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Abstract Dispersion and damping of ultrasound waves are a standard test for mathematical models of rarefied
gas flows. Normally, one considers waves in semi-infinite systems in relatively large distance of the source.
For a more complete picture, ultrasound propagation in finite closed systems of length L is studied by means
of several models for rarefied gas flows: the Navier-Stokes-Fourier equations, Grad’s 13 moment equations,
the regularized 13 moment equations, and the Burnett equations. All systems of equations are considered in
simple 1-D geometry with their appropriate jump and slip boundary conditions. Damping and resonance are
studied in dependence of frequency and length. For small L , all wave modes contribute to the solution.

Keywords Rarefied gases · Dispersion relation · Non-equilibrium thermodynamics ·
Extended thermodynamics

1 Introduction

The Navier-Stokes and Fourier equations of classical hydrodynamics describe gas flows only accurately when
the Knudsen number Kn is sufficiently small. Usually the Knudsen number is defined as the ratio between
particle mean free path and a relevant process length, but for time-dependent problems it can be equivalently
defined as the ratio between the particle mean free time and a relevant process time scale, e.g. the duration of
an oscillation. In the following we shall consider rarefied gases in short ultrasound resonators which have two
relevant Knudsen numbers, one based on the resonator length, and the other on the oscillator frequency.

When the process Knudsen number exceeds a value of about 0.1, the equations of classical hydrody-
namics cannot predict speed of sound and damping of ultrasound waves accurately and thus they fail in the
description of ultrasound resonators. Therefore, the description of ultrasound resonators must be based on
more refined theories, which can be derived from kinetic theory of gases [1–4]. The most accurate description
comes from the Boltzmann equation itself, which describes the gas on the microscopic level, and is valid for all
Knudsen numbers. However, its mathematical complexity makes the description cumbersome, and numerical
simulations costly.

As long as the Knudsen number is not too large, refined macroscopic transport equations can be derived
from the Boltzmann equation which allow the accurate description of processes at much lower mathematical
or numerical cost than the Boltzmann equation [4,5]. There are two main approaches to macroscopic transport
equations for rarefied gases, the Chapman–Enskog expansion and moment methods.
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Fig. 1 The resonator of length L is driven periodically with frequency ω by the transducer on the left. The receiver on the right
measures the pressure amplitude pL and the phase shift ϕ

In the Chapman–Enskog method, one expands the Boltzmann equation to derive refined constitutive laws
for stress and heat flux which add higher gradient terms to the Navier-Stokes and Fourier laws. The resulting
Burnett and super-Burnett equations [6,7] are not usable as simulation tool since they suffer from instabilities
in initial value problems [8], and there is no complete theory for their boundary conditions. In the following,
we shall consider the Burnett equations, with new boundary conditions based on those for the R13 equations
(see below). In the periodic resonator, initial values are not relevant, and thus instabilities are not observed.
However, also for pure boundary value problems the Burnett equations yield modes which are unphysical—
these will be discussed briefly.

In moment methods one extends the space of hydrodynamic variables by adding full balance equations for
stress, heat flux and other quantities. Some theories of this type are also known as “Extended Thermodynamics”
[9] or “Generalized Hydrodynamics” [10], where different schools propose different constitutive equations for
the closure of the additional balance laws. The best-known example of moment equations is Grad’s 13 moment
(G13) equations [11,12]. A more recent development is the regularized 13 moment (R13) equations, which
add higher-order terms to the G13 equations and thus extend their validity towards higher Knudsen numbers
[4,13,14]. The R13 equations are accompanied by a full theory of boundary conditions [15]. In a number of
recent publications it was shown that the R13 equations deliver fairly accurate descriptions of rarefied flows
for Knudsen numbers below 0.5 including Knudsen boundary layers, non-Fourier heat flux, etc; due to space
limitations, the reader is referred to the pertinent literature for details [13–21].

In the following we shall consider the Navier-Stokes-Fourier (NSF) equations, the Burnett equations, G13
equations and the R13 equations for short ultrasound resonators. All sets of equations yield several wave
modes, and the full solution for the resonator is a superposition of all modes, where the amplitudes of the
modes are due to the boundary conditions. When discussing damping and phase speed of ultrasound waves,
it is common to consider only the so-called acoustic mode [4,9,22], while all other modes are ignored. Our
calculations allow to understand the importance—or, indeed, unimportance—of the additional modes. It will
be seen that the R13 equations agree best with resonator measurements by Schotter [23].

