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Efficient modelling of gas microflows requires accurate, yet fast to solve, models. For finite but moder-
ate Knudsen numbers, extended macroscopic transport equations offer an alternative to the Boltzmann
equation, from which they are derived. Classical and modern approaches for the derivation of these mod-
els are reviewed, and the resulting equations are compared for their ability to describe the multitude of
known rarefaction phenomena. Among the equations discussed are the Burnett and super-Burnett equa-
tions, Grad’s 13 moment equations, and the regularized 13 and 26 moment equations.
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1. Introduction
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The accurate simulation of gas flows in microdevices requires effective transport models that allow forg,
fast and accurate solutions of gas microflows. Gas flows are characterized by their Knudsen number Krg:
which is defined as the ratio between the mean free path of a gas particle and the typical length scalg
of the flow. Classical gas flows have small Knudsen numbersSKin01 (say), and can be described P
by the equations of classical hydrodynamics, i.e., the laws of Navier—Stokes and Fourier (NSF). For gag,
microflows, however, the Knudsen number is not sufficiently small to guarantee the validity of the NSF g
equations, and the processes must be modelled with more detailed theories. The most detailed descri§—
tion of gas flows is provided by the Boltzmann equation, which describes the microscopic behaviour of .
the gas and is valid for flows at all Knudsen numbé&hgpman & Cowling,1970;Cercignani, 1975;
Sone,2002;Struchtrup2005b).

The NSF equations solve for the macroscopic quantities mass dgisityt), velocity i (xk, t) and
temperaturf (xk, t), at all locations¢ andall timest. The Boltzmann equation, on the other hand, is an
equation for the particle velocity distributioh(xk, t, ck), whereck denoteghe microscopic velocity of
the particles. The interesting macroscopic quantities, g,®;,, T, follow from suitable averaging over
the distribution function. Obviously, the NSF equations pose a mathematically less complex problems
than the Boltzmann equation. Indeed, even for simple flow problems, for which NSF can be solvedy
analytically, the Boltzmann equation must be solved numerically, either directly or by means of the i
direct simulation Monte Carlo method (DSM@i(d, 1994). Due to its complexity and stiffness codes §
must run for long time; in particular at intermediate Knudsen numbers in the so-called transition regime
(0.01 < Kn < 10) computational times can be measured in days or sometimes weeks.

The NSF equations can be derived from the Boltzmann equation in the limit of sufficiently small
Knudsen numbers (Chapman & Cowlint970; Ferziger & Kaper,1972; Kogan 1969; Struchtrup,
2005b), and thus arises the gquestion whether it is possible to derive macroscopic transport equations
from the Boltzmann equation for flows at larger Knudsen numbers. This is indeed the case and there
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areseveral methods to derive macroscopic equation systems that go beyond the capabilities of the NSF
equations to describe rarefied gas flows. In the following, we give a brief overview over the development
of this topic in recent years, with some focus on our own contributions. We shall show that, with some
limitations, extended transport models are indeed able to describe rarefied gas flows with Knudsen
numbers Kn< 1 with sufficient accuracy.

For flows outside the hydrodynamic regime, that is for Kr0.01, many interesting phenomena—
rarefaction effects, which do not arise in standard hydrodynamics—are found in experiments and from
the analysis of the Boltzmann equation or from its numerical solution. The touchstone for any extended
transport model is its capability to describe as many of these as possible. Some significant rarefaction
phenomena are (a) heat flux in flow direction without temperature gradarifyaiet al.,1992;Todd
& Evans 1995,1997; Uribe & Garcia,1999;Aoki et al., 2002); (b) non-constant pressure profile in
Couette and Poiseuille flow3i{ & Santos 1994;Tij et al.,1998;Mansouret al.,1997;Uribe & Garcia,
1999;A0ki et al.,2002); (c) in Poiseuille flow, the mass flow exhibits a minimum for Knudsen numbers
around unity (Knudseri,909;Deissler,1964;Ohwadaet al.,1989;Hickey & Loyalka 1990;Lockerby
et al., 2004; Hadjiconstantinou2006), and (d) there is a characteristic dip in the temperature profile
(Alaoui & Santos,1992;Tij & Santos 1994;Mansouret al.,1997;Tij et al.,1998;Aoki et al.,2002;
Zhenget al.,2002;Xu, 2003;Xu & Li, 2004); (e) transpiration flow, that is flow induced by a tempera-
ture gradient in the wall§one,2002; Sharipov & Seleznev1998); (f) Knudsen boundary layers at the
walls (Sone,2002; Ohwadaet al., 1989;Risso & Corderp1998); (g) phase speed and attenuation of
high-frequency sound waves differ from the prediction of classical hydrodynafregfspan] 956);
and (h) the detailed structure of shock waves, which cannot be reproduced by classical hydrodynamics
(Alsmeyer 1976;Gilbarg & Paolucci1953;Holianet al.,1993).

