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Abstract. The influence of rarefaction effects on technical processes is studied numerically for
a heat transfer problem in a rarefied gas, a box with bottom heated plate. Solutions obtained
from several macroscopic models, in particular the classical Navier-Stokes-Fourier equations with
jump and slip boundary conditions, and the regularized 13 moment (R13) equations [Struchtrup
& Torrilhon, Phys. Fluids 15, 2003] are compared. The R13 results show significant flow
patterns which are not present in the classical hydrodynamic description.

1. Introduction

Accurate prediction of gas flow through microfluidic devices is important to enable the optimum
performance, design and fabrication of micro-electro-mechanical systems (MEMS). Simulation
of the gas flow through these micro devices is, however, more challenging than in classical flow
regimes, since gas rarefaction leads to the breakdown of the underlying assumptions of the
classical continuum theory, i.e., the Navier-Stokes-Fourier (NSF) equations.
The state of a gas in such microsystems is described by the Knudsen number which is defined

as Kn = λ
L
, where L is the length scale of device and λ is the mean free path of gas molecules,

given by µ

ρ
√
RT
. Here, µ is the dynamic viscosity, R is the gas constant and T and ρ are the

temperature and density of the gas, respectively.
Based upon the value of Knudsen number, gas flows in micro devices can be categorized into

three regimes. For Kn ≤ 10−3, the gas is considered as a continuum, while for Kn ≥ 10 it
is considered to be in the free molecular flow regime. For Knudsen numbers ranging between
10−3 ≤ Kn ≤ 10, known as the transition regime, the gas exhibits rarefaction effects such as
Knudsen layers, Knudsen minimum, heat flux without temperature gradient, thermal creep, etc.
[2]-[5].
The transition regime is a challenging regime to model, and perhaps the one most frequently

encountered in MEMS devices [6]. Many MEMS applications involve the analysis of gas flow
through microdevices such as micro-Pirani gauges [7][8], microcantilever heaters [9][10], etc. In
these microdevices, where the characteristic length scale of the device is comparable with the
mean free path, the Knudsen number ceases to be sufficiently small for the NSF equations to
hold.
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Direct numerical solution of the Boltzmann equation gives an accurate microscopic description
of gas flows at all Knudsen numbers, but requires detailed information on microscopic phase
space, and thus typically huge computational times [11]. The direct simulation Monte Carlo
(DSMC) method, proposed by Bird [12], is another commonly used numerical method for
simulation of high Knudsen number gas flows. In MEMS, however, where the mean streamwise

velocity is several orders of magnitude smaller than the mean molecular velocity
(√
2RT

)
, the

DSMC method produces significant statistical noise. Normally, a large number of samples, and
therefore huge computational times, are required to reduce the noise. Recently, several variants
of the DSMCmethod were presented which have, for some flow problems, reduced computational
time [13][14].
For the purpose of design optimization, which requires numerous repetition of simulations

with different parameters, microscopic solvers are impractical due to the large computational
time involved. Moreover, since the solution is produced in the microscopic picture, the underlying
physics for a typical thermodynamic process remains somewhat hidden. Indeed, microscopic
solvers consider the behavior of individual particles, but not their collective behavior. This makes
it impossible to deduce, a priory, the relative size of relevant macroscopic physical quantities,
e.g., density, temperature, heat flux, stress, and their relative effect on the particular process
under consideration.
Beside microscopic approaches, a thermodynamic process can also be described by

macroscopic models, derived from the Boltzmann kinetic equation either by asymptotic
expansion, such as in the Chapman-Enskog expansion [15], or by reconstruction of the
distribution function, such as in Grad’s moment method [16]. In macroscopic theories, the
behavior of a gas is described through physical quantities such as mass density, temperature,
velocity, heat flux, stress tensor, and so on. The goal of these macroscopic models is to reduce the
high dimensional phase space of the particle description to a low-dimensional continuum model
by relating the physical quantities as moments of the probability density function f(c, x, t).
Macroscopic models, despite some limitation on the their accuracy, give an easy and detailed
access to physical quantities and their relative effect on the process. In recent years, we developed
the regularized 13 moment equations (R13), which give good predictions for rarefied flows with
Knudsen numbers up to 0.5 [1][18]-[23].
In the present contribution we study the gas flow behaviour and heat transfer characteristics

of a rarefied gas confined in a bottom heated square domain. A similar problem has been
investigated using DSMC or another kinetic approaches in [9][24]-[30]. In the following we shall
consider the effects of Knudsen number and convection on heat transfer from the heated plate
using finite difference numerical solutions of macroscopic methods. The developed numerical
method is applied to the R13 equations, and to the Navier—Stokes equations supplemented by
the first and second order velocity-slip and temperature-jump conditions. The main objective
here is the implementation of a computationally efficient yet accurate, macroscopic description
of such flows, so as to anticipate a better understanding of heat transfer process in micro devices.