2 The resonator

2.1 Set-up and notation

Figure 1 shows a sketch of the resonator geometry. A rarefied gas is enclosed between two walls at dis-
tance L , measured along the x -coordinate. One wall is the transducer which imposes the periodic velocity
V (t) = V0 cos ωt . The other wall is the resting receiver where the gas pressure is measured. Pressure must
show the same periodicity as velocity, but one will expect a phase shift ϕ, so that the measured signal is
p (t) = pL cos (ωt + ϕL).

The gas rest state is given by density ρ0 and temperature in energy units θ0 = RT0 (R is the gas con-
stant and T denotes thermodynamic temperature). The velocity amplitude V0 is so small that the gas is only
slightly disturbed, therefore it is sufficient to consider all transport equations in linearized form. The dimen-
sions perpendicular to the x−direction are much bigger than L , so that the processes in the resonator can be
described as one-dimensional: all fields depend only on time t and location x .

In the experiment, one controls velocities and temperatures at the transducer (x = 0) and at the receiver
(x = L), the corresponding wall velocities, temperatures and wall normals n (points into the gas) are

at x = 0 : vW (t) = V0 cos ωt, θW (t) = θ0, n = 1
at x = L : vW (t) = 0, θW (t) = θ0 n = −1 (1)
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2.2 Dimensionless quantities

In the following, dimensionless quantities will be used exclusively, which are defined through the rest state
ρ0, θ0 as

x̃ = x

L0
, t̃ = √

θ0
t

L0
, Kn = μ0

√
θ0

p0L0
,

ρ̃ = ρ

ρ0
− 1, ṽ → v√

θ0
, θ̃ = θ

θ0
− 1, σ̃ = σ

p0
, q̃ = q

p0
√

θ0

Here, x and t denote space and time, and the thermodynamic quantities are: density ρ, velocity v, temperature
θ , stress σ , heat flux q . All quantities with tilde are defined as dimensionless deviations from the ground state;
the tildes will be omitted in the subsequent equations for better readability.

The viscosity at reference temperature is μ0 and the Knudsen number Kn is a measure for the ratio between

the mean free path λ0 = μ0
√

θ0
p0

of the gas, and a characteristic length L0 of the problem. Note that these def-

initions of mean free path and Knudsen number differ by a factor
√

π
2 from that commonly used [2]; for the

macroscopic equations in kinetic theory the above definition is most convenient, and this is why we use it.
To avoid confusion, we rewrite the boundary conditions (1) in the dimensionless variables, where they read

at x = 0 : ṽW (t) = V0 cos ωt, θ̃W (t) = 0, n = 1
at x = L : ṽW (t) = 0, θ̃W (t) = 0 n = −1

(2)

2.3 Frequency, length and Knudsen number

The resonator is characterized by two relevant measures, the resonator length L , and the frequency ω, which
both can be used to define a Knudsen number. However, it is most convenient for the calculations to set Kn = 1,
so that the characteristic length L0 is the mean free path,

L0 = μ0
√

θ0

p0
= λ0.

Then, the characteristic time becomes

t0 = L0√
θ0

= μ0

p0
= τ0,

that is, time is measured in units of the mean free time τ0 [4]. Accordingly, resonator length L and frequency
ω are made dimensionless as

L̃ = L

λ0
, ω̃ = ωτ0 = τ0

1
ω

.

Thus, the dimensionless resonator length is an inverse Knudsen number, and the dimensionless frequency can
be considered as a Knudsen number itself, e.g. by writing

L̃ = L

λ0
= 1

KnL
, ω̃ = τ0

1
ω

= Knω.

All macroscopic equations discussed below are valid only for sufficiently low Knudsen numbers. From the
above discussion follows that resonator length must be sufficiently large and frequency must be sufficiently
low for this condition to hold. What values are sufficient will become clear from the discussion.

3 Moment equations and boundary conditions

3.1 Conservation laws in 1-D

All sets of macroscopic transport equations considered include the conservation laws for mass, momentum
and energy, which read in dimensionless, linearized form and 1-D geometry [4]
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∂ρ

∂t
+ ∂v

∂x
= 0,

∂v

∂t
+ ∂ρ

∂x
+ ∂θ

∂x
+ ∂σ

∂x
= 0, (3)

3

2

∂θ

∂t
+ ∂q

∂x
+ ∂v

∂x
= 0.

The factor 3
2 in the energy balance is the dimensionless specific heat, the value is that for monatomic gases,

which are considered exclusively.
The variables in the conservation laws are mass density ρ, velocity in x-direction v and temperature θ . In

addition, the equations contain the xx-component of the viscous stress, σ and the x-component of the heat
flux, q . The various theories for transport provide equations for stress and heat flux which are presented in the
following sections, together with their appropriate boundary conditions.

