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Abstract. The order of magnitude method [Struchtrup, Phys. Fluids 16,

3921-3934 (2004)] is used to construct a unique moment set for 1-D transport
with scattering. Simply speaking, the method uses a series of leading order

Chapman-Enskog expansions in the Knudsen number to construct the moments

such that the number of moments at a given Chapman-Enskog order is minimal.
For isotropic scattering, when one begins with monomials for the moments,

the method constructs step by step moments of the Legendre polynomials.

For anisotropic scattering, however, it constructs moments of new polynomials
relevant for the particular scattering mechanism. All terms in the final moment

equations are scaled by powers of the Knudsen number, which gives an easy

handle to model reduction.

1. Introduction. Ongoing miniaturization of devices requires accurate and fast
simulation tools that account for microscale effects. The best known example is
hydrodynamics of gases where the classical Navier-Stokes and Fourier transport
laws loose validity when the typical system length L is of the order of the gas
mean free path λ, that is when the Knudsen number Kn = λ/L is not sufficiently
small [6][11]. The microscopic description of transport through a kinetic equation,
e.g., the Boltzmann equation for gases, is accurate at all Knudsen numbers, but
numerically expensive.

Models of extended hydrodynamics aim at adding additional terms and equa-
tions to the hydrodynamic equations in order to capture microscale effects, but
keeping numerical effort relatively low. There are two main routes towards this, the
Chapman-Enskog method [2] and Grad’s moment method [3], which come both with
their own deficiencies. The first order Chapman-Enskog expansion yields classical
macroscopic transport laws, e.g. Navier-Stokes-Fourier hydrodynamics, but the
higher order expansions, e.g. the Burnett equations [2, 11], usually yield unstable
equations [1][15]. Grad’s moment method, on the other hand, is not related to the
Knudsen number, and thus it is unclear which moment set needs to be considered
for a given process [11].

The order of magnitude method was introduced in [8][9] as a combination of
Grad’s moment method and the Chapman-Enskog expansion. The method yields
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sets of moment equations at any order of the Knudsen number, where the particular
moments are produced from the requirement that the number of variables at any
order in the Knudsen number is as small as possible. Thus, the order of magnitude
method provides the link between Grad-type moment equations and the Knudsen
number. Since the method employs Chapman-Enskog expansions only to identify
the Knudsen order of moments, the resulting equations are not subject to the stabil-
ity problems associated with the Chapman-Enskog expansion. In [8][9] the method
was applied to the Boltzmann equation, up to third order, where it produced the
Regularized 13 Moment Equations (R13) [7]. The R13 equations provide a rather
accurate description of rarefied gas flows for moderate Knudsen numbers, see [13]
and the references therein.

The present paper aims at making the proceedings of the order of magnitude
method transparent by applying it to a simple kinetic equation for one-dimensional
radiative transfer with isotropic and anisotropic scattering. It will be seen that
for isotropic scattering the required moments are based on Legendre polynomials
(Pα-moments), but for anisotropic scattering other polynomials have to be used,
which depend on the details of the scattering term.

The goal of this paper is not to describe a physically meaningful system, but
rather to give a transparent example for the application of the order of magnitude
method. It is hoped that the treatment of a simple kinetic equation makes the
method more accessible for other researchers. We also point the interested reader
to a recent discussion of the method applied not to moment equations but directly
to the kinetic equation [4].

As applied below, the order of magnitude method consists of the following steps
[8][9]:

1. Set-up of a Grad-type moment system for arbitrary choice and number of
moments.

2. First order Chapman-Enskog expansion to determine leading order of mo-
ments. Linear combination of moments to construct new moments such that
the number of moments at a given Chapman-Enskog order is minimal. Repeat
for the next order of magnitude.

3. Use of the established Chapman-Enskog orders to rescale the equations for
the new moments, use of the scaling for model reduction to a given order of
accuracy.

Step 1 is presented in Section 2 where also the kinetic model is introduced. Step
2 is presented in Section 3 for isotropic scattering and in Section 4 for anisotropic
scattering. Step 3 is presented in Section 5. The paper closes with some final
comments.

2. Kinetic equation and Grad-type moment equations.

2.1. Kinetic equation. We consider one-dimensional transport processes of iden-
tical particles that travel with unit velocity in arbitrary directions, µ ∈ (−1, 1)
denotes the direction cosine. The distribution function f (x, t, µ) obeys the kinetic
equation

∂f

∂t
+ µ

∂f

∂x
= − 1

ετ
κ (µ) (f − f0) , (1)

where κ(µ)
τ is a direction dependent scattering probability, with a dimensionless

function κ (µ) and a constant mean free time τ . We consider dimensional quantities
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and use the scaling parameter ε which would be the Knudsen number in a dimen-
sionless formulation. With the use of the scaling parameter non-dimensionalization
is not necessary. At the end of the discussion, ε will be set to unity again.

The zeroth moment is conserved (conservation of particle number), that is

1

ετ

∫
κ (µ) (f − f0) dµ = 0 ; (2)

here, and in all subsequent integrals, the integration is over the full domain of µ. We
require isotropic equilibrium, which means that the local equilibrium distribution
f0 is independent of direction. It follows from the conservation condition (2) as

f0 =

∫
κ (µ) fdµ∫
κ (µ) dµ

. (3)

Interestingly, the local equilibrium distribution depends on the collision probability
κ (µ) as long as non-equilibrium is maintained. In the final equilibrium state (E)
both f and f0 are isotropic and equal. Then their value can be determined from
the number density which is the zeroth moment:

u0 =

∫
fEdµ =

∫
f0,Edµ = f0,E

∫
dµ = 2f0,E (4)

so that

fE = f0,E =
1

2
u0 . (5)

We show the existence of the H-theorem for the above kinetic equation. Entropy
and entropy flux are given by

η = −
∫
f2dµ , φ = −

∫
µf2dµ (6)

so that the entropy balance is

∂η

∂t
+
∂φ

∂x
= σ . (7)

Here, the entropy generation rate is given as

σ =
1

ετ

∫
κ (µ) f (f − f0) dµ . (8)

With the conservation law and the fact that f0 is independent of direction, we have
by subtracting zero

σ =
1

ετ

∫
κ (µ) f (f − f0) dµ− 1

τε
f0

∫
κ (µ) (f − f0) dµ

=
1

ετ

∫
κ (µ) (f − f0)

2
dµ ≥ 0 . (9)

Thus, entropy generation is positive as long as κ (µ) ≥ 0 for all µ.
The final kinetic equation is an integro differential equation for the distribution

function
∂f

∂t
+ µ

∂f

∂x
= − 1

ετ
κ (µ)

[
f −

∫
κ (µ) fdµ∫
κ (µ) dµ

]
; (10)

this equation has one conservation law, and an entropy.
The further proceedings can be performed for any non-negative function κ (µ).

For sake of simplicity we shall use

κ (µ) = 1 + γµ2 (11)
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with γ = 0 for isotropic scattering and γ = 1 for anisotropic scattering. We remark
that we do not aim at picturing a relevant scattering mechanism, but rather at
having a simple kinetic equation for the application of the order of magnitude
method.

2.2. Moment equations for monomials. We define the even and odd monomial
moments of the distribution as

uα =

∫ 1

−1
µ2αfdµ , α = 0, 1, . . . , N

(12)

wα =

∫ 1

−1
µ2α−1fdµ , α = 1, . . . , N

so that we have (2N + 1) moments altogether. Multiplying the kinetic equation
(10, 11) with powers of µ and integration gives the nested moment equations

∂u0
∂t

+
∂w1

∂x
= 0 , (13)

∂uα
∂t

+
∂wα+1

∂x
= − 1

ετ
[uα + γuα+1 − φα (u0 + γu1)] , α = 1, . . . , N

∂wα
∂t

+
∂uα
∂x

= − 1

ετ
[wα + γwα+1] , α = 1, . . . , N

with the coefficients

φα =
1

2α+1 + γ
2α+3

1 + γ
3

, α = 0, 1, . . . , N . (14)

The first equation (13) is the conservation law for particle number density u0 with
the particle flux w1. Higher moments, and the corresponding equations, do not
have a straightforward physical explanation.