2. Statement of the Problem

We consider the steady state heat transfer process through a monatomic gas, trapped inside
a square enclosure of width L with a uniformly heated surface at the bottom (y = 0), as
shown in Fig. 1. It is assumed that the temperature of the heated surface of the cavity is TH
and the other sides are considered isothermal at an environment temperature T0 = 273K. The
ratio between hot chip surface temperature, TH , and T0 was taken to be 1.1. Results will be
presented for Knudsen numbers ranging from the continuum limit to the early transition regime,
i.e., 10−3 ≤ Kn ≤ 1. Effects due to radiation and gravity are assumed to be negligible.
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Figure 1. Schematic diagram for bottom heated plate.

3. Macroscopic Transport Equations

Macroscopic equations for rarefied gases are obtained by multiplying the Boltzmann equation
with weight functions and integrating it over the velocity space. By taking appropriate weight
functions, we obtain the conservation laws for mass, momentum, and energy [31],

∂ρ

∂t
+
∂ρvi
∂xi

= 0, (1a)

∂ρvi
∂t

+
∂ (pik + ρvivk)

∂xk
= 0, (1b)

∂ρ
(
u+ 1

2
v2
)

∂t
+
∂ (ρevk + pikvi + qk)

∂xk
= 0, (1c)

where t and xi are temporal and spatial coordinates, respectively. Moreover, ρ, vk, pik, u, and qk
denote mass density, velocity, pressure tensor, internal energy density and the heat flux, along
with

pij = pδij + σij and u =
3θ

2
. (2)

Here, p and σij are the pressure and the stress tensor, respectively. Also, for ideal monatomic
gases the pressure is given by the ideal gas law, p = ρθ = ρRT , where θ is the temperature in
energy units, R is the gas constant and T is the thermodynamic temperature.
Closure of the conservation laws (1a-1c) requires to specify the pressure tensor, pij and the

heat flux vector, qk. Several methods to this end can be found in the literature.
One approach to the closure of the macroscopic equations is given by a series expansion of

the distribution function in terms of Knudsen number, the Chapman-Enskog (CE) expansion
[15]. The Euler and the Navier-Stokes-Fourier equations result from the zeroth and first order
expansions, respectively, while higher order expansions lead to the Burnett and Super-Burnett
equations [32]. However, in many cases, the higher order CE expansion leads to unstable or
unphysical results [33]. Moreover, there is no complete theory for boundary conditions of the
higher order equations.
Another approach is due to Grad [16], known as the Grad’s moment methods, in which the

velocity distribution function is reconstructed by an expansion of the distribution function into
Hermite polynomials. The method yields extended sets of transport equations, the best-known
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of which is the 13 moment system. The Grad method is not linked to the Knudsen number,
and thus it provides no information on which, and how many, moments one should consider for
a given process.
The regularized-13 (R13) equations [1][31] were obtained by combining elements of the CE

and Grad methods, they are a regularized version of the classical Grad’s 13-moment equations.
The R13 equations are of third order in the Knudsen number in the CE sense, and for small
enough Knudsen numbers (Kn � 0.5) the equations describe all known rarefaction effects with
good accuracy [19]-[22].
The equations for heat-flux vector and stress tensor in the R13 system are their respective

moment equations

∂qi
∂t
+ vk

∂qi
∂xk

+
7

5
qk
∂vi
∂xk

− σik
θ

ρ

∂ρ

∂xk
− σik

ρ

∂σkl
∂xl

+
7

2

∂θσik
∂xk

+
5

2
σik

∂θ

∂xk
+ θ

∂σik
∂xk

+
7

5
qi
∂vk
∂xk

+
2

5
qk
∂vk
∂xi

+
1

2

∂Rik
∂xk

+
1

6

∂∆

∂xi
+mikl

∂vk
∂xl

+
5

2
p
∂θ

∂xi
= −2

3

p

µ
qi, (3)

∂σij
∂t

+ vk
∂σij
∂xk

+
∂mijk

∂xk
+
4

5

∂q〈i
∂xj〉

+ 2σk〈i
∂vj〉
∂xk

+ σij
∂vk
∂xk

+ 2p
∂v〈i
∂xj〉

= −p
µ
σij , (4)

