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In this study, rarefaction effects in pressure-driven gas flows in annular micro-channels are investigated.
The influence of gas rarefaction, aspect ratio of the annulus, and surface accommodation coefficient on
wall friction, mass flow rate, and thermal energy flow rate is studied. For this, the linearized Navier–
Stokes–Fourier (NSF) and regularized 13-moment (R13) equations are solved analytically. The results
are compared to available solutions of the Boltzmann equation to highlight the advantages of the R13
over the NSF equations in describing rarefaction effects in the process. Moreover, a second-order slip
boundary condition is proposed to improve the accuracy of the classical NSF equations.
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1. Introduction

Due to recent achievements in microfabrication, considerable
interest in gas flows within miniaturized channels has emerged.
Microchannels with different cross-sectional shapes are now
widely used in a large variety of novel applications [1]. Examples
are bipolar plates of microscale fuel cells, microstructured heat
exchangers, microsensors and actuators, micro-nozzles, and bio-
chemical lab-on-the-chip systems.

In gaseous flows, the measure for gas rarefaction is Knudsen
number Kn, the ratio of the molecular mean free path and the geo-
metric characteristic length of the flow. Accordingly, rarefied con-
ditions are common in microsettings as well as in low-density
(near vacuum) flows. Since in rarefied gas flows there are not suf-
ficient collisions between the gas particles, an equilibrium state
cannot be maintained, and nonequilibrium effects extend within
the flow as the Knudsen number increases [2].

Precise microscopic solutions for rarefied gas flows, spanning
the entire range of Knudsen number, require numerical solution
of the Boltzmann kinetic equation [3,4]. Due to the complexity of
the collision term in the Boltzmann equation, and the high dimen-
sionality of the microscopic velocity field, kinetic solutions are
computationally very expensive. Fortunately, when the Mach
number is small and the flow is fully developed, which is the case
for microflows, it suffices to solve the linearized Boltzmann
ll rights reserved.
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equation which requires a considerably smaller computational
effort [4].

It is well known that continuum fluid theories such as the
Navier–Stokes and Fourier equations are valid only in the vicinity
of equilibrium and fail to describe nonequilibrium effects in rare-
fied flows [5]. Instead, extended hydrodynamic equations, also re-
ferred to as ‘‘high-order macroscopic transport equations’’, which
go beyond the classical Navier–Stokes–Fourier (NSF) system, are
promising alternatives to kinetic approaches [5]. The Chapman–
Enskog expansion [2] and Grad’s moment expansion [6,7] are the
classical methods to extract high-order macroscopic transport
equations from the Boltzmann equation. Since these equations
are deduced from the Boltzmann equation, they can describe rare-
faction effects in dilute gas flows, yet with a considerably less com-
putational cost. As a general rule, the size and complexity of
extended hydrodynamic equations is proportional to the magni-
tude of the Knudsen number, since more moments (or equiva-
lently, higher order of derivatives of macroscopic properties) are
required to correctly describe the full spectrum of rarefaction
effects. Hence, in highly rarefied situations their computational
expense becomes comparable to that of the Boltzmann equation.
For this reason, high-order macroscopic transport equations are
recommended only for moderately rarefied flows, in particular
for flows in the transition regime [8]. At the asymptotic limits
of Kn ? 0 and Kn ?1 inexpensive equations can be used, i.e.,
the continuum NSF and collision less Boltzmann equations,
respectively.

The regularized 13-moment (R13) equations [9] are the regular-
ized version of the original Grad 13-moment (G13) equations [6].
They are based on moment approximations in kinetic gas theory,
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Nomenclature

0 property at the reference equilibrium state
1 channel inlet
2 channel outlet
a ratio of inner to outer radii
r stress tensor [Pa]
v surface accommodation coefficient
Dr circular gap size [m]
d rarefaction parameter
_E thermal energy flow rate [kg m2 s�3]
_M mass flow rate [kg s�1]
‘ arbitrary macroscopic length [m]
C perimeter [m]
j thermal conductivity coefficient [kg m�1 s�1]
k molecular mean free path [m]
I unit tensor
m high-order moment tensor [N m�1 s�1]
q heat flux vector [W]
R high-order moment tensor [N s�2]
v velocity vector [m s�1]
C normalized integrating constant
R gas constant [J kg�1 K�1]
V slip velocity [m s�1]
F thermodynamic force [kg s�1]
A model dependent coefficient
B model dependent coefficient
C integrating constant
l viscosity [kg m�1 s�1]
q density [kg m�3]
� dimensionless quantity
i inner cylinder
o outer cylinder

w property at wall
h temperature in energy unit [J kg�1]eE dimensionless thermodynamic flux for thermal energyfM dimensionless thermodynamic mass flux
u Azimuthal coordinate [Rad]
} dimensionless pressure gradient
A cross-sectional area [m2]
Dh hydraulic diameter [m]
f Darcy friction factor
I0 zeroth-order modified Bessel function of the first kind
Kn Knudsen number
K0 zeroth-order modified Bessel function of the second

kind
L channel length [m]
n normal direction
p pressure [Pa]
Po Poiseuille number
Pr Prandtl number
r radial coordinate [m]
Re Reynolds number
T temperature [K]
t tangential direction
u mean velocity [m s�1]
z axial coordinate [m]
BGK Bhatnagar–Gross–Krook model
G13 Grad 13-moment
LB linearized Boltzmann model
NSF1 Navier–Stokes–Fourier with first-order slip condition
NSF2 Navier–Stokes–Fourier with second-order slip condition
R13 regularized 13-moment
T transposed tensor

1292 P. Taheri, H. Struchtrup / International Journal of Heat and Mass Transfer 55 (2012) 1291–1303
and are applicable to rarefied gas flows in the early transition re-
gime, that is for Knudsen numbers up to 0.5, in some processes
up to Kn � 1. The R13 system is the smallest set of moment equa-
tions which can properly describe Knudsen boundary layers [10–
12]. In comparison to the G13 system, the R13 equations have
shown superiority in describing shock structures [13], as well as
nonequilibrium bulk effects [14,15]. Regularized moment equa-
tions with lower number of moments have been considered in
Refs. [16,17], and equations with larger moment numbers have
been studied in Refs. [12,18]. In general, more accurate but more
expensive results can be obtained as the size of the moment sys-
tem increases.