3.2 NSF equations

The Navier-Stokes and Fourier equations can be derived from the Boltzmann equation by Chapman–Enskog
expansion to first order in the Knudsen number. In dimensionless form and 1-D geometry, stress and heat flux
are given by

4

3

∂v

∂x
= − σ

Kn
,

5

2

∂θ

∂x
= −2

3

q

Kn
. (4)

The appropriate boundary conditions are derived from the boundary conditions for the Boltzmann equation
and the distribution function found in the Chapman–Enkog expansion as [4,16]

v = vW (t),

θ − Kn
1

3

∂v

∂x
− Kn

2 − χ

2χ

√
π

2

15

4

∂θ

∂x
n = θW (t). (5)

Here, χ is the accommodation coefficient which describes the interaction between gas particles and wall.
The boundary conditions are based on Maxwell’s accommodation model, where it is assumed that particles
are either fully thermalized at the wall, or specularly reflected [2,24]; χ is the percentage of particles that
thermalize.

The first condition is just the statement that the normal velocity of the gas is equal to the normal velocity
at the wall, so that there is no mass flux into the wall, the second is the jump condition for temperature. Due to
the simple one-dimensionality of the process, a slip condition for velocity as it is needed for shear flows is not
required. The boundary conditions must be evaluated at transducer and receiver with the values for vW , θW
and n given in (2).

We left the Knudsen number in the above equations since it shows the scaling of the various terms at a
glance: stress, heat flux and temperature jump are all of first order in the Knudsen number. For the same reason
we shall keep the Knudsen number in the other equations below; for all computations we shall rescale so that
Kn = 1.

3.3 G13 equations

Grad’s 13 moment equations are valid up to second order in Kn; for details of their derivation we refer the
reader to the original works of Grad [11,12]; for proof that they are indeed of second order see [4,14]. In the
Grad equations, stress and heat flux are not given as constitutive laws anymore, but they are thermodynamic
variables in their own right, with the balance equations

∂σ

∂t
+ 8

15

∂q

∂x
+ 4

3

∂v

∂x
= − σ

Kn
,

∂q

∂t
+ ∂σ

∂x
+ 5

2

∂θ

∂x
= −2

3

q

Kn
. (6)

Note that the terms adjacent to the equal signs are just the NSF constitutive laws (4). Indeed, by first-order
Chapman–Enskog expansion the G13 equations reduce to NSF [4].
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In the resonator geometry, the linear G13 equations require as many boundary conditions as the NSF
equations. The appropriate conditions are

v = vW (t),

θ + 1

4
σ + 2 − χ

2χ

√
π

2
qn = θW (t); (7)

these must be evaluated at transducer and receiver with (2). Note that the boundary conditions for G13 reduce
to those for NSF when one inserts the NSF constitutive relations (4).

3.4 R13 equations

The R13 equations are accurate to third order in the Knudsen number, their detailed derivation is presented in
[4,13,14]. The R13 equations are an extension of the G13 equations which add higher-order terms (stemming
from higher-order moment equations). The dimensionless 1-D equations required for the resonator problem
read [4]

∂σ

∂t
+ 8

15

∂q

∂x
− 6

5
Kn

∂2σ

∂x2 + 4

3

∂v

∂x
= − σ

Kn
,

∂q

∂t
+ ∂σ

∂x
− 18

5
Kn

∂2q

∂x2 + 5

2

∂θ

∂x
= −2

3

q

Kn
. (8)

These are just the G13 equations with two additional terms with second derivatives of stress and heat flux.
The full set of boundary conditions for R13 were derived and discussed in [15]. When considered for the

1-D geometry of the resonator and linearized some of the conditions reduce to mere identities and one becomes
redundant, so that the only relevant boundary conditions are

v = vW (t),

θ + 1

4
σ + 2 − χ

2χ

√
π

2
qn − 24

35
Kn

∂q

∂x
= θW (t), (9)

θ − 7

2
σ + 6Kn

2 − χ

2χ

√
π

2

∂σ

∂x
n + 6

35
Kn

∂q

∂x
= θW (t).

As before, the first and second condition are just the no-flux condition at the wall and the jump condition for
temperature, which now has an additional term with the heat flux derivative. Due to the higher-order deriva-
tives in (8), the additional boundary condition (9)3 is required, which is an additional jump condition for the
variables. All three conditions must be evaluated at transducer and receiver with (2).

3.5 Burnett equations

The Burnett equations are derived from the second-order Chapman–Enskog expansion of the Boltzmann equa-
tion [1,6]. They can also be obtained from the second-order Chapman–Enskog expansion of the G13 or R13
equations [4]. It is well known that the Burnett equations suffer from stability problems in initial value prob-
lems [8], and there is no complete theory for their boundary conditions. The instability is not an issue for the
present boundary value problem, and we shall employ the R13 boundary conditions. Thus, we can consider
the Burnett equations as well.