For ∆ = Rij = mijk = 0, the above equations reduce to Grad’s 13-moment equations [16]. The
R13 closure for ∆, Rij and mijk results from taking into account the appropriate terms of higher
order moment equations, so that

∆ = 5
σklσkl
ρ

+
56

5

qkqk
p
− 12µ

p

(
θ
∂qk
∂xk

− θqk
∂ lnp

∂xk

)
, (5)

Rij =
20

7

σk〈iσj〉k
ρ

+
192

75

q〈iqj〉
p

− 24
5

µ

p

(
θ
∂q〈i
∂xj〉

− θq〈i
∂ lnp

∂xj〉

)
,

mijk =
20

15

q〈iσjk〉
p

− 2µ
p

(
θ
∂σ〈ij
∂xk〉

− θσ〈ij
∂ ln p

∂xk〉

)
.

The indices inside angular brackets denote the symmetric trace-free part of tensors [31]. The
R13 constitutive relations given by eqs. (5) add second order derivatives to stress tensor, σij
and heat flux, qi, in eqs. (3 and 4).
The R13 equations are an extension to the classical Navier-Stokes- Fourier (NSF) equations

of hydrodynamics. An analysis of the order of Knudsen number in (3-4) shows that only the
underlined terms are of first order in Knudsen number, while all others are of higher order [34].
Thus, the underlined terms are the NSF contributions,

qNSFi = −15
4
µ
∂θ

∂xi
, and σNSFij = −2µ

∂v〈i
∂xj〉

. (6)

From now on, all equations and results will be given in dimensionless quantities, defined as

x̂i =
xi
L
, θ̂ =

θ

θ0
, ρ̂ =

ρ

ρ0
, v̂i =

vi√
θ0
, q̂i =

vi

ρ0
√
θ0
3
,

σ̂ij =
σij
ρ0θ0

, ∆̂ =
∆

̺0 θ20
, R̂ij =

Rij
̺0 θ20

, and m̂ijk =
mijk

̺0
√
θ0
3
.

Here, ρ0 is the average mass density. As a result the Knudsen number arises, which is given by

Kn =
µ0

ρ0
√
θ0

1

L
,

where L is the length of the bottom wall. Therefore, the flow considered is fully defined by
setting the temperature ratio TH/T0 and the Knudsen number.
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3.1. Boundary conditions

Maxwell’s accommodation model for the boundary conditions in kinetic theory was used to
derive boundary conditions for the R13 system, which link the moments of the gas near the wall
to the tangential wall velocity vW

τ
and wall temperature θW . The details of the construction

procedure for the boundary conditions (BCs) for the R13 equations can be found in [17], the
final result reads

vn = 0 (7a)

στn =
−χ
2− χ

√
2

πθ

(
PVτ +

1

5
qτ +

1

2
mτnn

)
, (7b)

qn =
−χ
2− χ

√
2

πθ

(
2PT − 1

2
PV2τ +

1

2
θσnn +

1

15
∆+

5

28
Rnn

)
, (7c)

Rτn =
χ

2− χ

√
2

πθ

(
6PT Vτ + PθVτ −PV3τ −

11

5
θqτ −

1

2
θmτnn

)
, (7d)

mnnn =
χ

2− χ

√
2

πθ

(
2

5
PT − 3

5
PV2τ −

7

5
θσnn +

1

75
∆− 1

14
Rnn

)
, (7e)

mττn =
−χ
2− χ

√
2

πθ

(
1

5
PT − 4

5
PV2τ +

1

14
Rττ + θσττ −

1

5
θσnn +

1

150
∆

)
, (7f)

where

P = ρW
√
θW
√
θ =

(
ρθ +

1

2
σττ −

1

120

∆

θ
− 1

28

Rττ
θ

)
. (8)

Here, Vτ = vτ − vWτ and T = θ − θW are slip velocity and temperature jump, respectively, and
subscripts n and τ stand for the normal and tangential directions with respect to the surface.
The accommodation coefficient in the Maxwell model is denoted by χ, representing the fraction
of molecules undergoing diffuse reflection. For all numerical results presented in this paper
accommodation factor is set to be unity [2].
Equation (7b) relates the velocity slip Vτ , to the shear stress στn, associated with the gradient

of tangential velocity in the normal direction, and the heat flux qτ , associated with the gradient
of temperature parallel to the boundary. Therefore, in contrast to continuum flows, a tangential
temperature gradient along the surface can also induce a flow from the colder part to the hotter
part, usually referred to as thermal creep [2].
In the slip flow regime, the NSF equations must be furnished with slip and jump boundary

conditions. Slip and jump boundary conditions for the Navier-Stokes-Fourier equations are
obtained by replacing, σij = σNSFij and qi = qNSFi from Eqs. (6), in Eqs.(7a-7c) and ignoring
higher order moments, i.e., mτnn, ∆ and Rnn. As a result we obtain [5]

vn = 0 (9a)