Burnett-type equations which are obtained as high-order sys-
tems from the Chapman–Enskog method suffer from linear insta-
bilities [19], and lack a unified strategy to construct the required
boundary conditions. Thus, they cannot be used as a simulation
tool. On the other hand, moment equations, including the R13
equations, are stable [20], and they are furnished with boundary
conditions for the moments [21,22]. These welcoming features al-
lows the moment equations to be successfully adapted to many gas
dynamic problems [18,23–25].

In the present work, the R13 equations are used to investigate
nonequilibrium effects in Poiseuille flow of rarefied gases within
channels of annular cross section. Isothermal slow flows, driven
by small pressure gradients with relatively large Knudsen numbers
Kn 6 1, are computed from the linearized R13 equations, which are
solved analytically. Due to the specific geometry of the flow pas-
sage, the analysis allows to investigate intermingling of rarefaction
effects with curvature effects. For a similar geometry, shear-driven
rotary flows were successfully simulated with the R13 equations
[23].
To the authors’ knowledge, linearized kinetic solutions for pres-
sure-driven rarefied flows in annular channels are reported only in
Refs. [26,27], and more recently in Ref. [28]. In [26,28] solutions of
linearized Boltzmann equation with BGK model for the collision
term is considered, while in [27] solutions of linearized Boltzmann
equation with linear collision term is discussed. Furthermore, so
far, this interesting problem has not been investigated through
any extended macroscopic transport system. Here, theoretical
solutions for shear stress, isothermal heat flow, velocity, and
Knudsen boundary layers are presented, and their influence on
mass transfer, heat transfer, and Poiseuille number is thoroughly
demonstrated.

In the following, the linearized steady R13 equations and their
boundary conditions are presented, and solved for the considered
flow. In order to highlight advantage of the R13 equations over
classical NSF equations, solutions of both systems are compared
to some accurate kinetic data. Through comparisons it is shown
that due to capability of the R13 equations in capturing of rarefac-
tion effects, which are missing in NSF solutions, the R13 results
match better with kinetic data. Our compact analytical solutions
reveal that the presence of Knudsen boundary layers in the R13
solutions is the main reason for this improvement.

Various rarefaction effects such as Knudsen boundary layers
(isothermal heat flow), slip velocity, and Knudsen paradox, which
are captured in the R13 solutions with modest numerical effort,
exhibit a good agreement to kinetic solutions. The presented
results prove the usefulness of R13 system in predicting the mass
and energy flow rates in rarefied situations, for Knudsen numbers
up to unity. Even more, it is shown that furnishing the NSF equa-
tions with high-order boundary conditions improves the contin-
uum results qualitatively; however, their inherent limitations do



Fig. 1. Cylindrical coordinates and flow configuration in Poiseuille flow between
two concentric cylinders with length L. The flow is driven by a constant pressure
gradient in the axial direction. The inlet and outlet pressures are p1 and p2, and the
annular gap size is ro � ri.
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not allow to predict nongradient (rarefaction) transport phenom-
ena within the Knudsen layers.

2. Formulation of the problem

The flow configuration is depicted in Fig. 1. An axial flow of a
monatomic ideal gas, which is confined in the annulus between
two stationary coaxial cylinders, is considered. Pressures at the in-
let and outlet of the channel are p1 and p2, respectively, with
p1 > p2. It is appropriate to use cylindrical coordinates x = {r,u,z}
where r and z are the radial and axial coordinates. The inner and
outer radii of the circular gap are ri and ro, respectively, and the as-
pect ratio of the annulus is a = ri/ro. The perimeter C, and the area A
of the cross-section are

C ¼ 2pðri þ roÞ and A ¼ p r2
o � r2

i

� �
; ð1Þ

and the hydraulic diameter Dh is defined as

Dh ¼ 4
A
C
¼ 2Dr; ð2Þ

where Dr = ro � ri is the gap size. The length of the flow passage, L, is
assumed to be sufficiently large compared to its radial dimension,
L� Dr, and thus boundary effects at entry and exit can be ne-
glected. In the linear flow regime the flow temperature is constant
and matches the temperature of the isothermal cylinders Tw. Here
and below, the superscript ‘w’ refers to the properties at the cylin-
drical walls.

We investigate steady state flow of the gas, driven by a constant
and small pressure gradient in z-direction. This constant pressure
gradient can be treated as a body force applied along the channel.
The flow is fully-developed, @/@z = 0, and the channel walls are
impermeable; then there is no velocity in the radial direction,
vr = 0. Moreover, since the cylinders are stationary, the flow is irro-
tational, vu = 0, and independent of the azimuthal direction, i.e.,
@/@u = 0.

We must emphasize that due to compressibility effects the ac-
tual flow in the annulus is two-dimensional in the r-z plane, which
requires a numerical approach. However, for flows through long
capillaries with small Mach numbers one can safely use linear
analysis to discard the axial compressibility effects and simplify
the problem such that a one-dimensional analysis suffices to inves-
tigate the local distribution of flow properties across the channel
[29].

3. Regularized 13-moment equations

Monatomic ideal gases are considered where p ¼ qRT ¼ qh is
the equation of state, in which p, q, and T are pressure, mass den-
sity, and thermodynamic temperature of the gas, respectively. For
simplicity, the temperature in energy units h ¼ RT is used, where
R ¼ kB=m is the gas constant, with kB and m as the Boltzmann con-
stant and mass of the gas molecules, respectively.
The derivations of the fully nonlinear R13 equations and their
corresponding boundary conditions in Cartesian coordinates are
given in [9,22]. The nonlinear equations in cylindrical coordinates
are presented in [25]; details on the transformation to cylindrical
coordinates are available in Ref. [30].