In the linearized 1-D Burnett equations, stress and heat flux have the NSF terms and additional second-order
corrections, they can be written as [4]

Kn

[
4

3

∂2ρ

∂x2 − 2

3

∂2θ

∂x2

]
+ 4

3

∂v

∂x
= − σ

Kn
,

7

6
Kn

∂2v

∂x2 + 5

2

∂θ

∂x
= −2

3

q

Kn
. (10)
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Compared to NSF, the Burnett equations contain higher derivatives, and this is the reason why more boundary
conditions are required. Indeed, closer examination shows that the Burnett equation needs 6 boundary condi-
tions (3 at each side), just as the R13 equations. Thus, it appears to be natural to consider the R13 boundary
conditions (9) together with the Burnett expressions for stress and heat flux (10), which yields

v = vW (t),

θ − 1

3
Kn

∂v

∂x
− 2 − χ

2χ

√
π

2

15

4
Kn

∂θ

∂x
n − Kn2 1

3

∂2ρ

∂x2

+Kn2 115

42

∂2θ

∂x2 − 2 − χ

2χ

√
π

2

7

4
Kn2 ∂2v

∂x2 n + Kn3 6

5

∂3v

∂x3 = θW (t),

θ + 14

3
Kn

∂v

∂x
+ 14

3
Kn2 ∂2ρ

∂x2 − Kn2 125

42

∂2θ

∂x2 − 8Kn2 2 − χ

2χ

√
π

2

∂2v

∂x2 n

− 3

10
Kn3 ∂3v

∂x3 − Kn38
2 − χ

2χ

√
π

2

∂3ρ

∂x3 n + 4Kn3 2 − χ

2χ

√
π

2

∂3θ

∂x3 n = θW (t). (11)

The three conditions must be evaluated at transducer and receiver with (2).

4 Resonator solution

4.1 Wave solutions

Due to the simple one-dimensional geometry and linearity, all sets of equations can be solved analytically. To
treat all at the same time, we write all sets in the general form

∂u A

∂t
+ A(1)

AB
∂u B

∂x
+ A(2)

AB
∂2u B

∂x2 + A(3)
AB

∂3u B

∂x3 = −A(0)
ABu B (12)

with the variable vector u A and suitable matrices A(α)
AB . For NSF we have u A = {ρ, v, θ} and A(0)

AB = A(3)
AB = 0;

for Burnett we have u A = {ρ, v, θ} and A(0)
AB = 0; for G13 we have u A = {ρ, v, θ, σ, q} and A(2)

AB = A(3)
AB = 0;

for R13 we have u A = {ρ, v, θ, σ, q} and A(3)
AB = 0.

For the solution of the periodically driven resonator we make the harmonic wave ansatz

u A (x, t) = ǔ A exp [ki x] cos [ωt − kr x + ϕ]. (13)

Here, ω is the frequency of the wave as imposed at the transducer, ǔ A and ϕ are amplitude and phase shift,
respectively. The phase velocity of the wave is vph = ω

kr
, and the damping is (−ki ). Note that for a wave with

positive phase velocity (i.e. kr > 0), one will expect a positive damping (i.e. ki < 0).
For the calculation it is convenient to consider the complex representation of the wave

u A (x, t) = û A exp [i (ωt − kx)], (14)

where ω is the real frequency, k = kr + iki is the complex wave number and û A = ǔ A exp [iϕ] is the complex
amplitude. It is understood that only the real part of (14) is relevant.

Inserting the wave ansatz (14) into the general form of the transport equations and performing all derivatives
gives the algebraic equation

(
δABiω + A(0)

AB − ikA(1)
AB − k2A(2)

AB + ik3A(3)
AB

)
û B = AAB (k) û B = 0, (15)

which only has non-trivial solutions û B for the complex amplitudes if the determinant of the matrix AAB (k)
vanishes,

det [AAB (k)]
!= 0 . (16)
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Fig. 2 The branches of the dispersion relation for NSF, Burnett, G13, R13 as function of frequency ω. Only solutions travelling
into positive direction are shown. Positive values are the phase speeds vph = ω

ki
, negative values are the corresponding damping

coefficients ki . We distinguish acoustic mode (continuous lines), heat transfer mode (dashed lines) and rarefaction mode (dotted
lines, Burnett and R13 only)