σNSFτn =
−χ
2− χ

√
2

πθ

(
PVτ −

3

4
µ
∂θ

∂xτ

)
, (9b)

qNSFn =
−χ
2− χ

√
2

πθ

(
2PT − 1

2
PV2τ − µθ

∂v〈n
∂xn〉

)
, (9c)

where P =
(
ρθ + 1

2
σττ
)
.

Second order slip and jump boundary conditions can also be derived from (7a-7c), by replacing
the heat flux and stress using Navier-Stokes-Fourier constitutive relations (6) in higher order
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moments, i.e., mτnn, ∆ and Rnn [5]

vn = 0 (10a)

σNSFτn =
−χ
2− χ

√
2

πθ

(
PVτ +

1

5
qNSFτ +

1

2
mNSF
τnn

)
, (10b)

qNSFn =
−χ
2− χ

√
2

πθ

(
2PT − 1

2
PV2τ +

1

2
θσNSFnn +

1

15
∆
NSF +

5

28
RNSFnn

)
. (10c)

Here, the superscript NSF denotes that the actual heat flux and stress are replaced using the
Navier-Stokes-Fourier constitutive relations.

4. Results and discussion

To obtain the numerical solution a central finite-difference scheme was used and the system of
discretized equations has been solved using a quasi-minimal residual method. This numerical
algorithm has been described and validated against the existing results for the case of the
lid driven cavity in [35]. The numerical algorithm converges with approximately second-order
numerical accuracy, and a grid independent solution (with less then 1% deviation) was obtained
approximately at 70× 70 mesh size.

4.1. Rarefaction effects on flow field characteristics

Fig. 2(a)-(d) show the results for Knudsen numbers 0.06, 0.12, 0.335 and 0.5, respectively, for
the temperature ratio TH/T0 = 1.1. The flow fields are symmetric to the centerline (x = 0.5);
for compact presentation, the figures show NSF results (using 1st order BC) in the left part,
and R13 results on the right. The figures show temperature contours and velocity streamlines.
As we see from Fig. 2, for all Kn, two primary circulating vortices are induced near the heated

surface, along the vertical axes. The formation of primary vortices, is induced by the tangential
temperature gradient in the gas near the vertical surface that forces a creep-driven fluid into a
circulatory motion.
Interestingly, in addition of the primary vortices, the R13 equations predict a secondary

counter-circulating flow induced along the corners of the top plate. These predictions are
qualitatively similar to those seen in Monte Carlo simulations for vacuum packaged MEMS
devices [27] and [38]. This flow behavior results form the interplay of the variables as given by
the transport equations, and from the slip equation (7b), which relates the tangential velocity
vτ to shear stress, στn, tangential heat flux, qτ , and higher order contribution, mτnn. The latter
can be rearranged to give an expression for the tangential velocity at the right vertical surface
as,

vx ∝
(
2− χ
χ

√
πθ

2
σxy −

1

5
qy −

1

2
myxx

)
. (11)

At moderate Knudsen numbers, the tangential velocity has two opposing contributions, one from
the tangential heat flux, qy and the second from the shear stress, σxy.
For example, on the right vertical surface, along x = 1 (see Fig. 1), the tangential heat flux,

qτ , is positive mainly due to a negative temperature gradient (Fourier law).The magnitude of
qτ increases with the Knudsen number (also with the temperature ratio), whereas it decreases
as the gas moves further away from the bottom surface. Along the vertical surface, both the
Navier-Stokes-Fourier (NSF) and the R13 equations predict positive shear stress. However, the
Navier-Stokes equations under-predict the shear stress, στn, in comparison to the R13 equations.

In particular, the NSF equations do not take into account the thermal stress, i.e., σTij ∝ −µ
p

∂q〈i
∂xj〉

,

which appears in the stress balance equation (4).
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Figure 2. Velocity streamlines and temperature contours for the bottom heated cavity.
Temperature ratio is TH/T0 = 1.1, and Knudsen numbers are 0.06, 0.225, 0.335, and 0.5, in
sub-figures (a), (b), (c), and (d), respectively. Results computed with Navier -Stokes-Fourier
equations with first order boundary conditions are depicted on the left-half domain, while the
results computed with R13 are shown on the right-half portion of the domain.