The earliest derivation of the NSF laws from the Boltzmann equation used the Chapman—Enskog
(CE) expansion to first order in the Knudsen numbighgpman & Cowling1970; Cercignani,1975;
Ferziger & Kaper,1972;Kogan 1969). While this result gave trust in the CE method, its application to
higher orders gives the BurneB(rnett,1936) and super-Burnett equatioi@h@valiyey 1993), which
turn out to be unstable in time-dependent probleBuabf/lev, 1982;Rosenaul989;Uribe et al., 2000).

But even for most steady-state problems, the Burnett equations cannot be solved since they lack a com-
plete set of boundary conditions. Moreover, the CE method, which relies on an asymptotic expansion
of the Boltzmann equation in the Knudsen number, is not appropriate for Knudsen layers, and thus the
Burnett and super-Burnett equations do not properly describe these. Due to these problems, attempts
to stabilize the Burnett equationgHonget al., 1993; Bobyley, 2006; Soderholm,2007) found only

limited recognition. For a detailed review of the literature on Burnett-type equatiorSada-Coln

et al. (2008).

The other classical approach to extended transport equations is Grad’s moment rGeduhtiq49,

1958) where the space of macroscopic variables is extended by including stressstgniseat flux
vector g, and other moments of the distribution function. The resulting equations are stable and, if
the number of variables is sufficiently large, can describe Knudsen lageiebuch & Weiss1999;
Struchtrup,2002,2008). Nevertheless, the Grad method is not accompanied by a guideline that would
state how many, and which, variables are required for flows with a given Knudsen number. While
Grad provided a theory of boundary conditions for his equati@m®ad, 1949), only few solutions

of boundary-value problems are available in the literatiMarfues & Kremer2001). Due to the
hyperbolic character of the equations, shock structure calculations show spurious subgYeisks (
1995).

In short, due to the various issues mentioned above, both, Burnett-type and Grad-type equations, do
not fulfill the requirements on a macroscopic set of equations to describe rarefied gas flows.
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Since 2003 we are involved in the development and evaluation of the regularized 13 moment (R13)
equations which are of third order in the Knudsen number Kn, i.e., of super-Burnett Goat, (
1958; Karlin et al., 1998; Struchtrup & Torrilhon 2003; Torrilhon & Struchtrup 2004; Struchtrup,
2004b,2005b). Their rational derivation from the Boltzmann equati®trychtrup & Torrilhon,2003;
Struchtrup,2004b,2005b) combines elements of the CE and Grad methods with new ideas, and the
equations combine the benefits of Grad and Burnett-type equations while omitting their problems.

In particular, the R13 equations are linearly stable (Struchtrup & Torrjl2@d3;Struchtrup2004b,
2005b); give accurate predictions for phase speeds and damping of ultrasound Stavelstiup &
Torrilhon, 2003; Struchtrup,2005b); give smooth shock structures even for high-Mach numbers
(Torrilhon & Struchtrup 2004); exhibit Knudsen boundary layerSt(uchtrup & Torrilhon 2003);
(Struchtrup & Thatcher2007a); are furnished with a complete theory of boundary conditions
(Torrilhon & Struchtrup,2008; Gu & Emerson 2007); and obey an H-theorem for the linear case,
including the boundary conditions (Struchtrup & TorrilR@007b).

With this, the R13 equations currently represent the most successful extended hydrodynamic mode
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at Burnett or super-Burnett order. They give reliable results (error belowr %) for Knudsen numbers g
up to Kn =~ 0.5. While the model was developed for 13 moments, all ideas (derivation, boundary €
conditions, numerical methods, ...) can be applied to larger moment numbers. This extends the valldltyg
of the model to larger Knudsen numbegtriichtrup,2005b): Gu and Emerson have developed and 2
solved the R26 moment equatiorGy & Emerson 2009; Gu et al,, 2010) which give reliable results ﬁ
(error below~5-7%) up to K~ 1.0. c

A particularly important feature of the R13 and R26 equations is that they are accessible to analyncal(%’

solutions of boundary-value problems, even for somewhat non-linear proc8gseh({rup & Torrilhon
2007b,2008; Taheriet al, 2009b;Taheri & Struchtrup2009,2010a,b). Moreover, suitable numerical
methods allow their fast solution for steady-state problems by avoiding time stepping into equilibrium
(Torrilhon & Struchtrup 2008), which is a necessity in the DSMC method.

It should be mentioned that lattice Boltzmann schemes share some similarity with extended momen
systems (Ansumalet al, 2007). However, they have difficulty to describe the full array of kinematic
and thermal processes and their non-linear coupling.

