible in vapor layers where the thickness
xV obeys

xV < 2λ0r̂22

[
(−q∗

fg)

ẐhL
fg

− 1

]
. (19)

According to (19), the thickness xV is on the order of the
length scale times the coupling coefficient for heat transfer.
The value for water is λ0 = 0.053 mm at T = 273 K and λ0 =
7 × 10−6 mm at the critical point. The product λ0r̂22 must be
large enough to have an observable vapor layer. Furthermore,
the expression on the right hand side of (19) must be positive
to allow for cold to warm mass transfer. A necessary criterion
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is, therefore,

d ln psat(TL)

d ln TL

= Ẑ
hL

fg

RTL

<
(−q∗

fg)

RTL

. (20)

For water, the expression ẐhL
fg/RTL assumes values from

20 at the triple point Ttr = 273 K to 7 at the critical point
Tcr = 647 K. With the reported values of ẐhL

fg/RTL, the
dimensionless absolute heat of transfer (−q∗

fg)/RTL would
have to be larger than these values to make xV positive. Close
to the critical point, ẐhL

fg/RTL is smaller, and the resistivities
vanish; the heat of transfer goes probably to a constant
value.

We are not aware of systematic measurements that were
aimed directly at determining the interface coefficients, and
thus, we have no reliable data for evaluating the inequality (17)
in detail. Nevertheless, we can make some basic considerations
that indicate that it is quite unlikely (if not impossible) that
cold to warm mass transfer is observable in experiments. For
this, we assume that, indeed, the inequality (17) is fulfilled

by setting r̂12 > Ẑ
hL

fg

RTL
( 1

2
xV

λ0
+ r̂22). The second law for the

interface requires D = r̂11r̂22 − r̂12r̂12 � 0. Combining both
requirements results in an inequality relation between r̂22 and
r̂11, viz.,

r̂11 �
(

Ẑ
hL

fg

RTL

)2 [
1

4r̂22

(
xV

λ0

)2

+ xV

λ0
+ r̂22

]
. (21)

For given temperature and cell dimensions, the right hand side
of the inequality is an algebraic function in r̂22, with a minimum
at r̂22|min = 1

2
xV

λ0
. It follows that the smallest possible value for

r̂11 that allows for cold to warm mass transfer is the minimum
of the function on the right,

r̂11 � 2

(
Ẑ

hL
fg

RTL

)2
xV

λ0
. (22)

We evaluate this condition with data for water at TL =
2.5 ◦C, where psat (TL) = 730 Pa, Ẑ � 1,

hL
fg

RTL
= 19.6, and

κV = 0.0165 W/mK so that λ0 = 4.376 × 10−5 m. We find

r̂11 > 2

(
Ẑ

hL
fg

RTL

)2 (
xV

λ0

)
� xV

5.73 × 10−8 m
. (23)

This inequality relates the mass transfer resistivity r̂11 and
the vapor layer thickness xV . For resistivities of order unity,
the vapor layer would have to be less than 5 × 10−8-m wide.
Thus, cold to warm mass transfer could not be observed in
macroscopic experiments (note that, at such small vapor gaps,
the assumptions of continuum theory would not be valid
anymore).

However, warm to cold mass transfer is reported for ex-
periments with vapor thicknesses of about xV = 3.5 mm [22].
To observe warm to cold mass transfer in such a macroscopic
cell requires a resistivity value of, at least, r̂11 � 61 500. This
required value is 5 orders of magnitude above the value for the
resistivity r̂11, suggested by kinetic theory. Such an extremely
large value for the (dimensionless) resistivity for mass transfer
across a phase interface would make itself visible in all
macroscopic evaporation experiments: Evaporation would be

quite slow, and there would be significant deviation in vapor
pressure from the equilibrium saturation pressure for all
evaporation experiments. This would be well documented.
Indeed, large values of the resistivity r̂11 are obtained for a
small condensation coefficient ψ in (8). For the 3.5-mm cell,
the required value for the condensation coefficient is ψ <

1.5 × 10−5. Although the reported values of the condensation
coefficients differ by several orders of magnitude, values of
the coefficient at such a small order have not been observed
elsewhere [23,24].

Cold to warm mass transfer, as reported by Mills and
Phillips [2,25,26] and Pursell and Phillips [22] on aniline and
water, demands large values of the interface resistivities, in
particular, an extremely low condensation coefficient. For the
resistivities usually reported for ideal gases, cold to warm heat
transfer is impossible. Whereas, some support for resistivities
1 to 2 orders of magnitude larger than values predicted by
kinetic theory is reported [9,20], these values would still
be too small to allow cold to warm mass transfer. Why the
values predicted by kinetic theory [3–5,17] and by molecular
dynamics simulations [18,19] are so much smaller than the
experimental values, needs further clarification.

VII. INVERTED TEMPERATURE PROFILE

We finally discuss the meaning of the above solution for
the problem of the inverted temperature profile where the total
energy flows from warm to cold, but the measurable heat flux
qv in the vapor has a direction against the energy flow, cf. Fig. 1
(right panel). In terms of conditions on coefficients A and B

in (12) and (13), this is equivalent to

B − A
hL

fg

RTL

= r̂11 − Ẑ
hL

fg

RTL

r̂12 < 0. (24)

Since ẐhL
fg/RTL measures the slope of the saturation pressure

curve, the inverted profile is observed as long as the slope is
sufficiently steep,

d ln psat(TL)

d ln TL

= Ẑ
hL

fg

RTL

>
r̂11

r̂12
. (25)

This inequality may be obeyed if the heat of evaporation is
large. Far from the critical point where Ẑ = 1, this criterion
reduces to the well known condition given in Refs. [3–6]. Here,
the criterion has been generalized to states closer to the critical
point. Note that this criterion does not depend on the thickness
of the vapor layer.

The criterion (25) is sufficient for the observation of the in-
verted temperature profile. In contrast, the related criterion (20)
is a necessary but not a sufficient condition for cold to warm
mass transfer. Equation (19) is a sufficient condition and shows
that the vapor layer has to be sufficiently thin. We see that the
criterion for the inverted T profile invokes the main resistivity
to mass transfer r̂11 unlike the criterion for cold to warm
mass transfer, which invokes r̂22, the main interface resistivity
to heat transfer. Both criteria invoke the interface coupling
coefficient r̂12, meaning that both phenomena can be seen as
manifestations of the dynamic interface conditions formulated
by classical irreversible thermodynamics.
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VIII. CONCLUSIONS

Irreversible thermodynamics provides interface conditions
that yield temperature and chemical potential jumps at phase
boundaries. The interfacial jumps have, in the past, led to
discussions of seemingly unexpected transport phenomena,
such as the inverted temperature profile [3,4]. To understand
this and other phenomena related to the coupled transport
of heat and mass at the interface, it is important to solve
the transport equations for the whole heterogeneous system,
adding the phases adjacent to the interface. Doing this, we have
shown here that temperature-difference-driven mass transfer
can occur through the vapor phase from a cold to a warm
liquid if the heat of evaporation is very low or the resistivity
to mass transfer is very high. Observations on cold to warm

mass transfer driven by a temperature difference [22,25,26]
were conducted for enthalpies of evaporation hL

fg > 10RTL

and vapor layer thicknesses on the millimeter scale. These
conditions may be compatible with the criteria if the resistivity
is unphysically high. More data on interfacial resistivities
are needed for further progress in the understanding of the
dynamics of phase transitions.
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