For the lower portion of the vertical surface (0 ≤ y � 0.6), qy is greater than σxy, which,
according to (11), induces a downward motion in the fluid and thus the primary eddies. However,
close to the top plate shear stress dominates over heat flux which produces an upward motion
in gas, hence the formation of the secondary vortices. Since the NSF equations overestimate the
heat-flux and underestimate the shear stress near the boundary, these secondary eddies do not
appear in the Navier-Stokes-Fourier solutions.
For a temperature ratio of 1.1, the magnitude of the dimensionless velocity in the primary

and secondary eddies is of the order of 10−2 and 10−4, respectively. Both velocities increase
slightly with the Knudsen number.
With increasing Knudsen number, all gradients inside the cavity become steeper.

Consequently, the secondary eddies becomes more and more pronounced. For Kn≃ 0.8, the
secondary eddies span almost 40% of the cavity area. Although at Kn ≥ 0.5 the results computed
with both NSF or R13 equation will be quantitatively different then the more accurate solvers
like DSMC, the R13 equations are able to qualitatively predict the behavior of the underlying
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process. Moreover, the overall CPU time required for solution of NSF or R13 is far less then
for DSMC, especially for slow flows. For example, for a typical case considered in this study,
R13 and NSF equations simulation takes about 20 and 12 minutes with an un-optimized matlab
code, respectively. On the other hand, a typical DSMC simulation takes about 150 hours [27].

4.2. Heat transfer

Now we will study the effects of rarefaction on the heat transfer from the hot surface, by
comparing the results of the NSF and R13 equations, for various Knudsen numbers.
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NSF 1

NSF 2

R13

Figure 3. Normal heat flux profiles along the bottom plate, obtained by solving R13
(continuous, black), NSF with first (dashed, red) and second order (dotted, blue) boundary
conditions for Kn = 0.005, 0.06, 0.225 and 0.5, at tempetature ratio 1.1.

Figure 3 illustrates the variation of the normal heat flux, qy, along the bottom plate, obtained
by solving R13 (continuous, black), NSF (dashed, red) with first order boundary conditions (9)
and second order (dotted, blue) boundary conditions (10). At the relatively small Knudsen
number 0.005, in Fig. 3(a), all models show good agreement. However at larger Knudsen
numbers, in Fig 3(b)-(d), the heat transfer predictions by the classical NSF equations lead
to a significant overestimation. This result confirms the conclusion obtained by Liu et al [27]
from DSMC computations.
Next, in Fig. 4, we show the net dimensionless heat transfer from the bottom surface, defined

as

Qy =

∫
1

0

qy(x, 0)dx .

This is an important quantity for device design, since it describes the thermal performance.
Results computed with TH/T0 = 1.1, using R13 (continuous, black) are compared with NSF
with first (dashed, red) and second order (dotted, blue) boundary conditions, are presented in
Fig. 4(a). As shown, NSF over-calculates the net heat transfer, however, second order boundary
conditions shows a significant improvement over first order boundary conditions.
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Figure 4. Navier-Stokes results with first (dashed, red) and second order (dotted, blue)
boundary conditions are compared with R13 (continuous, black) for various Kn, at temperature
ration TH/T0 =1.1. In (a), the net heat transfer from the bottom plate is compared between
NSF and R13. In (b), the heat transfer through a stationary gas (denoted by curves) is compare
against the heat transfer in the moving gas (denoted by symbols, ♦).

To understand the extent to which the convection affects the heat transfer we compute the
heat transfer through a stationary gas, where all velocity components vanish, vi = 0, and
compare it against the heat transfer in the moving gas, vi �= 0. Note that this implies a change
in boundary conditions, so that no transpiration flow occurs. In an experiment, one will observe
the moving gas. As we see from Fig. 4(b), for all continuum models the heat flux from the pure
heat conduction is slightly higher than that from the convective heat transfer, the heat transfer
is slightly weakened by convection.

5. Conclusions

A numerical investigation of convective heat transfer in a thermal cavity is presented and
the influence of the rarefaction effects on the heat transfer in a thermal cavity are studied
using Navier-Stokes-Fourier equations with first and second order jump and slip boundary
conditions and the R13 equations. It is shown that the NSF equations, with first order boundary
conditions, over-estimate the heat transfer, however, second order boundary conditions show an
improvement over first order boundary conditions. The R13 results show significant flow patterns
which are not present in the NSF equations. This convective mechanism is described in detailed
through relative terms in the boundary conditions and their size.
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