Due to the polynomial structure of the complex matrix AAB (k), its determinant is a polynomial of degree ν
in k, with ν = 4 for NSF and G13, and ν = 6 for R13 and Burnett. Solution of the solvability condition (16)
gives the ν branches of the dispersion relation

ka (ω) , a = 1, . . . , ν. (17)

Only for these values of k is the solution non-trivial. The complex amplitude vector û B must be a corresponding
null-vector RB ; we write

û B (ka (ω)) = Ra
B (ω) with AAB (ka (ω)) Ra

B (ω) = 0. (18)

The general solution for the fields u A is the superposition of the solutions for all branches of the dispersion
relation,

u A =
ν∑

a=1

αa Ra
A (ω) exp [i (ωt − ka (ω) x)]. (19)

The ν weight factors αa , a = 1, . . . , ν, must be determined from the boundary conditions. The computation
of the dispersion relation ka and of the null-vectors Ra

B can be done easily with commercial computer algebra
systems; we used Mathematica.

4.2 Dispersion relation

Before we proceed with the solution for the resonator problem by adapting the amplitudes to the boundary
conditions, we have a short glance at the dispersion relations for our four sets of equations.

For all sets, we find an even number of branches, which occur pairwise, each pair describing one wave
travelling to the right and one travelling to the left with identical speed and damping. Figure 2 shows the
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branches with positive phase velocity plotted over the dimensionless frequency ω. In the plots, curves with
positive values are the phase velocity vph = ω

kr
and curves with negative values show the corresponding

damping factor ki .

For ω → 0, we find one mode with the (dimensionless) phase velocity
√

5
3 = 1.29 and vanishing damp-

ing for all sets of equations (continuous lines in all figures). This is the acoustic mode which describes the

propagation of weakly damped waves with the speed of sound
√

5
3RT . The various sets of equations predict

growing sound velocity and damping; however, the predictions differ greatly in detail, with NSF predicting
the fastest increase of sound speed and damping, and R13 predicting the smallest increase of speed and even
a slight decrease for ω > 1. As will be seen in the proceedings, the acoustic mode is the main mode for the
description of the resonator, the different predictions of the four models are mainly due to the differences in
phase speed and damping of the acoustic mode.

Another mode common to all sets for small ω is a diffusive mode with, in the limit ω → 0, k = ±
√

ω
3

(1 − i), shown in the dashed curves in the figures. This mode is more strongly damped than the acoustic mode,
which is a main reason that it plays only a minor role in the resonator. Again, the four models differ widely
in the details for phase speed and damping of this mode as frequency grows. In particular, all models but G13
predict growing phase speed and damping, that is the mode remains of diffusive character as frequency grows.
For G13, however, due to the hyperbolic character of the equations [9] , this mode changes is character: phase
speed and damping approach constant values, much like in the acoustic mode.

Only Burnett and R13 equations exhibit another mode, which has finite wavespeed for ω → 0, but is
strongly damped. Since this mode is present only in the higher-order theories, we consider it related to gas
rarefaction and speak of the rarefaction mode. In the frequency range shown, R13 and Burnett almost agree in
the prediction of damping for this mode, but Burnett predicts a somewhat larger phase speed.

Interestingly, the Burnett equations predict that the damping of the rarefaction mode changes its sign at
about ω = 5.96 (not shown in the figure). Negative damping (or positive ki ) implies that the wave amplitude
grows along the path of propagation, which is, of course, unphysical. Resonator simulations for frequencies
above 5.96 show hugely overblown pressure and temperature values. This unphysicality of the Burnett equa-
tions occurs at very high frequencies, far beyond the frequency range where one would expect the Burnett
equations to be valid, and we shall not show pertinent results.

4.3 Applying boundary conditions

For the application of the boundary conditions we adopt again a general notation for all four models. We
note that the number of boundary conditions provided for each model equals the number ν of solutions of the
dispersion relations, or wave modes. Since the various boundary conditions (5, 7, 9, 11) contain up to three
space derivatives of the variables, and must be evaluated at x = 0 and x = L , we can write in compact form:

Transducer conditions, a = 1, . . . , ν
2 :

�
(0)
a Au A (0, t) + �

(1)
a A

∂u A

∂x
(0, t) + �

(2)
a A

∂2u A

∂x2 (0, t) + �
(3)
a A

∂3u A

∂x3 (0, t) = Fa (t),

Receiver conditions, a = ν
2 + 1, . . . , ν:

�
(0)
a Au A (L , t) + �

(1)
a A

∂u A

∂x
(L , t) + �

(2)
a A

∂2u A

∂x2 (L , t) + �
(3)
a A

∂3u A

∂x3 (L , t) = Fa (t),

with suitable matrices �
(α)
a A ; note that the wall normal n = ±1 occurs in some elements of the �

(α)
a A . Fa (t) is

the forcing term that contains only the wall velocities and the wall temperatures. Since the only forcing is the
velocity of the transducer at x = 0, we have Fa (t) = {V0 cos ωt, 0, 0, 0, . . .}.