For the present scenario we only need the linearized and stea-
dy-state equations. For linearization, we consider a reference state
given by p0 ¼ ðp1 þ p2Þ=2; h0 ¼ RTw, and q0 = p0/h0 = (q1 + q2)/2 in
which the gas is at rest, v0 = 0, and in equilibrium, i.e., q0 = r0 = 0.
The vectors v and q correspond to velocity and heat flux, while r
is the stress deviator.

The core equations in the R13 system are the main conservation
laws for mass, momentum, and energy densities, which in steady
state and linearized form read

r � v ¼ 0; ð3Þ
r � r ¼ �rp; ð4Þ
r � q ¼ 0: ð5Þ

In the R13 system, stress deviator r and heat-flux vector q are given
by their respective moment equations [5,9,13,20] that again in stea-
dy state and linearized form are

4
5
rqh i þ r �m ¼ �2p0 rvh i � p0

l0
r; ð6Þ

h0r � rþ
1
2
r � R ¼ �5

2
p0rh� Pr

p0

l0
q: ð7Þ

Here, l0 is the viscosity of the gas at the reference state, and Pr is
the Prandtl number. In Eq. (7), we must set rh = 0 for isothermal
flows.

Closure for Eqs. (3)–(7) is obtained from regularization [9], and
leads to constitutive relations for higher-order moments R and m,
which in linear form read

R ¼ �A
l0

q0
hrqi; ð8Þ

m ¼ �B
l0

q0
hrri: ð9Þ

In the equations above, terms inside angular brackets h � � � i indicate
the trace-free part of symmetric tensors. For instance, the trace-free
part of the symmetric velocity gradient reads

hrvi ¼ 1
2
rv þ ðrvÞT
� �

� 1
3
r � v I; ð10Þ

where the superscript ‘T’ indicates the transposed tensor, and I is
the unit tensor. For the trace-free part of rank-3 tensors see Appen-
dix A in Ref. [5].

The Prandtl number in the moment equation for heat flux, and
the coefficients A and B in the constitutive relations depend on the
applied kinetic model [5]. For the Bhatnagar–Gross–Krook (BGK)
kinetic model these coefficients are

PrBGK ¼ 1; ABGK ¼ 28
5
; BBGK ¼ 3; ð11aÞ

and for the linearized Boltzmann (LB) kinetic model they read

PrLB ¼ 2
3
; ALB ¼ 24

5
; BLB ¼ 2: ð11bÞ

In the hydrodynamics limit where the high-order moments R
and m vanish, the terms on the left-hand side of Eqs. (6) and (7)
are zero. Therefore, Eqs. (6) and (7) reduce to the linearized Na-
vier–Stokes and Fourier laws of classical hydrodynamics, i.e., New-
tonian viscous shear and Fourier’s heat conduction,

r ¼ �2l0hrvi; ð12Þ
q ¼ �jrh; ð13Þ
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where j = 5l0/(2Pr) is the thermal conductivity coefficient for ideal
gases. In isothermal flows, Fourier’s heat flux (13) vanishes, since
rh = 0. Eqs. (12) and (13) along with the conservation laws (3)–
(5) form the linearized Navier–Stokes–Fourier system,

r � v ¼ 0; l0r2v ¼ rp; r2h ¼ 0: ð14Þ
4. Wall boundary conditions

Boundary conditions are necessary to find a unique solution for
the considered boundary value problem. Wall boundary conditions
express the properties of the gas adjacent to the wall with respect
to the wall temperature and the wall velocity. Detailed discussion
on wall boundary conditions for R13 equations is available in Refs.
[22,30], where macroscopic boundary conditions for high-order
moments are derived from Maxwell’s boundary condition for the
Boltzmann equation [31].

4.1. Boundary conditions for the R13 equations

For isothermal flows the required boundary conditions in line-
arized form are [22,30]

rtn ¼
v

2� v

ffiffiffiffiffiffiffiffi
2

ph0

s
�p0Vt �

1
5

qt �
1
2

mtnn

� �
; ð15aÞ

Rtn ¼
v

2� v

ffiffiffiffiffiffiffiffi
2

ph0

s
p0h0Vt �

11
5

h0qt �
1
2

h0mtnn

� �
; ð15bÞ

where the subscripts ‘t’ and ‘n’ indicate tangential and normal direc-
tions with respect to the wall, respectively, that is the z- and r-
directions [cf. Fig. 1]. The wall normal points in the radial direction
toward the gas, thus, wall normal vectors have opposite signs on the
inner and outer cylinders. Vt ¼ v t � vw

t is slip velocity on the wall.
Effects of gas-surface interaction are reflected in the surface accom-
modation coefficient v, where v = 0 and v = 1 describe fully reflec-
tive (smooth) and fully diffusive (rough) walls, respectively.

In the linear setting, temperature and velocity problems decou-
ple [11,14]. Since for the present study we are interested in iso-
thermal flows, the velocity problem is solved only. Eqs. (15) are
the boundary conditions for the velocity problem. Additional
boundary conditions are required when flow is non-isothermal
[22].

4.2. Second-order slip condition for NSF equations

When evaluated by means of the Chapman–Enskog expansion
method [2], the R13 boundary conditions in Eq. (15) include first-
and second-order moments [15]. Scaling of the second-order mo-
ments leads to second-order velocity slip and temperature jump
boundary conditions for the Navier–Stokes–Fourier system. Here,
since isothermal flows are considered, only the velocity slip condi-
tion is required, which in linear form reads [25,30]

VNSF
z ¼ �2� v

v

ffiffiffiffiffiffiffiffi
ph0

2

r
rNSF

rz

p0
nr

þ 1
5Pr
þ 4B

15

� �
@rNSF

rz

@r
þ 1

5Pr
� B

15

� �
rNSF

rz

r

	 

l0h0

p2
0

: ð16Þ

The quantity rNSF
rz denotes the Navier–Stokes shear stress, Eq. (12).