As discussed further above, the equilibrium distribution is isotropic, so that the
equilibrium moments can be calculated as

uα,E =

∫
µ2αfEdµ = fE

∫
µ2αdµ = fE

2

2α+ 1
=

u0
2α+ 1

,

(15)

wα,E =

∫
µ2α−1fEdµ = 0 .

It is easy to see that with these equilibrium values the right hand sides of the
moment equations (13) vanish.

2.3. Grad closure for 2N + 1 moments. The idea of the Grad moment method
is to consider a finite set of moments as variables. For finite moment number N
the set of moment equations (13) is not a closed set, since the equations for α = N
contain the moments uN+1 and wN+1. Grad-type closure of the equations requires
constitutive relations for uN+1 and wN+1 which express these as functions of the
primary variables uα, wα (α ≤ N).

We approximate the distribution as a polynomial based on those monomials that
are used for creating the moments uα, wα (α ≤ N),

fG =

N∑
β=0

υβµ
2β +

N∑
β=1

ωβµ
2β−1 . (16)
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The polynomial structure can be motivated by determining fG as that distribution
function that maximizes the entropy (6)1 under the constraint of given values of
the (2N + 1) moments uα and wα. Then, the coefficients υβ and ωβ in (16) are the
Lagrange multipliers of the corresponding isoperimetric problem. Inserting fG into
the definition of the monomial moments gives

uα =

N∑
β=0

υβ

∫
µ2(α+β)dµ =

N∑
β=0

2

2 (α+ β) + 1
υβ ,

(17)

wα =

N∑
β=1

ωβ

∫
µ2(α+β−1)dµ =

N∑
β=1

2

2 (α+ β)− 1
ωβ .

The coefficients υα, ωα are determined from the first 2N+1 moments. We introduce
the matrices

Aαβ =
2

2 (α+ β) + 1
, α, β = 0, . . . , N

(18)

Bαβ =
2

2 (α+ β)− 1
, α, β = 1, . . . , N

so that upon inversion

υα =

N∑
β=0

A−1αβuβ , α = 0, . . . , N

(19)

ωα =

N∑
β=1

B−1αβwβ , α = 1, . . . , N

For the required closure, we thus find

uN+1 =

N∑
α=0

ξαuα , wN+1 =

N∑
α=1

ζαwα (20)

with the coefficients

ξα =

N∑
β=0

2

2 (N + β) + 3
A−1βα , α = 0, . . . , N

(21)

ζα =

N∑
β=1

2

2 (N + β) + 1
B−1βα , α = 1, . . . , N .
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2.4. Closed equations. The closed moment set for the monomial moments u0,
uα, wα, α = 1, . . . , N can be written in compact form as

∂u0
∂t

+
∂w1

∂x
= 0 (22)

∂uα
∂t

+

N∑
β=1

Rαβ
∂wβ
∂x

= − 1

ετ

N∑
β=1

Uαβuβ +
1

τε
(φα − γξ0δαN )u0 , α = 1, . . . , N

∂wα
∂t

+
∂uα
∂x

= − 1

ετ

N∑
β=1

Wαβwβ , α = 1, . . . , N

where Rαβ , Uαβ and Wαβ are N ×N matrices which are given in the appendix, see
Eqs. (92, 93, 94).

Similar compact notation would be found for other expressions for the interaction
term, which then would lead to different entries in the matrices Uαβ and Wαβ while
the matrix Rαβ would remain the same.

3. Order of magnitude method, isotropic scattering (γ = 0).

3.1. Moment equations. In the case of isotropic scattering, where γ = 0, the
matrices on the right hand sides of the equations reduce to unit matrices, Wαβ =
Uαβ = δαβ , and φα = 1

2α+1 . Since the application of the order of magnitude method
implies matrix inversions, it becomes much simpler for unit matrices. In fact, in
this case we can consider the infinite system of moment equations for monomials,
which we write as

∂u0
∂t

+
∂w1

∂x
= 0

∂uα
∂t

+
∂wα+1

∂x
= − 1

ετ

(
uα −

u0
2α+ 1

)
, α = 1, 2, . . . (23)

∂wα
∂t

+
∂uα
∂x

= − 1

ετ
wα , α = 1, 2, . . .

3.2. Equilibrium and 1st order variables. We begin the application of the
order of magnitude method by determining the equilibrium values of the moments.
These are obtained by considering (23) in the limit ε→ 0 as

uα|E =
u0

2α+ 1
, wα|E = 0 . (24)

We see that all even moments uα have an equilibrium value, while all odd moments
wα have no equilibrium value.

The idea of the order of magnitude method is to construct new variables by linear
combination such that at any order the number of variables is as small as possible.
The first step of this is straightforward: Since the equilibrium values of all moments
are given by the value of u0 we require that moment at order zero. The first set

of non-equilibrium moments u
(1)
α , w

(1)
α is obtained by subtracting the equilibrium

values of the higher moments, as

u(1)α = uα − uα|E = uα −
u0

2α+ 1
, α = 1, 2, . . .

(25)

w(1)
α = wα − wα|E = wα , α = 1, 2, . . .
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Moment equations for the new moments are obtained by inserting the new moments
(25) into the moment equations (23), and eliminating the time derivative of u0 with
the conservation law. This gives the equations

∂u0
∂t

+
∂w

(1)
1

∂x
= 0 (26)

∂u
(1)
α

∂t
− 1

2α+ 1

∂w
(1)
1

∂x
+
∂w

(1)
α+1

∂x
= − 1

ετ
u(1)α , α = 1, 2, . . .

∂w
(1)
α

∂t
+

1

2α+ 1

∂u0
∂x

+
∂u

(1)
α

∂x
= − 1

ετ
w(1)
α , α = 1, 2, . . .

3.3. 2nd order variables. After the first round, the variables are now the equi-

librium variable u0, and the non-equilibrium variables u
(1)
α , w

(1)
α which are at least

of first order in ε by construction. We expand only the latter in a Chapman-Enskog
series in ε,

u(1)α = εu
(1)
α,1 + ε2u

(1)
α,2 + . . . , w(1)

α = εw
(1)
α,1 + ε2w

(1)
α,2 + . . .

Note that, due to construction in the first round, the variables have no zeroth order
contribution. We insert the above into (26), and keep only the leading order terms
in ε to find

0 = u
(1)
α,1 , − 1

2α+ 1
τ
∂u0
∂x

= w
(1)
α,1 , α = 1, 2, . . . (27)

Thus, the u
(1)
α have no first order contribution while all w

(1)
α have first order contri-

butions that are determined by the gradient of u0. Accordingly the w
(1)
α are linearly

dependent, and we can write

w
(1)
α,1 =

3

2α+ 1
w

(1)
1,1 , α = 2, 3, . . . (28)

Thus, to first order, all moments can be expressed through the number density

u0 and its flux w
(1)
1 , which therefore are considered as base variables. All other

moments are replaced by the second non-equilibrium variables

u(2)α = u(1)α , α = 1, 2, . . .

(29)

w(2)
α = w(1)

α −
3

2α+ 1
w

(1)
1 , α = 2, 3, . . .