Insertion of the general solution (19) yields, after all derivatives are performed, and the time dependency
is cancelled,

ν∑

b=1

[
�

(0)
a A − ikb�

(1)
a A − k2

b�
(2)
a A + ik3

b�
(3)
a A

]
Rb

Bαb = F̂a, (20)
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ν∑

b=1

[
�

(0)
a A − ikb�

(1)
a A − k2

b�
(2)
a A + ik3

b�
(3)
a A

]
exp [−ikb L] Rb

Bαb = F̂a, (21)

where the first line refers to the transducer boundary (a = 1, . . . , ν
2 ) and the second line refers to the receiver

boundary (a = ν
2 +1, . . . , ν); the driving amplitude is F̂a = {V0, 0, 0, 0, . . .}. This is simply an inhomogeneous

linear system for the amplitude factors αa of the form

ν∑

b=1

Babαb = F̂a, (22)

where the elements of the matrix Bab can be read of directly from (20). Inversion of the matrix yields the
amplitudes, and the solutions of all sets of equations can be written in the common compact form

u A (x, t) =
ν∑

a,b=1

Ra
A (ω) B−1

ab F̂b exp [i (ωt − ka (ω) x)]. (23)

The meaning of all elements in this equation is readily available from the details given in the text. We have
implemented all details in a Mathematica file, which allows to plot all fields u A (x, t) for any frequency ω and
any device length L .

5 Results

For all results presented, we set the Knudsen number in the equations equal to 1, so that the dimensionless
frequency and the inverse dimensionless length become the relevant Knudsen numbers of the problem as
discussed in Sect. 2.3. For all solutions, the velocity amplitude is set as V0 = 1.

5.1 Receiver signal

Schotter made detailed measurements of the pressure amplitude and the phase shift at the receiver for dimen-
sionless frequencies between 0.3 and 83.9, where he used a fixed frequency and varied pressure. Since the
macroscopic models considered are only valid for sufficiently small Knudsen numbers, we consider his results
only up to ω = 1.09 for comparison.

The receiver measures the oscillation of normal force p + σ = ρθ + σ over the groundstate p0 = ρ0θ0.
Due to the linear regime, the oscillation is given by P (t) = ρ̃ (L , t) + θ̃ (L , t) + σ̃ (L , t) and must be of
the form P (t) = P0 cos (ωt + ϕ). Schotter plotted the logarithm of the scaled amplitude P0and the phase ϕ

over scaled resonator length
√

π
2 Lω. Amplitude and phase can easily be extracted from our solution (23) and

plotted.
In order to compare to Schotter’s measurement, we copied his curves and coordinate axes into a graphics

program and rescaled to the measures of the plots generated from our solutions.
In order to have a transparent presentation of all curves, curves for different ω-values were shifted verti-

cally. The curves obtained from simulation are all shifted by the same distance, and the measurement curves
were shifted to give a good fit to the simulations. Here one has some freedom, in particular the measurement
curves can be shifted for good match with R13 or Burnett. In order to give a fair picture, the plots contain two
measurement curves for the higher frequencies, one shifted to match R13 and one shifted to match Burnett.

Figure 3 shows the plots for amplitude and phase shift that were obtained in this manner. While measure-
ments are not available for frequencies below ω = 0.3, we include simulations for ω = 0.1 and ω = 0.2.
Again we recall that dimensionless frequency acts as Knudsen number Knω and that all theories are limited to
small Knudsen numbers. However, NSF is of first order in Kn, G13 and Burnett are of second order in Kn and
R13 is of third order in Kn. For the smallest Knudsen number, ω = 0.1, all four theories yield the same results,
the curves lie on top of each other. As frequency, i.e. Knudsen number, grows, the curves of the theories fan
out, with R13 and Burnett giving excellent fits, NSF giving the poorest fit and G13 lying in between.