The first term represents the first-order slip velocity, and the others
are second-order corrections. The term rNSF

rz =r is a curvature effect
of the channel walls on the slip velocity. The wall normal is indi-
cated by nr, with nr = +1 for the inner wall and nr = �1 for the outer
wall.
5. Flow equations

In order to investigate Poiseuille flow in annular channels, the
R13 Eqs. (3)–(9) and the NSF Eq. (14) are transformed into cylindri-
cal coordinates.

For the considered flow configuration, as discussed in Section 2,
the velocity vector v, the heat-flux vector q, and stress tensor r
simplify to

v ¼
0
0

vzðrÞ

0B@
1CA; q ¼

qrðrÞ
0

qzðrÞ

0B@
1CA;

r ¼
rrrðrÞ 0 rrzðrÞ

0 ruuðrÞ 0
rrzðrÞ 0 rzzðrÞ

0B@
1CA;

ð17Þ

where all components only depend on the radial coordinate r. Since
the stress tensor is trace free, we have ruu(r) = �rrr(r) � rzz(r).

In order to present a general analysis, it is useful to proceed
with dimensionless equations. The reference state properties
{p0,q0,h0} and a macroscopic length scale ‘ can be used to define
dimensionless quantities. The radial coordinate, axial coordinate,
perimeter, and area are normalized with respect to the macro-
scopic length scale,

~r ¼ r
‘
; ~z ¼ z

‘
; eC ¼ C

‘
; eA ¼ A

‘2 : ð18aÞ

The remaining variables in dimensionless form are defined as

~q ¼ q
q0
; ~h ¼ h

h0
; ~p ¼ p

p0
; ~v ¼ vffiffiffiffiffi

h0
p ;

~q ¼ q
p0

ffiffiffiffiffi
h0
p ; ~r ¼ r

p0
; eR ¼ R

p0h0
; ~m ¼ m

p0

ffiffiffiffiffi
h0
p ;

ð18bÞ

where the isothermal speed of sound
ffiffiffiffiffi
h0
p

is employed as the veloc-
ity scale. The tilde signs indicate dimensionless quantities. Further-
more, ~l ¼ l=l0 is the dimensionless viscosity with l0 = l(h0). In
ideal gases viscosity is a function of temperature only [5], hence,
in our analysis, due to the assumption of isothermal flow, the
dimensionless viscosity turns to be a constant, ~l ¼ 1. In our treat-
ment of nonisothermal flow problems, in order to achieve an
analytical solution, dependency of viscosity on temperature was
neglected [24,25]. A more refined approach would include this
temperature dependence, similar to [32].

After applying differential operators in cylindrical geometry
[30], and using the above dimensionless quantities, Eqs. (3)–(9)
cast into the dimensionless form of the linearized R13 equations
in cylindrical coordinates,

@

@~r
þ 1

~r

� �
~rrz ¼ �}; ð19aÞ

� }þ 1
2

@

@~r
þ 1

~r

� �eRrz ¼ �
Pr
Kn

~qz; ð19bÞ

2
5
@~qz

@~r
þ @

@~r
þ 1

~r

� �
~mrrz �

~muuz

~r
¼ � @

~vz

@~r
� 1

Kn
~rrz; ð19cÞ

where } is the dimensionless pressure gradient along the axial
direction (a negative quantity for the flow setting in Fig. 1)

} ¼ ‘

p0

@p
@z
¼ @

~p
@~z
: ð20Þ

In the dimensionless equations the reference viscosity coefficient l0

gives rise to the mean free path k0 in the gas at the reference state.
Accordingly, the Knudsen number

Kn ¼ k0

‘
with k0 ¼

l0

ffiffiffiffiffi
h0
p

p0
; ð21Þ
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appears in the dimensionless equations. The Knudsen number is the
measure for gas rarefaction.

Eqs. (19a) and (19b) are the linearized and dimensionless
momentum balance (Eq. (4)) and heat-flux balance (Eq. (7)) in z-
direction. The dimensionless form of the linearized shear-stress
balance is given in Eq. (19c). The relevant dimensionless high-or-
der moments in (19) follow from Eqs. (8) and (9) as

eRrz ¼ �
1
2

AKn
@~qz

@~r
; ð22aÞ

~mrrz ¼
8

15
BKn }þ 5

4
~rrz

~r

� �
; ð22bÞ

~muuz ¼ �
2

15
BKn }þ 5

~rrz

~r

� �
: ð22cÞ

The required boundary conditions for the problem are the same as
in (15), that in dimensionless form and with proper coordinate-
indicative indices read

~rrz ¼
v

2� v

ffiffiffiffi
2
p

r
�eV z �

1
5

~qz �
1
2

~mrrz

� �
nr; ð23aÞ

eRrz ¼
v

2� v

ffiffiffiffi
2
p

r eV z �
11
5

~qz �
1
2

~mrrz

� �
nr : ð23bÞ

As mentioned in Section 3, in the asymptotic limit of Kn ? 0 the R13
equations reduce to the NSF equations, i.e., the system (19) reduces
to

@

@~r
þ 1

~r

� �
@~vz

@~r
¼ }

Kn
; ð24aÞ

@~h
@~z
¼ 0: ð24bÞ

The above results from substituting the linearized Navier–Stokes
and Fourier laws (Eqs. (12) and (13)) in dimensionless form, which
read

~r NSF
rz ¼ �Kn

@~vz

@~r
; ~q NSF

z ¼ �5
2

Kn
Pr

@~h
@~z
: ð25Þ

It follows from Eq. (19a), that the pressure gradient } is of first-or-
der in terms of Knudsen number, Oð}Þ ¼ OðKnÞ. Hence, } in Eq.
(19b) provides a second-order contribution to the axial heat flux,
which vanishes in the hydrodynamic limit [4], that is it does not ap-
pear in Eq. (24b).