The corresponding transport equations result from (26), after insertion and replace-

ment of the time derivatives of w
(1)
1

∂u0
∂t

+
∂w

(1)
1

∂x
= 0 (30)

∂w
(1)
1

∂t
+

1

3

∂u0
∂x

+
∂u

(2)
1

∂x
= − 1

ετ
w

(1)
1

∂u
(2)
α

∂t
+

4α

(2α+ 3) (2α+ 1)

∂w
(1)
1

∂x
+
∂w

(2)
α+1

∂x
= − 1

ετ
u(2)α , α = 1, 2, . . .

∂w
(2)
α

∂t
− 3

2α+ 1

∂u
(2)
1

∂x
+
∂u

(2)
α

∂x
= − 1

ετ
w(2)
α , α = 2, 3, . . .
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By construction u
(2)
α , w

(2)
α are of second order in the Chapman-Enskog sense, while

w
(1)
1 is of first order and u0 is of zeroth order.
For the next round of the method, it is convenient to indicate the Chapman-

Enskog order of the already established variables explicitly by writing w
(1)
1 = εŵ

(1)
1

and u0 = û0:

∂û0
∂t

+ ε
∂ŵ

(1)
1

∂x
= 0 (31)

ε
∂ŵ

(1)
1

∂t
+
∂u

(2)
1

∂x
= −1

τ

[
ŵ

(1)
1 +

τ

3

∂û0
∂x

]
∂u

(2)
α

∂t
+

4α

(2α+ 3) (2α+ 1)
ε
∂ŵ

(1)
1

∂x
+
∂w

(2)
α+1

∂x
= − 1

ετ
u(2)α , α = 1, 2, . . .

∂w
(2)
α

∂t
− 3

2α+ 1

∂u
(2)
1

∂x
+
∂u

(2)
α

∂x
= − 1

ετ
w(2)
α , α = 2, 3, . . .

3.4. 3rd order variables. We have now established a variable set with only one

variable (u0) at zeroth and one variable (w
(1)
1 ) at first order in ε. All other variables

u
(2)
α , w

(2)
α are at least of second order. We expand only the second order variables,

u(2)α = ε2u
(2)
α,2 + ε3u

(2)
α,3 + . . . , w(2)

α = ε2w
(2)
α,3 + ε3w

(2)
α,3 + . . . (32)

and find their leading order contributions by inserting the expansion into (31) as

− 4α

(2α+ 3) (2α+ 1)
τ
∂ŵ

(1)
1

∂x
= u

(2)
α,2 , α = 1, 2, . . .

(33)

0 = w
(2)
α,2 , α = 2, 3, . . .

This implies that the u
(2)
α,2 are linear dependent, as

u
(2)
α,2 =

15α

(2α+ 3) (2α+ 1)
u
(2)
1,2 , α = 1, 2, . . . (34)

while the w
(2)
α have no second order contributions. Following the already established

pattern, we now introduce the third non-equilibrium variables as

u(3)α = u(2)α −
15α

(2α+ 3) (2α+ 1)
u
(2)
1 , α = 2, 3, . . .

(35)

w(3)
α = w(2)

α , α = 2, 3, . . .
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With this round, we now we have the variables u0 = û0, w
(1)
1 = εŵ

(1)
1 , u

(2)
1 = ε2û

(2)
1

and u
(3)
α , w

(3)
α with the equations

∂û0
∂t

+ ε
∂ŵ

(1)
1

∂x
= 0 (36)

ε
∂ŵ

(1)
1

∂t
+ ε2

∂û
(2)
1

∂x
= −1

τ

[
ŵ

(1)
1 +

τ

3

∂û0
∂x

]
ε2
∂û

(2)
1

∂t
+
∂w

(3)
2

∂x
= −1

τ
ε

[
û
(2)
1 +

4

15
τ
∂ŵ

(1)
1

∂x

]
∂u

(3)
α

∂t
− 15α

(2α+ 3) (2α+ 1)

∂w
(3)
2

∂x
+
∂w

(3)
α+1

∂x
= − 1

ετ
u(3)α , α = 2, 3, . . .

∂w
(3)
α

∂t
+

9 (α− 1)

(2α+ 3) (2α+ 1)
ε2
∂û

(2)
1

∂x
+
∂u

(3)
α

∂x
= − 1

ετ
w(3)
α , α = 2, 3, . . .

3.5. 4th order variables. By construction u
(3)
α , w

(3)
α are third order variables,

while u
(2)
1 = ε2û

(2)
1 is second order, w

(1)
0 = εŵ

(1)
0 is first order and u0 is zeroth

order. We expand only the highest order variables,

u(3)α = ε3u
(3)
α,3 + ε4u

(3)
α,4 + . . . , w(3)

α = ε3w
(3)
α,3 + ε4w

(3)
α,4 + . . . (37)

Again we are interested only in the leading order

0 = u
(3)
α,3 , α = 2, 3, . . .

(38)

− 9 (α− 1)

(2α+ 3) (2α+ 1)
τ
∂û

(2)
1

∂x
= w

(3)
α,3 , α = 2, 3, . . .

The last equation yields

w
(3)
α,3 =

35 (α− 1)

(2α+ 3) (2α+ 1)
w

(3)
2,3 , α = 3, 4, . . . (39)

and therefore we introduce the fourth non-equilibrium moments as

u(4)α = u(3)α , α = 2, 3, . . .

(40)

w(4)
α = w(3)

α −
35 (α− 1)

(2α+ 3) (2α+ 1)
w

(3)
2 , α = 3, . . . , N

w
(3)
2 = ε3ŵ

(3)
2 is kept as variable. Then we have the moment equations

∂û0
∂t

+ ε
∂ŵ

(1)
1

∂x
= 0 (41)

ε
∂ŵ

(1)
1

∂t
+ ε2

∂û
(2)
1

∂x
= −1

τ

[
ŵ

(1)
1 +

τ

3

∂û0
∂x

]
ε2
∂û

(2)
1

∂t
+ ε3

∂ŵ
(3)
2

∂x
= −ε1

τ

[
û
(2)
1 +

4

15
τ
∂ŵ

(1)
1

∂x

]

ε3
∂ŵ

(3)
2

∂t
+
∂u

(4)
2

∂x
= −ε2 1

τ

[
ŵ

(3)
2 +

9

35
τ
∂û

(2)
1

∂x

]
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∂u
(4)
α

∂t
+ ε3

40 (α− 1)α

(2α+ 5) (2α+ 3) (2α+ 1)

∂ŵ
(3)
2

∂x
+
∂w

(4)
α+1

∂x
= − 1

ετ
u(4)α , α = 2, 3, . . .

∂w
(4)
α

∂t
− 35 (α− 1)

(2α+ 3) (2α+ 1)

∂u
(4)
2

∂x
+
∂u

(4)
α

∂x
= − 1

ετ
w(4)
α , α = 3, 4, . . .

3.6. Summary: Legendre polynomials. After four rounds of re-assigning vari-
ables, we have found the variables

u0 = û0 , w
(1)
1 = εŵ

(1)
1 , u

(2)
1 = ε2û

(2)
1 , w

(3)
2 = ε3w

(3)
2 (42)

as the only variables at Chapman-Enskog orders below ε4. In the next round the

variables u
(4)
α and w

(4)
α would be expanded to identify the relevant fourth order

variables (which would be u
(4)
2 only) and to construct the 5th order variables u

(5)
α ,

w
(5)
α . Then the next round, and so on. We are confident that the reader now has

a clear picture of the procedure, so that further rounds must not be presented in
detail.