For the smallest frequencies, ω = 0.1 and 0.2, we recognize distinct peaks and valleys in the amplitude
which are due to resonance, that is positive and negative interference with the wave reflected at the receiver. As
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Fig. 3 Amplitude and phase shift at the receiver as function of dimensionless length
√

π
2 Lω. Computations for NSF (blue, long

dashes), Burnett (orange, dashes), G13 (green, dash-dots) and R13 (red, short dashes) are compared to measurements (black,
continuous) by Schotter [23] for dimensionless frequencies ω between 0.1 and 1.09. For frequencies ω = 0.54 and higher two
measurement curves are shown, one shifted to match Burnett, the other to match R13, see the text for details (colour figure online)

frequency grows, the peaks for larger resonator length (Lω) cannot be seen anymore. Indeed, as Fig. 2 shows,
damping of all modes grows considerably with frequency. Thus, there is so much damping in the rarefied gas
that the amplitude of the reflected signal is too weak to play a significant role, and resonance is observed only
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Fig. 4 ω = 0.1: Velocity amplitude as function of space coordinate (continuous curves) together with the amplitudes for the
different modes of the dispersion relation: acoustic mode (dashed), diffusion mode (dash-dotted), rarefaction mode (dotted)

for smaller values of L(
√

π
2 ωL � 5). The tail of the curves for larger L is dominated by damping which

determines the slope.
For very small L , the computed pressure values lie well above those measured. As stated in Sect. 2.3,

the inverse dimensionless length is another Knudsen number of the problem. Thus, small L corresponds to
large KnL . Since all models are valid only for smaller Kn, they cannot be expected to give good results for
small L . All theories considered describe the gas as a continuum, that is the collective behaviour of the gas.
For these extremely small scales, however, particles are freely flying between transducer and receiver, and the
macroscopic description cannot describe the individual behaviour of these particles.

In summary, we observe that the R13 and Burnett equations give excellent agreement with the measure-
ments for frequencies up to 0.87 or even 1.09, as long as the distance L between transducer and receiver is
sufficient. We emphasize that some arbitrariness is involved in shifting the experimental curves. The theoretical
curves show clear differences in the actual curves between R13 and Burnett which were produced with the
same boundary data. Since the measurements are given on arbitrary axes, they had to be shifted, and the actual
amount of shift required cannot be reconstructed from Schotter’s paper [23]. We recall that R13 is of third
order in Kn and Burnett is of second order in Kn. Thus, one would expect R13 to give a better fit up to higher
frequencies.

The first-order NSF equations already fail for the relatively small frequency of ω = 0.3, a simple reflection
of the limits of classical first-order hydrodynamics.

Considering that the Burnett equations can be derived by Chapman–Enskog expansion of the G13 equa-
tions, the latter give surprisingly low accuracy. For all frequencies from ω = 0.3 onward their results have
distinctively lower accuracy than Burnett.

5.2 Amplitudes and modes

The calculations also allow us to have a look at data that are not accessible to measurements. Figures 4, 5
and 6 show the local velocity amplitude over the space coordinate together with the local amplitudes for each
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Fig. 5 ω = 0.5: Velocity amplitude as function of space coordinate (continuous curves) together with the amplitudes for the
different branches of the dispersion relation: acoustic mode (dashed), diffusion mode (dash-dotted), rarefaction mode (dotted)

Fig. 6 ω = 1.0: Velocity amplitude as function of space coordinate (continuous curves) together with the amplitudes for the
different branches of the dispersion relation: acoustic mode (dashed), diffusion mode (dash-dotted), rarefaction mode (dotted)
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of the modes. For better appreciation we point out that the individual modes have phase shifts against each
other. Therefore, the individual modes reach their local maximum (i.e. the full amplitude) at different times.
Accordingly, the amplitudes of the modes do not add up to the total amplitude, which is smaller than the sum
of amplitudes.

In Fig. 4 the frequency is relatively small, at ω = 0.1, and the distance is relatively large, at L = 140, a
case where the Knudsen number is small and all theories give the same results. We see a clear wave structure,

although the wave is not standing, due to damping (acoustic wave length is λ =
√

5
3

2π
ω

� 81). It can be seen
that the diffusion mode (dash-dotted) contributes only very little in a small area close to the walls, due to heat
transfer between the gas and the walls—there is a temperature difference between the expanding/contracting
gas and the walls at θ0. The rarefaction mode (dotted, Burnett and R13 only) has zero amplitude, which cor-
responds well with the low degree of rarefaction, where no rarefaction effects are expected. With these two
modes essentially negligible, the acoustic mode (dashed) agrees with the total signal in the bulk, i.e. a bit away
from the walls. In other words, for this case only the acoustic mode is relevant, and the other modes could be
ignored.

Figure 5 shows similar curves for a case where the frequency is ω = 0.5, and shorter length L = 12.5.
Again, the total amplitude is mainly identical to the amplitude of the acoustic mode, but for all models we
observe a distinct contribution of the diffusion mode. The rarefaction mode contributes almost nothing to the
Burnett and R13 results. For the G13 equations, the diffusive mode shows a bit of a resonance, which is due
to the sound-like character that the mode assumes for larger ω.