The dimensionless slip condition (16) for NSF is

eV NSF
z ¼ �2� v

v

ffiffiffiffi
p
2

r
~r NSF

rz nr

þ 1
5Pr
þ 4B

15

� �
@~r NSF

rz

@~r
þ 1

5Pr
� B

15

� �
~r NSF

rz

~r

	 

Kn: ð26Þ

As given in Eq. (25), sinceOð~rrzÞ ¼ OðKnÞ, the first and second terms
in (26) respectively contribute to the first- and second-order slip
corrections.
6. Results and discussion

6.1. Analytical solutions for R13 equations

Replacement of (22) into (19) and subsequent integration gives
the following analytical solutions for shear stress ~rrz, streamwise
heat flux ~qz, and velocity ~vz,
~rrz ¼ �
}

2
~r þ C1

~r
; ð27aÞ

~qz ¼ C2I0
2

Kn

ffiffiffiffiffi
Pr
A

r
~r

 !
þ C3K0

2
Kn

ffiffiffiffiffi
Pr
A

r
~r

 !
þ Kn}

Pr
; ð27bÞ

~vz ¼ C4 þ
}

4Kn
~r2 � C1

Kn
lnð~rÞ � 2

5
~qz: ð27cÞ

In the above general solutions C1 to C4 are the integrating constants,
which must be determined from the boundary conditions on both
inner and outer walls. The constants were computed using the ana-
lytical software package Mathematica�, which was also used to
generate the plots shown below. In the NSF solutions, the constants
in an abstract form read,

CNSF1

1 ¼ }CNSF1

1 ða;v;KnÞ; CNSF1

4 ¼ }CNSF1

4 ða;v;KnÞ; ð28aÞ

CNSF2

1 ¼ }CNSF2

1 ða;v;B;KnÞ; CNSF2

4 ¼ }CNSF2

4 ða;v;B;Kn; PrÞ; ð28bÞ

while CNSF1;2

2 ¼ CNSF1;2

3 ¼ 0. In the R13 solutions, all the integrating
constants take the following form,

CR13
i ¼ }CR13

i ða;v;A;B;Kn; PrÞ: ð28cÞ

It can be seen that all of the integrating constants in NSF and R13
are linear function of pressure gradient }. Due to bulky expressions
for C1 to C4, we have not explicitly shown these functions.

The underlined terms indicate the solution of the NSF equa-
tions. Note that the general solution for shear stress is identical
for both R13 and NSF systems. Since NSF yields heat flow only in
presence of a temperature gradient, it cannot predict the axial heat
flux ~qz in this isothermal flow. This streamwise heat flow, which is
not driven by a temperature gradient, is a pure rarefaction effect.
The zeroth-order modified Bessel functions I0 and K0 in the heat-
flux solution represent the Knudsen boundary layers, while
Kn}/Pr is a high-order bulk effect. The R13 velocity solution shows
that isothermal heat flux contributes in the flow velocity. This ef-
fect is missing in the NSF velocity solution. The values of ~vz at ~ri

and ~ro are the slip velocities.
For v = 1, a = 0.1, and Kn = {0.02,0.2} the solutions (27) are plot-

ted in Fig. 2, which are normalized with respect to the pressure
gradient–note that all the integrating constants linearly depend
on }. The NSF results with first-order slip condition (NSF1) and sec-
ond-order slip condition (NSF2) are compared to the R13 results.

The general solution for shear-stress (Eq. (27a)) is the same for
NSF and R13, but their specific solutions differ due to different val-
ues for the integrating constant (C1 is different for NSF and R13),
which are obtained from different boundary conditions. As shown
in plot (a), in weakly rarefied flows (Kn = 0.02) the shear stress pro-
files for NSF and R13 are very close. For the larger Knudsen number
Kn = 0.2 [cf. plot (b)] NSF1 is considerably different from R13 (spe-
cifically on the inner cylinder), while NSF2 and R13 are in complete
agreement. This shows that application of second-order slip condi-
tion corrects the NSF shear-stress solution to match with the R13
solution.

For Kn = 0.02, BGK and LB results coincide. As the Knudsen
number increases, the solutions with BGK coefficients yield slightly
higher shear stress on the inner wall, compared to LB coefficients.
Unfortunately, kinetic data (i.e., solutions of the Boltzmann equa-
tion) for shear stress is not reported in the literature. The validity
of our shear-stress solutions is discussed in Section 6.2.1, where
the Poiseuille number is evaluated from the NSF and R13 solutions
and compared to kinetic data.

According to Fourier’s law, heat flow in the NSF theory is the
result of a temperature gradient. Therefore, in the considered
isothermal flow, NSF fails to predict the axial heat flow, ~q NSF

z ¼ 0.
In plots (c) and (d) of Fig. 2, the NSF and R13 solutions for axial heat
flow (Eq. (27b)) are plotted. For Kn = 0.02, the constant bulk heat



Fig. 2. Normalized distribution of shear stress, isothermal heat flux, and velocity across the annulus are plotted. The plots are obtained for v = 1, a = 0.1, with both BGK and LB
coefficients. Solutions for NSF with first-order slip condition (NSF1), and second-order slip condition (NSF2) are compared to R13 results for Kn = 0.02 (left plots), and Kn = 0.2
(right plots). We emphasize that the difference between shear-stress solutions for NSF and R13 is rooted in evaluation of the integrating constant C1.
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flow is dominant in the center of the channel. The bulk heat flow
occurs in the opposite direction of mass flow. Thin Knudsen bound-
ary layers are visible close to the walls. For Kn = 0.2, the thickness
of the Knudsen layers is increased such that the whole channel is
affected by nonequilibrium boundary effects.