The variables found from this recurring procedure of leading order Chapman-
Enskog expansion and linear combination of moments yields the following variables
up to fifth order:

u0 =

∫
fdµ

w
(1)
1 =

∫
µfdµ

u
(2)
1 = u1 −

u0
3

=
2

3

∫
1

2

(
3µ2 − 1

)
fdµ (43)

w
(3)
2 = w2 −

3

5
w1 =

2

5

∫
1

2

(
5µ3 − 3µ

)
fdµ

u
(4)
2 = u2 −

6

7
u1 +

3

35
u0 =

8

35

∫
1

8

(
35µ4 − 30µ2 + 3

)
fdµ

w
(5)
3 = w3 −

70

63
w2 +

15

63
w1 =

8

63

∫
1

8

(
63µ5 − 70µ3 + 15µ

)
fdµ

Apart from numerical factors (1, 1, 23 ,
2
5 ,

8
35 , . . .) these are just the moments of the

first six Legendre polynomials Pα. It is straightforward to conclude that the order of
magnitude method constructs the Legendre polynomials as the best set of moments
for the kinetic equation (1) with isotropic scattering, in the sense that the number
of variables at any given order is as small as possible. We have considered the
same kinetic equation before in Ref. [12], where we used Pα-moments from the
start. Application of the order of magnitude method showed that, indeed, the
Pα-moment is of order α.

The next step in the order of magnitude method is the reduction of the transport
equations (41) for the desired level of accuracy. This step is deferred to Section 5,
since we will first construct the appropriate variables and equations for the case of
anisotropic scattering.

4. Order of magnitude method, anisotropic scattering (γ 6= 0). The ap-
plication of the order of magnitude method to the case of isotropic scattering as
presented above works successively in such a manner, that, in fact, the Grad clo-
sure is not needed. This is due to the simple structure of the moment collision
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terms, which are independent of the closure (Uαβ and Wαβ are unit matrices). For
anisotropic scattering this is not so anymore, since the equations (22) are coupled
through the matrices Uαβ and Wαβ in a non-trivial manner. It will be seen that the
newly constructed variables, and the corresponding coefficients in the equations,
depend on the number of initial moments N , and will converge when N is suffi-
ciently large. Again, we will go through four rounds of the procedure, beginning
with equilibrium.

4.1. Equilibrium and first order variables. The equilibrium values of the mo-
ments are obtained by considering the closed set (22) in the the limit ε→ 0. After
inversion of the production matrix Uαβ we obtain the equilibrium values as

uα|E =

N∑
β=1

U−1αβ (φβ − γξ0δβN )u0 =
u0

2α+ 1
= λ(1)α u0 , α = 1, . . . , N

(44)

wα|E = 0 , α = 1, . . . , N

The above result is checked most easily by inserting the equilibrium values uα|E into
the right hand side of (22)2 and use of the definition of matrices and coefficients.
As it should be, these are the same equilibrium values as found for the full kinetic
equation, see (15). This proves consistency of the Grad closure with the kinetic
equation.

All equilibrium moments depend directly on the number density u0 which we
chose as the first base variable. As before, we introduce the first non-equilibrium
moments as the difference to the local equilibrium values,

u(1)α = uα − uα|E = uα − λ(1)α u0 , α = 1, . . . , N

(45)

w(1)
α = wα − wα|E = wα , α = 1, . . . , N

Replacing the initial moments by the non-equilibrium moments and elimination of
the time derivative of u0 by means of the conservation law we obtain the equations

∂u0
∂t

+
∂w

(1)
1

∂x
= 0 (46)

∂u
(1)
α

∂t
− λ(1)α

∂w
(1)
1

∂x
+

N∑
β=1

Rαβ
∂w

(1)
β

∂x
= − 1

ετ

N∑
β=1

Uαβu
(1)
β , α = 1, . . . , N

∂w
(1)
α

∂t
+ λ(1)α

∂u0
∂x

+
∂u

(1)
α

∂x
= − 1

ετ

N∑
β=1

Wαβw
(1)
β , α = 1, . . . , N

4.2. 2nd order variables. After the first round, the variables are now the equi-

librium variable u0, and the non-equilibrium variables u
(1)
α , w

(1)
α . We expand only

the latter in a Chapman-Enskog series in ε,

u(1)α = εu
(1)
α,1 + ε2u

(1)
α,2 + . . . , w(1)

α = εw
(1)
α,1 + ε2w

(1)
α,2 + . . . (47)
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We insert the above into (46), and keep only the leading order terms in ε to find,
after matrix inversion,

u
(1)
β,1 = 0 , α = 1, . . . , N

(48)

w
(1)
α,1 = −τ

N∑
β=1

W−1αβ λ
(1)
β

∂u0
∂x

, α = 1, . . . , N

To first order, all odd moments go with the gradient of u0. We can use w
(1)
1,1 to

express the others,

w
(1)
α,1 =

∑N
β=1W

−1
αβ λ

(1)
β∑N

β=1W
−1
1β λ

(1)
β

w
(1)
1,1 =

∑N
β=1W

−1
αβ λ

(1)
β

κ(1)
w

(1)
1,1 = θ(1)α w

(1)
1,1 (49)

where we have defined

κ(1) =

N∑
β=1

W−11β λ
(1)
β . (50)

By construction, the following moments have no first order contribution:

u(2)α = u(1)α , α = 1, . . . , N

(51)

w(2)
α = w(1)

α − θ(1)α w
(1)
1 = wα − θ(1)α w

(1)
1 , α = 2, . . . , N

These are introduced into the moment equations, and time derivatives of the flux

w
(1)
1 in higher equations are eliminated by means of its moment equation. To write

the resulting equations in a compact form, we introduce the abbreviations

W
(2)
αβ =

(
Wαβ − θ(1)α W1β

)
, α, β = 2, . . . , N

ψ(1)
α =

(
λ(1)α − θ(1)α λ

(1)
1

)
, α = 2, . . . , N (52)

χ(1)
α =

N∑
β=1

Rαβθ
(1)
β − λ

(1)
α , α = 1, . . . , N

and make use of the identity

N∑
β=1

Wαβθ
(1)
β =

N∑
β=1

Wαβ

∑N
γ=1W

−1
βγ λ

(1)
γ

κ(1)
=
λ
(1)
α

κ(1)
. (53)

After some algebra we find the transport equations

∂û0
∂t

+ ε
∂ŵ

(1)
1

∂x
= 0 (54)

ε
∂ŵ

(1)
1

∂t
+
∂u

(2)
1

∂x
= −λ(1)1

[
ŵ

(1)
1

τκ(1)
+
∂u0
∂x

]
− 1

ετ

N∑
β=2

W1βw
(2)
β

∂u
(2)
α

∂t
+ εχ(1)

α

∂ŵ
(1)
1

∂x
+

N∑
β=2

Rαβ
∂w

(2)
β

∂x
= − 1

ετ

N∑
β=1

Uαβu
(2)
β , α = 1, . . . , N
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∂w
(2)
α

∂t
− θ(1)α

∂u
(2)
1

∂x
+
∂u

(2)
α

∂x
= −ψ(1)

α

[
ŵ

(1)
1

τκ(1)
+
∂û0
∂x

]
− 1

ετ

N∑
β=2

W
(2)
αβ w

(2)
β ,

α = 2, . . . , N

As before, we have indicated the Chapman-Enskog order of the already estab-

lished variables explicitly by writing w
(1)
1 = εŵ

(1)
1 and u0 = û0. All other quantities

that appear, that is the u
(2)
α , w

(2)
α , are at least of order ε2.

4.3. 3rd order variables. Interestingly, we find the term

[
ŵ

(1)
1

τκ(1) + ∂û0

∂x

]
not only

in the equation for ŵ
(1)
1 , but also in the equations for the w

(2)
α . To proceed we have

to be careful with the scaling of this expression. A glance at the equation for ŵ
(1)
1

shows that this term vanishes when ε goes to zero, thus it is at least of first order
in ε. To consider this properly in the scaling of the subsequent equations we write[

ŵ
(1)
1

τκ(1)
+
∂û0
∂x

]
= ε

〈[
ŵ

(1)
1

τκ(1)
+
∂û0
∂x

]〉
(55)

where the ε-order is made explicit and the angular-square double bracket indicates
an order unity value.