Finally, Fig. 6 shows the amplitudes for an even higher frequency, ω = 1.0, and shorter distance, L = 8.
Differences between the theories are quite distinct. Due to the strong damping predicted, NSF does not show a
wave structure at all. G13, on the other hand, predicts a superposition of two waves with different wavelengths.
R13 predicts a more pronounced wave than Burnett. In all cases, the diffusive mode is clearly excited, and the
contribution of the rarefaction mode (Burnett and R13 only) cannot be ignored any more. Due to lack of data
for comparison, we cannot judge whether the R13 or Burnett prediction is more reliable.

5.3 Overall damping and velocity

Experimentally, one determines phase speed and damping by assuming that the pressure signal in the resonator
is a single damped wave of the form (13),

P (x, t) = A exp [ki x] cos [ωt − kr x + ϕ]. (24)

Considering this equation for two locations X1 and X2, one finds

kr = arccos P(X1,0)
P(X1,t1)

− arccos P(X2,0)
P(X2,t1)

X2 − X1
, ki = ln P(X2,t2)

P(X1,t1)

X2 − X1
(25)

where t1,2 are the times where cos[ωt − kr X1,2 + ϕ] = 0. Thus, the elements of the complex wave vector can
be determined from the slopes (properly rescaled) of the curves shown in Fig. 3. In the measurement, X1 and
X2 are, in fact, different resonator lengths.

While our analytical result is a superposition of damped waves, we can use the above method to determine
overall values for kr and ki from the solution. In other words, we consider the computed curves in Fig. 3 and
determine the overall wave vector from the slopes of the curves. Clearly, one has to use the right end of the
curves (i.e. longer resonators), so that resonance does not affect the outcome. Results of this procedure for
phase velocity vph = ω

kr
and ki are shown in Figs. 7 and 8 for the four theories under consideration (dots),

together with experimental data (diamonds, [25]) and the curves for the different branches of the dispersion
relation. The latter are the same as in Fig. 2, only that the frequency range is extended, and the frequency axis
is logarithmic.

The dots in Fig. 7 were determined for very long resonators (
√

π
2 Lω � 275). One sees nicely that the

overall results (dots) agree perfectly with that mode of the dispersion relation that has the lowest damping. For
NSF, Grad13 and R13, this is always the sound mode, but for Burnett, there is a switch between sound mode
and diffusion mode at about ω � 2.

Somewhat surprisingly, the Burnett sound mode gives the damping ki in good agreement with experimental
data for the whole frequency range shown. However, the result shows that above ω � 2 the sound mode is not
relevant for the prediction.
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Fig. 7 Phase velocity and damping for the various theories plotted together with experimental data (diamonds, [25]) and average
values determined from the slopes of damping and phase (dots). The branches of the dispersion relation are shown as lines, as in
Fig. 2. These curves are for very long resonator

Figure 8 shows data for shorter resonators (
√

π
2 Lω � 27.5). For NSF and R13 the overall wave vec-

tor follows essentially the sound mode, but for Burnett and G13 we observe more marked deviations which
are due to the superpositions of several important branches of the dispersion relation. Due to the scale, it
is somewhat difficult to compare the predictions of the various theories for wave speed and damping with
the experimental data. Better comparison is possible when one considers the inverse dimensionless wave

speed
√

5
3

1
vph

= kr
ω

and the reduced damping k
ω

as functions of the inverse frequency 1
ω

, as shown in Fig. 9
for the sound modes of all four models. One can see nicely that NSF and G13 give agreement only for
smaller frequencies while Burnett and R13 give a good description for frequencies up to ω = 1 or even
higher.

As stated above already, it is quite surprising that Burnett gives a much better description than G13, since,
indeed, Burnett can be derived from G13 through the Chapman–Enskog method.
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Fig. 8 Phase velocity and damping for the various theories plotted together with experimental data (diamonds, [25]) and average
values determined from the slopes of damping and phase (dots). The branches of the dispersion relation are shown as lines, as in
Fig. 2. These curves are for short resonator

Fig. 9 Sound mode: Inverse dimensionless phase speed
√

5
3

1
vph

= kr
ω

and reduced damping k
ω

as functions of the inverse frequency
1
ω

. The points are experimental data [25]

6 Conclusion

We have considered mildly rarefied gases in resonators with the Navier-Stokes-Fourier, Burnett, G13 and R13
equations. Full solution of the resonator boundary value problem shows that all transport modes contribute to
the sound propagation, but one mode, the sound mode, dominates transport, since this is the mode with lowest
damping. Only shorter resonators are influenced by the other modes.
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