The differences between BGK and LB solutions for heat flow are
rooted in their coefficients (11). In general, the bulk heat flow in
the LB model is 50% stronger than for the BGK model. Unfortu-
nately, kinetic data for the isothermal heat flux are not available
for comparison. The validity of our heat-flux solutions are dis-
cussed in Section 6.2.2, where the thermal energy flow rate is eval-
uated from NSF and R13 solutions and compared to kinetic data.

Plots (e) and (f) of Fig. 2 show the velocity profiles. For small
Knudsen number Kn = 0.02, the NSF and R13 solutions are in fair
agreement. Moreover, application of the BGK and LB coefficients
leads to a negligible dissimilarity. Differences appear at the larger
Knudsen number Kn = 0.2, where NSF1 drastically underpredicts
the velocity. It is evident that application of second-order slip
condition (26) shifts the NSF solution closer to the R13 results.
The difference between the NSF2 and R13 solutions is due to the
boundary conditions and the absence of Knudsen boundary layers
from the NSF solution (27c).

To demonstrate how the R13 velocity distribution depends on
nonequilibrium effects, in Fig. 3, full R13 velocity solution is com-
pared to the cases in which Knudsen layers and the high-order bulk
term (Kn}/Pr) are neglected. These plots are obtained for v = 1,
a = 0.1, Kn = {0.1,0.2}, and LB coefficients (11b). As shown in the
plots, neglection of the Knudsen layers leads to velocity



Fig. 3. Dependency of the R13 velocity solution to nonequilibrium effects is demonstrated for v = 1, a = 0.1, and Kn = {0.1,0.2}.
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overprediction, since less friction is evaluated on the boundaries.
On the other hand, the absence of the bulk term gives a lower
velocity results. Combination of the high-order bulk term and
Knudsen layers, as given by Eq. (27c), yields the R13 velocity
profile.

Variation of normalized integrating constants with respect to
Knudsen number for v = 1 and a = 0.1 are plotted in Fig. 4. The
plots are obtained for LB coefficients (11b). The constant C1 for
NSF2 and R13 is the same, which leads to identical stress solutions
for these systems.

To show the influence of the annulus aspect ratio a = ri/ro on
velocity distribution, normalized velocity solutions are plotted in
Fig. 5 for v = 1, Kn = 0.1, and a = {0.1,0.9}. For the plots the BGK
coefficients in Eq. (11a) are employed. For a = 0.1, the curvature
difference between the inner and outer walls is large, and the
velocity profiles are asymmetric with respect to the centerline of
Fig. 4. For v = 1 and a = 0.1, normalized integrating constant
the annulus. The curvature effects diminish when the size of the
gap decreases (a increases). As shown, for a = 0.9 the velocity dis-
tribution is almost symmetric, similar to planar Poiseuille flow
[14]. The same behaviour was observed for ~rrz and ~qz when
a ? 1 (not shown).

Explicit kinetic data for velocity are not available. The validity of
our velocity solutions is discussed in Section 6.2.2, where the mass
flow rate is evaluated from NSF and R13 solutions and compared to
kinetic data.

6.2. Comparison with kinetic data

Comparison of our theoretical results with kinetic solutions of
the Boltzmann equation are presented in this section. For the con-
sidered problem kinetic data for both the linearized Boltzmann
(LB) equation and the Bhatnagar–Gross–Krook (BGK) equation
s C1 to C4 , are plotted with respect to Knudsen number.



Fig. 5. Dependency of velocity distribution on a (the ratio of inner to outer cylinder) is demonstrated for v = 1, Kn = 0.1, and BGK coefficients.
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are reported in [27,28]. In order to compare our solutions with the
results of each kinetic equation, the proper coefficients must be
used in the R13 model, see Eq. (11).

In the kinetic approaches [27,28] the rarefaction parameter d is
defined as

d ¼ p0‘

l0

ffiffiffiffiffiffiffiffi
2h0
p ¼ 1ffiffiffi

2
p

Kn
; ð29Þ

where its relation to our definition of the Knudsen number follows
from Eqs. (21) and (29).

In contrast to discrete kinetic solutions, our analytical solutions
(27) are continuous, hence, they are preferred for parametric stud-
ies. Moreover, the computational time for the presented approach
is considerably less than kinetic approaches. For instance, on a sin-
gle core �86–64 CPU, BGK simulations take minutes to hours as d
increases [28], while with the same CPU our simulation takes a
fraction of a minute.

6.2.1. Poiseuille number
In the axial momentum balance (Eq. (19a)), the divergence of

shear stress and the gradient of pressure describe the momentum
flux in axial direction. Since the pressure gradient is constant, inte-
gration of this equation over the cross section gives

Crw ¼ A
@p
@z

or
~rw

}
¼ A
‘C

; ð30Þ

where rw ¼ p0 ~rw is the mean shear stress on the walls,

~rw ¼
~ri ~rrzð~riÞ þ ~ro ~rrzð~roÞ

~ri þ ~ro
: ð31Þ

Setting ‘ = Dh in Eq. (30) and using Eq. (2) gives

~rw

}
¼ 1

4
; ð32Þ

which holds for all values of the coefficients Kn, a, and v.
The Poiseuille number Po, is defined as the product of the Darcy

friction factor f, and the Reynolds number based on the hydraulic
diameter, ReDh

, [33],

Po ¼ fReDh
; ð33Þ
with

f ¼ 8
rw

q0u2 and ReDh
¼ q0uDh

l0
:

Here, u is the mean flow velocity,

u ¼ 1
A

Z Z
A

vzdA; ð34Þ

that in dimensionless form reads

~u ¼ uffiffiffiffiffi
h0
p ¼ 2

~r2
o � ~r2

i

Z ~ro

~ri

~vz~rd~r: ð35Þ

Based on the dimensionless quantities and Eq. (32) the Poiseuille
number depends on the Knudsen number as

Po ¼ 2
j}j
~uKn

: ð36Þ

Note that Knudsen number appears in the denominator of the
above equation, and ~u depends on the Knudsen number as well.