The present variable set has only one variable (number density u0) at zeroth and

one variable (flux w
(1)
1 ) at first order in ε. All other variables u

(2)
α , w

(2)
α are at least

of second order. We expand only the second order moments

u(2)α = ε2u
(2)
α,2 + ε3u

(2)
α,3 + . . . , w(2)

α = ε2w
(2)
α,2 + ε3w

(2)
α,3 + . . . (56)

and keep leading order to find, after inversion of the matrices Uαβ and W
(2)
αβ ,

u
(2)
α,2 = −

 N∑
β=1

U−1αβ χ
(1)
β

 τ ∂ŵ(1)
1

∂x
, α = 1, . . . , N

(57)

w
(2)
α,2 = −

 N∑
β=2

W
(2)−1

αβ ψ
(1)
β

 τ 〈[ ŵ(1)
1

τκ(1)
+
∂û0
∂x

]〉
, α = 2, . . . , N

This implies that the u
(2)
α,2 and the w

(2)
α,2 are linear dependent, as

u
(2)
α,2 =

∑N
β=1 U

−1
αβ χ

(1)
β∑N

β=1 U
−1
1β χ

(1)
β

u
(2)
1,2 = λ(2)α u

(2)
1,2 , α = 1, . . . , N

(58)

w
(2)
α,2 =

∑N
β=2W

(2)−1

αβ ψ
(1)
β∑N

β=2W
(2)−1

2β ψ
(1)
β

w
(2)
2,2 = θ(2)α w

(2)
2,2 , α = 2, . . . , N

In the case of anisotropic scattering, the moments w
(2)
α have second order contribu-

tions, which are absent for the case with isotropic scattering. Following the already
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established pattern, we now introduce the third non-equilibrium variables as

u(3)α = u(2)α − λ(2)α u
(2)
1 , α = 2, . . . , N

(59)

w(3)
α = w(2)

α − θ(2)α w
(2)
2 , α = 3, . . . , N

As always, we insert the new variables into the transport equations, and eliminate
time derivatives in the higher equations. For compact notation we introduce the
abbreviations

R
(2)
αβ =

(
Rαβ − λ(2)α R1β

)
, α, β = 2, . . . , N

U
(2)
αβ = Uαβ − λ(2)α U1β , α, β = 2, . . . , N (60)

W
(3)
αβ = W

(2)
αβ − θ

(2)
α W

(2)
2β , α, β = 3, . . . , N

κ(2) =

N∑
γ=2

W
(2)−1

2γ ψ(1)
γ

and we make use of the identities

N∑
β=2

W
(2)
αβ θ

(2)
β =

∑N
β=2W

(2)
αβ

∑N
β=2W

(2)−1

βγ ψ
(1)
γ

κ(2)
=
ψ
(1)
α

κ(2)

N∑
β=1

Uαβλ
(2)
β =

∑N
β=1 Uαβ

∑N
γ=1 U

−1
βγ χ

(1)
γ

µ(2)
=
χ
(1)
α

µ(2)
(61)

and

N∑
β=2

R1βθ
(2)
β = θ

(2)
2 = 1

N∑
β=3

W1βw
(3)
β = 0 (62)

N∑
β=2

U1βu
(3)
β = U12u

(3)
2 = γu

(3)
2

N∑
β=2

W1βθ
(2)
β = W12θ

(2)
2 = γθ

(2)
2 = γ

λ
(1)
1 =

1

3

Making the ε-order of the second order moments explicit by writing u
(2)
1 = ε2û

(2)
1 ,

w
(2)
2 = ε2ŵ

(2)
2 , we find their transport equations as

∂û0
∂t

+ ε
∂ŵ

(1)
1

∂x
= 0 (63)

ε
∂ŵ

(1)
1

∂t
+ ε2

∂û
(2)
1

∂x
= −1

3

[
ŵ

(1)
1

τκ(1)
+
∂û0
∂x

]
− ε1

τ
γŵ

(2)
2 (64)
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ε2
∂û

(2)
1

∂t
+ ε2

∂ŵ
(2)
2

∂x
= −χ(1)

1 ε

[
û
(2)
1

τµ(2)
+
∂ŵ

(1)
1

∂x

]
− 1

ετ
γu

(3)
2 (65)

ε2
∂ŵ

(2)
2

∂t
+ ε2

(
λ
(2)
2 − θ

(1)
2

) ∂û(2)1

∂x
+
∂u

(3)
2

∂x
= −εψ(1)

2

[〈[
ŵ

(1)
1

τκ(1)
+
∂û0
∂x

]〉
+

ŵ
(2)
2

τκ(2)

]

− 1

ετ

N∑
β=3

W
(2)
2β w

(3)
β (66)

The bracketed terms in the third and fourth equation appear also in the higher
equations and for the next round we must get their ε-order right. Careful analysis
by comparing ε-magnitude of terms in (65, 66) shows that they are in fact of second
order, which we make explicit by writing

ε

[
û
(2)
1

τµ(2)
+
∂ŵ

(1)
1

∂x

]
= ε2

〈[
û
(2)
1

τµ(2)
+
∂ŵ

(1)
1

∂x

]〉
(67)

ε

[〈[
ŵ

(1)
1

τκ(1)
+
∂û0
∂x

]〉
+

ŵ
(2)
2

τκ(2)

]
= ε2

〈[〈[
ŵ

(1)
1

τκ(1)
+
∂û0
∂x

]〉
+

ŵ
(2)
2

τκ(2)

]〉

The properly scaled equations for the 3rd order variables u
(3)
α and w

(3)
α then read

∂u
(3)
α

∂t
+ ε2

 N∑
β=2

R
(2)
αβθ

(2)
β

 ∂w(2)
2

∂x
+

N∑
β=3

R
(2)
αβ

∂w
(3)
β

∂x
=

= −ε2
(
χ(1)
α − λ(2)α χ

(1)
1

)〈[ û(2)1

τµ(2)
+
∂ŵ

(1)
1

∂x

]〉
− 1

ετ

N∑
β=2

U
(2)
αβ u

(3)
β ,

α = 2, . . . , N (68)

∂w
(3)
α

∂t
+ ε2

(
λ(2)α − θ(1)α − θ(2)α

(
λ
(2)
2 − θ

(1)
2

)) ∂û(2)1

∂x
− θ(2)α

∂u
(3)
2

∂x
+
∂u

(3)
α

∂x

= −ε2
(
ψ(1)
α − θ(2)α ψ

(1)
2

)〈[〈[ ŵ(1)
1

τκ(1)
+
∂û0
∂x

]〉
+

ŵ
(2)
2

τκ(2)

]〉
− 1

ετ

N∑
β=3

W
(3)
αβ w

(3)
β ,

α = 3, . . . , N (69)

The equations (63 - 66, 68, 69) are the counterpart to the set (36) for the case
of anisotropic scattering. We see that the equations for anisotropic scattering are
more involved, which is due to the more complex form of the scattering matrices
Uαβ and Wαβ .

4.4. Approximation for 3rd order variables. As we proceed with the treatment
of the case of anisotropic scattering, the equations become more involved. We shall
not go beyond the third order, and of the third order equations we shall only consider
the leading terms, which will be determined in the present section.

Again, we perform a Chapman-Enskog expansion of the highest order moments

u(3)α = ε3u
(3)
α,3 + ε4u

(3)
α,4 + . . . , w(3)

α = ε3w
(3)
α,3 + ε4w

(3)
α,4 + . . . (70)
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where we shall determine only the leading terms, i.e., the coefficients u
(3)
α,3, w

(3)
α,3.