Fig. 6 depicts the Poiseuille number for a pipe (a = 0) with fully
diffusive walls (v = 1) and for a narrow annulus at a = 0.9 with dif-
fusive-reflective walls v = 0.7. For the case of pipe flow the well-
known hydrodynamic relation fReDh

¼ 64 is obtained in the limit
Kn ? 0. The comparison to kinetic data [28] shows that NSF2 and
R13 provide satisfactory results for Kn < 0.5, while NSF1 is accurate
only for Kn < 0.1. For larger values of the Knudsen number NSF1

overpredicts the Poiseuille number, but NSF2 and R13 underesti-
mate it. In particular this means that NSF1 predicts a higher friction
at large Knudsen numbers. It will be shown in the next section that
due to the higher friction the NSF1 model yields lower mass flow
rate in highly rarefied situations.

Fig. 7 shows the trend for variation of the Poiseuille number
with the annulus aspect ratio a, for v = {0.7,1.0}. The annulus
perimeter increases with a, so the friction increases, hence, larger
Poiseuille numbers are observed for narrow annuli. However, ki-
netic data [28] show that this trend persists only until Kn � 0.23.
For larger Knudsen numbers, the Poiseuille number decreases as
a increases, but its drop is not significant. From the plots one can
conclude that the proposed second-order slip condition (16) is effi-
cacious to evaluate the Poiseuille number in this problem.



Fig. 6. Variation of Poiseuille number with respect to Knudsen number for NSF and R13 is compared to BGK kinetic data for a tube with fully diffusive walls (Left), and a
narrow annulus with diffusive-reflective walls (Right). Diamonds and circles correspond to kinetic data from Ref. [28].

Fig. 7. Variation of Poiseuille number with respect to annulus aspect ration a is shown for fully diffusive walls (Left), and diffusive-reflective walls (Right). The R13 and NSF
results for different Knudsen numbers are compared to BGK kinetic data for each case. Diamonds correspond to kinetic data from Ref. [28].

Fig. 8. Mass flow rate variations with respect to Knudsen number Kn, surface accommodation coefficient v, and the ratio of inner to outer radius a, are compared between
Navier–Stokes–Fourier with first-order slip condition and kinetic data. The BGK kinetic data from [28] are shown with different symbols for different annulus aspect ratios.
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Fig. 9. Mass flow rate variations with respect to Knudsen number Kn, surface accommodation coefficient v, and the ratio of inner to outer radius a, are compared between
Navier–Stokes–Fourier with second-order slip condition and kinetic data. The BGK kinetic data from [28] are shown with different symbols for different annulus aspect ratios.

Fig. 10. (Plots (a)–(c)) Mass flow rate variations with respect to Knudsen number Kn, surface accommodation coefficient v, and the ratio of inner to outer radius a, are
compared between R13 and kinetic data. The BGK kinetic data from [28] are shown with different symbols for different annulus aspect ratios. (Plots (d)–(f)) Navier–Stokes–
Fourier and R13 solutions for particular v and a are compared to kinetic data [28].

1300 P. Taheri, H. Struchtrup / International Journal of Heat and Mass Transfer 55 (2012) 1291–1303
6.2.2. Mass and thermal energy flow rates
Following the work of Lo et al. [27], isothermal mass and energy

(thermal) flow rates in Poiseuille flow are given by phenomenolog-
ical laws (for the linear case)

_M ¼ FfM and _E ¼ h0F eE ; ð37Þ

where F is the thermodynamic force, and fM and eE are the dimen-
sionless thermodynamic fluxes, respectively,
F ¼ �2p‘3 q0

ffiffiffiffiffi
h0
p

p0

@p
@z
; ð38aÞ

fM ¼
Z ~ro

~ri

~vz~rd~r; ð38bÞ

eE ¼ Z ~ro

~ri

~qz~rd~r: ð38cÞ
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In Ref. [28], where the hydraulic diameter is chosen as the reference
length, ‘ ¼ Dh ¼ ðA=eAÞ1=2, the mass and energy flow rates in dimen-
sionless form read

f_M ¼ � 2 _M
Aq0

ffiffiffiffiffi
h0
p

}
¼ 4

~r2
o � ~r2

i

Z ~ro

~ri

~vz~rd~r; ð39aÞ

e_E ¼ � 2 _E
Ap0

ffiffiffiffiffi
h0
p

}
¼ 4

~r2
o � ~r2

i

Z ~ro

~ri

~qz~rd~r: ð39bÞ

Quite differently, in Ref. [27] the outer diameter is used as the ref-
erence length to evaluate the mass and energy flow rates, i.e.,
‘ ¼ ro=~ro, then

f_M ¼ � 2 _M
pr2

oq0

ffiffiffiffiffi
h0
p

}
¼ 4

~r3
o

Z ~ro

~ri

~vz~rd~r; ð40aÞ

e_E ¼ � 2 _E
pr2

op0

ffiffiffiffiffi
h0
p

}
¼ 4

~r3
o

Z ~ro

~ri

~qz~rd~r: ð40bÞ

In Figs. 8–10, variations of mass flow rate f_M , with respect to
Knudsen number, surface accommodation coefficient v, and the
ratio of inner to outer radius of the annulus a, are shown. The
symbols in the plots represent BGK kinetic data from Ref. [28]. In
the kinetic simulations velocity is scaled as ~vz ¼ vz=

ffiffiffiffiffiffiffiffi
2h0
p

, hence,f_M=
ffiffiffi
2
p

is plotted to match our results to the kinetic data.
The mass flow rate in the annulus increases when the accom-

modation coefficient v decreases, since smaller values of v repre-
sent smoother wall surfaces with less friction. The solution for a
cylindrical tube is obtained for a ? 0, while larger values for a cor-
respond to narrower annuli. Kinetic solutions [28] confirm Knud-
sen’s experimental observation [34,35], that in Poiseuille flow the
Fig. 11. Mass flow rate variations with respect to Knudsen number Kn, and the ratio of in
and linear Boltzmann (LB) data [27].