For a closure of our equations at this level of the proceedings, we will then use only
these terms for the variables, that is we shall set

u(3)α = ε3û(3)α = ε3u
(3)
α,3 , w(3)

α = ε3ŵ(3)
α = ε3w

(3)
α,3 . (71)

Expansion and inversion of the matrices U
(2)
αβ and W

(2)
αβ gives û

(3)
α and ŵ

(3)
α in terms

of the lower moments û0, ŵ
(1)
1 , û

(2)
1 , ŵ

(2)
2 ,

û(3)α = u
(3)
α,3 = −λ(3)α τ

〈[
û
(2)
1

τµ(2)
+
∂ŵ

(1)
1

∂x

]〉
− λ̄(3)α τ

∂w
(2)
2

∂x
, α = 2, . . . , N (72)

ŵ(3)
α = w

(3)
α,3 = −θ(3)α τ

〈[〈[
ŵ

(1)
1

τκ(1)
+
∂û0
∂x

]〉
+

ŵ
(2)
2

τκ(2)

]〉
−θ̄(3)α τ

∂û
(2)
1

∂x
, α = 3, . . . , N

(73)
with the new coefficients

λ(3)α =

 N∑
β=2

U
(2)−1

αβ

(
χ
(1)
β − λ

(2)
β χ

(1)
1

) , α = 2, . . . , N

λ̄(3)α =

 N∑
β=2

U
(2)−1

αβ

[
N∑
γ=2

R
(2)
βγ θ

(2)
γ

] , α = 2, . . . , N (74)

θ(3)α =

 N∑
β=3

W
(3)−1

αβ

(
ψ
(1)
β − θ

(2)
β ψ

(1)
2

) , α = 3, . . . , N

θ̄(3)α =

 N∑
β=3

W
(3)−1

αβ

(
λ
(2)
β − θ

(1)
β − θ

(2)
β

(
λ
(2)
2 − θ

(1)
2

)) , α = 3, . . . , N

The system of equations for the lower moments û0, ŵ
(1)
1 , û

(2)
1 , ŵ

(2)
2 results from

insertion of (72, 73) into (63 - 66). For compact notation, we introduce even more
coefficients,

α1 =
[
1− γλ̄(3)2

]
α2 =

[
χ
(1)
1 − γλ

(3)
2

]
β1 =

(λ(2)2 − θ
(1)
2

)
−

N∑
β=3

W
(2)
2β θ̄

(3)
β −

λ
(3)
2

µ(2)

 (75)

β2 = λ
(3)
2

β3 = λ̄
(3)
2

β4 =

ψ(1)
2 −

N∑
β=3

W
(2)
2β θ

(3)
β


β5 =

β4
κ(2)
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With this, we finally obtain a closed system of equations for the first four variables

û0, ŵ
(1)
1 , û

(2)
1 , ŵ

(2)
2 that includes the leading order terms of the third order

variables:

∂û0
∂t

+ ε
∂ŵ

(1)
1

∂x
= 0 (76)

ε
∂ŵ

(1)
1

∂t
+ ε2

∂û
(2)
1

∂x
= −1

3

[
ŵ

(1)
1

τκ(1)
+
∂û0
∂x

]
− 1

τ
εγŵ

(2)
2

ε2
∂û

(2)
1

∂t
+ ε2α1

∂ŵ
(2)
2

∂x
= −εα2

[
û
(2)
1

τµ(2)
+
∂ŵ

(1)
1

∂x

]

ε2
∂ŵ

(2)
2

∂t
+ ε2β1

∂û
(2)
1

∂x
− ε2β2τ

∂2ŵ
(1)
1

∂x2
− ε3β3τ

∂2ŵ
(2)
2

∂x2
= −εβ4

〈[
ŵ

(1)
1

τκ(1)
+
∂û0
∂x

]〉

− β5ε
ŵ

(2)
2

τ

The use of the given ε-orders for finding the appropriate set of equations for a given
order of accuracy will be discussed in Section 5.

4.5. 4th order variables. From (72, 73) we learn, that the u
(3)
α,3 and the w

(3)
α,3 are

linearly dependent. By considering the first two elements of each, we find by yet
another inversion

u
(3)
α,3 =

λ̄
(3)
α λ

(3)
3 − λ

(3)
α λ̄

(3)
3

λ̄
(3)
2 λ

(3)
3 − λ

(3)
2 λ̄

(3)
3

u
(3)
2,3 +

λ
(3)
α λ̄

(3)
2 − λ̄

(3)
α λ

(3)
2

λ̄
(3)
2 λ

(3)
3 − λ

(3)
2 λ̄

(3)
3

u
(3)
3,3 , α = 2, . . . , N

(77)

w
(3)
α,3 =

θ̄
(3)
α θ

(3)
4 − θ

(3)
α θ̄

(3)
4

θ̄
(3)
3 θ

(3)
4 − θ

(3)
3 θ̄

(3)
4

w
(3)
3,3 +

θ
(3)
α θ̄

(3)
3 − θ̄

(3)
α θ

(3)
3

θ̄
(3)
3 θ

(3)
4 − θ

(3)
3 θ̄

(3)
4

w
(3)
4,3 , α = 3, . . . , N

From this we conclude that we have to add u
(3)
2 and u

(3)
3 , and w

(3)
3 and w

(3)
4 to the

final variables, and the fourth non-equilibrium variables must be defined as

u(4)α = u(3)α −
λ̄
(3)
α λ

(3)
3 − λ

(3)
α λ̄

(3)
3

λ̄
(3)
2 λ

(3)
3 − λ

(3)
2 λ̄

(3)
3

u
(3)
2 −

λ
(3)
α λ̄

(3)
2 − λ̄

(3)
α λ

(3)
2

λ̄
(3)
2 λ

(3)
3 − λ

(3)
2 λ̄

(3)
3

u
(3)
3 , α = 4, . . . , N

(78)

w(4)
α = w(3)

α −
θ̄
(3)
α θ

(3)
4 − θ

(3)
α θ̄

(3)
4

θ̄
(3)
3 θ

(3)
4 − θ

(3)
3 θ̄

(3)
4

w
(3)
3 −

θ
(3)
α θ̄

(3)
3 − θ̄

(3)
α θ

(3)
3

θ̄
(3)
3 θ

(3)
4 − θ

(3)
3 θ̄

(3)
4

w
(3)
4 , α = 5, . . . , N

(79)

At this stage, we have the final variables u0 = û0 at zeroth order, w
(1)
1 = εŵ

(1)
1 at first

order, u1 = ε2û
(2)
1 and w

(2)
2 = ε2ŵ

(2)
2 at second order, u

(3)
2 = ε3û

(3)
2 , u

(3)
3 = ε3û

(3)
3 ,

w
(3)
3 = ε3ŵ

(3)
3 , w

(3)
4 = ε3ŵ

(3)
4 at third order. All other variables, u

(4)
α , w

(4)
α are at

least of fourth order. The transport equations for u
(4)
α , w

(4)
α result from inserting

(78, 79) into the moment equations, just as in the previous rounds. We shall not go
there, however, but continue with the discussion of the set (76) which incorporates

only the leading order of the u
(3)
α , w

(3)
α .
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γ = 0 γ = 1 γ = 5
N = 1 N = 2 N = 4 N = 10 N = 10

κ(1) 1
3 = 0.333 0.2083 0.2144 0.2146 0.2146 0.09712

α1 1 n/a 0.7843 0.8263 0.8266 0.6029
α2

4
15 = 0.2667 n/a 0.2160 0.2135 0.2135 0.1316

µ(2) 4
15 = 0.2667 0.1830 0.1619 0.1606 0.1606 0.08338

β1
9
35 = 0.2571 n/a 0.1790 0.1764 0.1766 0.1232

β2 0 n/a 0.0053 0.0065 0.0065 0.0043
β3

16
63 = 0.2440 1 0.2157 0.1737 0.1734 0.07943

β4 0 n/a 0.0151 0.0161 0.0163 0.03190
β5 1 n/a 1.5565 1.5223 1.539 2.5678

Table 1. Coefficients for the equations (76) for isotropic scatter-
ing (γ = 0) and for anisotropic scattering (γ = 1, 10) for various
number N of base moments.

4.6. Numerical values of coefficients. The coefficients α1,2 and β1−5 in the
truncated transport equations (76) depend on the details of the scattering term
and the Grad closure through the matrices Rαβ , Uαβ and Wαβ . For isotropic scat-
tering (γ = 0) the coefficients are those found before in Section 3. For anisotropic
scattering the coefficients depend on the strength of anisotropy γ and on the num-
ber of moments N used as a base in the Grad method. Table 1 shows the coefficient
values for γ = 0, for γ = 1 with several values of N ≤ 10, and for γ = 5, N = 10.
Convergence of coefficients with increasing moment number N is clearly seen, fur-
ther increase of N does not change the results. The table also shows that the
coefficients differ noticeably between isotropic and anisotropic scattering.

5. Model reduction by order of accuracy. In the previous sections we have
systematically derived a system of transport equations that includes leading terms
of the third order moments. While the resulting equations exhibit only the four

variables û0, ŵ
(1)
1 , û

(2)
1 , ŵ

(2)
2 they are a condensed form of a full Grad-type

moment system with (2N + 1) moments. By application of the order of magnitude
method new variables were designed such that at a given order in ε the number of
variables is minimal. Thus, the final equations (76) contain all elements from the
(2N + 1) moments that are of third order.

Depending on the process to be described by the equations, it might suffice to
consider reduced systems, were reduction is based on the smallness parameter ε. In
the following subsections we shall show how this last step of the order of magnitude
methods is performed on the scaled equations (76). For this, we define the order of
accuracy of a set of equations as follows [8]: A set of equations is said to be accurate

of order η, when the energy flux w1 = w
(1)
1 is known within the order O (εη).

5.1. Zeroth order accuracy. We have seen that the energy flux is of leading

order ε, w1 = w
(1)
1 = εŵ

(1)
1 . Thus, the flux vanishes to zeroth order in ε. Trivially,

the corresponding equation gives the steady state,

∂u0
∂t

= 0 . (80)
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5.2. First order accuracy. Now we consider the first order in the smallness pa-
rameter ε. The first equation we need is the conservation law (76)1

∂û0
∂t

+ ε
∂ŵ

(1)
1

∂x
= 0 . (81)

According to our definition of order of accuracy, we require the flux to first order.
This is extracted from the equation (76)2 from which we only require the leading
order contribution (which has order ε0),

0 = −1

3

[
ŵ

(1)
1

τκ(1)
+
∂û0
∂x

]
. (82)

Combination of these two equations and removal of the ε-scaling (remove hats, set
ε = 1) gives the diffusion equation for u0,

∂u0
∂t
− τκ(1) ∂

2u0
∂x2

= 0 . (83)

Note that the diffusion coefficient τκ(1) is computed from the full set of (2N + 1)
moment equations, see (50). The diffusion equation is the classical transport law
associated with the kinetic equation (1).

5.3. Second order accuracy. To increase the order of accuracy we have to con-

sider higher order contributions to the flux ŵ
(1)
1 . For second order, we need the

conservation law and the two leading terms (of order ε0 and ε1) of the transport
equation for the flux (76)2,

∂û0
∂t

+ ε
∂ŵ

(1)
1

∂x
= 0 ,

ε
∂ŵ

(1)
1

∂t
= −1

3

[
ŵ

(1)
1

τκ(1)
+
∂û0
∂x

]
− ε1

τ
γŵ

(2)
2 . (84)

Since the second equation contains the term εŵ
(2)
2 , the leading order of ŵ

(2)
2 is

required as well. The leading terms of the corresponding transport equation (76)4
give

ŵ
(2)
2 = −β4

β5
τ

〈[
ŵ

(1)
1

τκ(1)
+
∂û0
∂x

]〉
. (85)

Combining the three equations above, we find a hyperbolic system that reads (ε
scaling removed)

∂u0
∂t

+
∂w

(1)
1

∂x
= 0 ,

∂w
(1)
1

∂t
+

(
1

3
− γκ(2)

)
∂u0
∂x

= −
(

1

3
− γκ(2)

)
w

(1)
1

τκ(1)
. (86)

While the above contains only the equilibrium moment u0 and its flux w
(1)
1 , the

influence of other moment equations is manifest through the coefficients κ(1) and
κ(2) = β4

β5
. We emphasize that the Grad moment system for the variables u0 and

w
(1)
1 alone would yield different values of the coefficients as long as anisotropic

scattering plays a role. Indeed, for γ = 1 we find converged values κ(1) = 0.2146
and κ(2) = 0.0106 whereas the Grad method with only u0 and w1 would give κ(1) =
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5
15+9γ = 0.2083 and κ(2) = 0. For γ = 5 we find converged values κ(1) = 0.09712

and κ(2) = 0.01242 whereas the Grad method with only u0 and w1 would give
κ(1) = 5

15+9γ = 0.08333 and κ(2) = 0.

5.4. Third order accuracy. For the third order set, we require the conservation

law (76)1 and the full equation (76)2 for w
(1)
1

∂û0
∂t

+ ε
∂ŵ

(1)
1

∂x
= 0

ε
∂ŵ

(1)
1

∂t
+ ε2

∂û
(2)
1

∂x
= −1

3

[
ŵ

(1)
1

τκ(1)
+
∂û0
∂x

]
− ε1

τ
γŵ

(2)
2 (87)

The second order variable û
(2)
1 appears with the factor ε2. Thus, at the present

order it is sufficient to have its leading term, which is obtained from (76)3 as

0 = −α2

[
û
(2)
1

τµ(2)
+
∂ŵ

(1)
1

∂x

]
. (88)

The other second order variable ŵ
(2)
2 , however, appears with the factor ε1. Thus,

to have ε2 accuracy in the equation for ŵ
(1)
1 we need not only the leading term for

ŵ
(2)
2 but also the first correction. In other words, the proper equation for ŵ

(2)
2 is

given by the two leading terms (of order ε1 and ε2) of (76)4,

ε2
∂ŵ

(2)
2

∂t
+ ε2β1

∂û
(2)
1

∂x
− ε2β2τ

∂2ŵ
(1)
1

∂x2
= −εβ4

〈[
ŵ

(1)
1

τκ(1)
+
∂u0
∂x

]〉
− εβ5

ŵ
(2)
2

τ
(89)

The resulting system is not hyperbolic but of a mixed type: some regulariz-

ing second order derivatives appear in the equations for w
(1)
1 and w

(2)
2 (ε scaling

removed):

∂u0
∂t

+
∂w

(1)
1

∂x
= 0

∂w
(1)
1

∂t
− τµ(2) ∂

2w
(1)
1

∂x2
= −1

3

[
w

(1)
1

τκ(1)
+
∂u0
∂x

]
− 1

τ
γw

(2)
2 (90)

∂w
(2)
2

∂t
−
(
µ(2)β1 + β2

)
τ
∂2w

(1)
1

∂x2
= −β4

[
w

(1)
1

τκ(1)
+
∂u0
∂x

]
− β5

w
(2)
2

τ

The last equation is coupled to the first two only through the right hand side of the

second equation, γw
(2)
2 . This coupling vanishes for isotropic scattering, where γ = 0.

Then, only the first two equations are required (with κ(1) = 1
3 and µ(2) = 4

15 ).
In fact, we recover here, by rigorous derivation based on the order of magnitude

of moments and the order of accuracy of equations, a diffusive correction of higher
order (the expressions with second derivatives) which were proposed recently by
means of a different argument [14][5]. Interestingly, in [14] it was shown that the
diffusive closure gives a significant improvement of the closure.