Fig. 12. Thermal energy flow rate variations with respect to Knudsen number Kn, and
between NSF, R13 and kinetic data [27].
mass flow rate as a function of Knudsen number exhibits a mini-
mum around Kn = 0.5 (Knudsen minimum paradox).

Fig. 8 compares the NSF solution with first-order slip condition
to the BGK data. The results show that this solution is valid only in
the slip flow regime, Kn [ 0.05. More importantly, it fails to pre-
dict any minimum in the mass flow rate.

Fig. 9 shows the NSF solution with second-order slip condition.
Application of the second-order slip condition extends the validity
of NSF equations to larger values of the Knudsen number,
Kn [ 0.15, and enables it to predict a minimum in the mass flow
rates.

Plots (a)–(c) in Fig. 10 compare the R13 results with kinetic
data. The R13 results give good agreement for Kn [ 0.3, and also
capture a minimum in the mass flow rate.

For better comparison, in plots (d)–(f) in Fig. 10, the macro-
scopic solutions are compared to kinetic data for some values of
v and a. Compared to the NSF solutions, improvments in the R13
results are due to the presence of Knudsen boundary layers in
the velocity solution. Both NSF2 and R13 overestimate the mass
flow rate for large Knudsen numbers, because they predict larger
slip (or less friction) than the Boltzmann equation.

In Fig. 11, NSF and R13 results for mass flow rate are compared
to solutions of the linearized Boltzmann equation [27]. The com-
parisons are performed for fully diffusive walls, v = 1. For this com-
parison the coefficients in Eq. (11b) are used. Although the
coefficients A and B are different for BGK and LB models, the dis-
crepancy of LB data [27] with BGK data [28] is mainly due to the
applied length scale, which is Dh = 2Dr for the BGK case of Ref.
[28] and Dr = ro � ri for the LB case of Ref. [27].

In Fig. 12, the thermal energy flow rates obtained from the R13
equations are compared to kinetic data [27]. Results for both BGK
ner to outer radius a, for fully diffusive walls (v = 1) are compared between NSF, R13

the ratio of inner to outer radius a, for fully diffusive walls (v = 1) are compared
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and LB models are depicted. Unlike the mass flow rate, which
exhibits a minimum with respect to Knudsen number, the thermal
energy flow rate always increases with Kn. The R13 results show
acceptable accuracy for Kn [ 0.1. This isothermal energy flow is
absent in the NSF solution, q NSF

z ¼ 0.
7. Conclusion

A compact analytical model based on the regularized 13-mo-
ment (R13) equations was employed to describe rarefied gas flows
in tubes with annular cross section. Isothermal pressure-driven
flows were investigated using linearized equations, where their
solutions linearly depend on the driving force for the process, i.e.,
pressure gradient. The effects of gas rarefaction, annulus geometry,
and surface accommodation on the solutions of shear stress, iso-
thermal heat flux, and velocity were investigated.

Comparison of R13 solutions with kinetic solutions revealed
that the dominant rarefaction effects in the considered flow are,
(i) formation of Knudsen boundary layers, (ii) isothermal heat flux
in the bulk flow, and (iii) slip velocity on the walls. The effects of
these nonequilibrium phenomena on wall friction, mass flow rate,
and thermal energy flow rates is thoroughly demonstrated, and
compared to high-quality Boltzmann simulations. Our compari-
sons confirm that the R13 system successfully approximates
kinetic solutions for Kn < 0.5 (of course, this range varies for differ-
ent processes).

By comparing Navier–Stokes–Fourier (NSF) and R13 solutions, it
is evident that the isothermal energy flow, which is triggered by
Knudsen layers and a high-order bulk term, is absent in the NSF
theory; this is where the real advantage of using R13 comes in.
We highlighted the consequence of these NSF shortcomings in pre-
dictions of mass and energy flow rates, and showed that NSF are
valid in the slip flow regime. However, application of second-order
slip condition improves the NSF solution for higher ranges of
Knudsen numbers.

A question may arise regarding how the solutions for the linear-
ized R13 equations compare to numerical solutions of the full R13
equations? Numerical solution to nonlinear R13 equations for
Couette and Poiseuille flows in parallel-plate channels are pre-
sented in [22], while for the same problems, linear and semilinear
solutions are discussed in [14]. The nonlinear contributions lead to
nonlinear high-order bulk effects as well as nonlinear contribu-
tions to the Knudsen layers (multiple Knudsen layers). As is dis-
cussed in particular in [14], these nonlinear effects are seen in
kinetic solutions, and R13 reproduces them in good accuracy. How-
ever, these improvements are still limited to the early stages of the
transition regime, where Kn < 1.

For the flow considered, second-order boundary conditions for
NSF lead to quite good results for Poiseuille number and mass
flow rate as long as the Knudsen number is sufficiently small.
In this context it must be pointed out that even with second-or-
der boundary conditions, NSF cannot predict rarefaction features
like resolved Knudsen layers and non-Fourier heat flux. Due to
the simple geometry of the present problem and the linearization,
the thermal and mechanical problem of the flow are decoupled,
and we have presented only the mechanical part: pressure, veloc-
ity, stress, and non-Fourier heat flux. For flows in more complex
geometries thermal and mechanical problem cannot be decou-
pled; then, the non-Fourier heat flux will affect the temperature
field, and similar effects from the thermal problem (e.g., non-
Newtonian normal stresses) will affect the mechanical problem.
Currently we are working on simulations of fully two-
dimensional flows, where these coupling effects become visible
in DSMC simulations and R13, showing flow details that cannot
be reproduced with NSF.
To conclude, we point to the insufficiency of R13 equations for
the description of highly rarefied flows (Kn ’ 1), in which the mag-
nitude of rarefaction effects is beyond the resolution of R13 equa-
tions. In such conditions, larger systems of moment equations [18]
are suggested.
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