5.5. Fourth order accuracy. Finally, we consider the fourth order of accuracy.

For this, we have to add the next higher order terms in the equations for û
(2)
1
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and ŵ
(2)
2 . This gives the full system (76), which we repeat here with the ε-scaling

removed:

∂u0
∂t

+
∂w

(1)
1

∂x
= 0 (91)

∂w
(1)
1

∂t
+
∂u

(2)
1

∂x
= −1

3

[
w

(1)
1

τκ(1)
+
∂u0
∂x

]
− 1

τ
γw

(2)
2

∂u
(2)
1

∂t
+ α1

∂w
(2)
2

∂x
= −α2

[
u
(2)
1

τµ(2)
+
∂w

(1)
1

∂x

]
∂w

(2)
2

∂t
+ β1

∂u
(2)
1

∂x
− β2τ

∂2ŵ
(1)
1

∂x2
− β3τ

∂2w
(2)
2

∂x2
= −β4

[
w

(1)
1

τκ(1)
+
∂u0
∂x

]
− β5

w
(2)
2

τ

Again, this system has a diffusive closure [14][5], now at higher order. Recall that u0
is the original equilibrium variable (number density) and w

(1)
1 = w1 is its flux. The

other variables u
(2)
1 , w

(2)
2 are higher order moments that describe non-local effects.

The equations were designed such that all information of the kinetic equation up to
4th order accuracy is included. For this all moments were needed up to their third
order terms. Should one be interested in higher order equations, one first has to go
back to Section 4 and add another round of reconstruction of variables, and so on.

6. Discussion. We have applied the order of magnitude method for the construc-
tion of macroscopic transport equations at a given order in the Knudsen number to
a kinetic equation with scattering. Due to the simplicity of the kinetic description,
the three steps of the method are relatively easy to perform. These are: Step 1:
Construction of a Grad-type system of moment equations of arbitrary size. Step
2: Construction of moments such that the number of variables at each order in the
Knudsen number (in the Chapman-Enskog sense) is as small as possible. Step 3:
Reduction of the scaled equations for the new variables to the required order of
accuracy in the Knudsen number.

The equations at any order are based on a larger (or, for isotropic scattering, even
infinite) set of moment equations. The order of magnitude method condenses the
larger system into the reduced one by retaining all elements of all moment equations
of the initial system that are needed for the desired level of accuracy.

An important feature of the method it that the relevant variables at any order
are constructed step by step. No intuition is required of what moments one should
use. For our simple kinetic model we used monomial moments to construct the
initial moment system, and found that the proper moments to use for the case of
isotropic scattering are Pα moments (Legendre polynomials). However, the con-
structed variables depend on the scattering process, and for anisotropic scattering
a different moment set (not Pα moments) is produced.

The resulting equations resemble moment equations of Grad type, only that the
specially constructed variables appear. The final equations at a given order of ac-
curacy are partial differential equations in time and space, where time derivatives
appear only in first order, and space derivatives in first and second order. In con-
trast to this, the application of the Chapman-Enskog expansion to higher orders
would yield equations with higher and higher order space derivatives [12], which
are problematic numerically, and which are associated with the stability problems



438 HENNING STRUCHTRUP

of the Chapman-Enskog method. These problems are avoided here, and it can be
expected that the equations are stable at any order [8][11].

Another, maybe even more important, aspect of the equations obtained from the
order of magnitude method is that they give a proper description of Knudsen bound-
ary layers. Indeed, Knudsen layers which describe mean free path effects close to
walls and interfaces are not included in the Chapman-Enskog scaling, which consid-
ers the gas only in the bulk. Therefore, equations derived by the Chapman-Enskog
method typically fail in the description of Knudsen layers [10]. The equations that
result from the order of magnitude method, however, have a moment structure,
and they retain the ability of sufficiently large sets of moment equations to describe
Knudsen layers. We refer the reader to Ref. [12], where we have considered the same
moment equations as obtained here for isotropic scattering, that is the Pα- equa-
tions. It was shown that, when furnished with meaningful boundary conditions, the
equations exhibit Knudsen layers, where already a small number of moments gives
a remarkably good description, and a marked improvement over theories that do
not describe Knudsen layers.

The order of magnitude method was applied earlier to the Boltzmann equation
to find the R13 equations for Maxwell molecules [8], and the proper form of Grad’s
13 moment equations for arbitrary particle interaction potentials [9]. The method
can be applied to any kinetic equation for processes for which the Knudsen number
is finite. We hope that the present application to a simple kinetic equation will serve
as a teaching tool for researchers interested in the method, which should find more
interesting applications, e.g., to gas mixtures or polyatomic gases, in the future.
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Appendix A. Matrices in the Grad closure. Here we present the matrices
Rαβ , Uαβ and Wαβ for the Grad closure. The matrix Rαβ describes the flux on the
left hand side, and is not dependent on the scattering probability (all non-specified
matrix elements are zero):

Rαβ =



0 1
0 1

0 1
. . .

. . .

. . .
. . .

0 1
ζ1 ζ2 ζ3 · · · · · · ζN−1 ζN


N×N

(92)

The matrices Uαβ and Wαβ that describe the change of moments due to scattering
depend on the expression for the scattering term. With κ (µ) = 1 + γµ2 they read
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(all non-specified matrix elements are zero):

Uαβ =



1− γφ1 γ
−γφ2 1 γ
−γφ3 1 γ

. . .
. . .

. . .
. . .

1 γ
γξ1 − γφN γξ2 γξ3 · · · γξN−1 1 + γξN


N×N

(93)

Wαβ =



1 γ
1 γ

1 γ
. . .

. . .

. . .
. . .

1 γ
γζ1 γζ2 γζ3 · · · · · · γζN−1 1 + γζN


N×N

(94)
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[14] M. Schäfer, M. Frank and C. D. Levermore, Diffusive correction to PN− approximations,
Multiscale. Model. Simul., 9 (2011), 1–28.

[15] Y. Zheng and H. Struchtrup, Burnett equations for the ellipsoidal statistical BGK Model,

Cont. Mech. Thermodyn., 16 (2004), 97–108.

Received November 2011; revised February 2012.

E-mail address: struchtr@uvic.ca

http://www.ams.org/mathscinet-getitem?mr=MR2769988&return=pdf
http://dx.doi.org/10.1137/090764542
http://www.ams.org/mathscinet-getitem?mr=MR2035529&return=pdf
http://dx.doi.org/10.1007/s00161-003-0143-3
mailto:struchtr@uvic.ca

	1. Introduction
	2. Kinetic equation and Grad-type moment equations
	2.1. Kinetic equation
	2.2. Moment equations for monomials
	2.3. Grad closure for 2N+1 moments
	2.4. Closed equations

	3. Order of magnitude method, isotropic scattering (=0)
	3.1. Moment equations
	3.2. Equilibrium and 1st order variables
	3.3. 2nd order variables
	3.4. 3rd order variables
	3.5. 4th order variables
	3.6. Summary: Legendre polynomials

	4. Order of magnitude method, anisotropic scattering (=0)
	4.1. Equilibrium and first order variables
	4.2. 2nd order variables
	4.3. 3rd order variables
	4.4. Approximation for 3rd order variables
	4.5. 4th order variables
	4.6. Numerical values of coefficients

	5. Model reduction by order of accuracy
	5.1. Zeroth order accuracy
	5.2. First order accuracy
	5.3. Second order accuracy
	5.4. Third order accuracy
	5.5. Fourth order accuracy

	6. Discussion
	Acknowledgments
	Appendix A. Matrices in the Grad closure
	REFERENCES