The text book (Struchtruf2005b) gives a detailed overview on background and derivation of macro-
scopic transport equations for rarefied gas flows. Since the book was written, a considerable amount Qi—
work on the R13, and the R26, equations was published, and the present review can be considered &
an update. Nevertheless, the paper gives an complete overview on the topic. The most important resulfg
since publication of (Struchtru2005b) concern boundary conditions and solutions of boundary-value
problems, and we discuss some of these.

In the remainder of the paper, we first give a brief summary of basic elements of kinetic theory
(Section 2), followed by a description of the derivation of Burnett, Grad and R13 equations from the 2
Boltzmann equation (Section 3), and a summary of the theory of boundary conditions (Section 4).5 5
Finally, in Section 5, we present some analytical results to showcase rarefaction phenomena and thg
equations’ ability—or disability—to describe these.
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2. Basic kinetic theory
2.1 Distribution function and Boltzmann equation

We shall consider monatomic ideal gases exclusively. The basic quantity in kinetic theory is the particle
distribution functionf (x, t, ¢); x andt are the space and time variables, respectivelycatehotes the
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microscopicvelocities of particles. The distribution function is defined such th@t t, c)dcdx gives
the number of gas particles in the phase space cetka@t timet.

Macroscopic quantities are obtained by taking suitable averages, i.e., moments, of the phase density.
The basic hydrodynamic variables mass dengsijtyelocity v; andinternal energy are given by

3 m
pzm/fdc, pq=m/cifdc, pu=§pa=§/c2fdc. (2.1)
Here,0 = %T is the temperature in energy unitg,is the mass of a particld, denotes Boltzmann'’s

constant an®; = ¢; — v; is the peculiar velocity.
The pressure tensor (i.e., the negative of the stress tensor in hydrodynamics) is given by

poi} + oij =m/Ciijdc with p= g/czfdc, i =m/C<iCj>fdc, 2.2)
where,due to @.1), the pressure obeys the ideal gas lawa = p0, andoj; denotesvhat we will call

the stress, that is the symmetric and tracefree mdrthe pressure tensor, with; = 0, oij = ogji. The
heat flux vector is given by

G = g / C2C; f de. (2.3)
The space-time behaviour of the phase dengii, t, ¢) is governed by the Boltzmann equation,
of of
—+c—=3S. 2.4
ot T 9% @4

Here,the two terms on the left describe the free flight of particles, &ruh the right-hand side is the
collision term which describes the changefadiue to collisions among particles. The full expression for

S can be found in the literatur€grcignani1975;Chapman & Cowling1970;Struchtrup2005b), here

we only list its most important properties: Mass, momentum and energy are conserved in a collision,
the production of entropy is always non-negative (H-theorem), in equilibrium the phase density is a
Maxwellian distribution, i.e.

2
S:Ozf:szﬁ%exp[—C—]. (2.5)
m /276 20

The Boltzmann collision terns is a complex non-linear integral expressionfithat depends also on
the interaction potential between the particles. Its mathematical treatment becomes particularly simple
for particles interacting with a repulsive fifth-order power potential, the so-called Maxwell molecules
(Chapman & Cowling 1970; Cercignani,1975; Struchtrup,2005b). More realistic potentials, e.g.,
general power laws, hard sphere molecules or Lennard—Jones potentials introduce higher complexity
(Cercignani1975;Bird, 1994).

Simplified expressions fa$ which capture its basic properties are often used, the most popular of
these is the Bhatnagar-Gross-Krook (BGK) moddtnagaet al., 1954; Struchtrup2005b) where

Sgek = v(fm — f); (2.6)

IHereand in the following, indices between angular brackets denote symmetric trace-free tensors, Stedhefup(2005b),
Appendix A.2.
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wherev is the average collision frequency for a particle. While the BGK model meets the above three
points, it is less accurate than the Boltzmann collision term, in particular it gives a wrong value of the
Prandtl number.

2.2 Knudsen number

Most macroscopic models for rarefied gases are derived from the Boltzmann equation by means og
scaling arguments. For a proper understanding, one best considers dimensionless equations in which tge
Knudsen number Kn appears as the appropriate scaling parameter.

We denote the basic length scale of the problem at harid #ss could be, e.g., the diameter of a
pipe, the size of an obstacle or a wavelength. For further scaling, we use the thermal particle velouty
C = /260, a reference number density, and an average collision frequengy. With these, we form
the dimensionless quantities

0.} pape

w

fo=f =2 f==t ==, §=-213; 2.7
No ! L L “ C vo No ( )

thescaling of the collision term is evident from the BGK collision ter2g).
Accordingly, the dimensionless Boltzmann equation reads

of of 1 4
— 4+ G — = —S(f, ). 2.8
ot Y95 kno(h 1 (2.8)
with the Knudsen number
Kn = 1/])9 = i
L/C L
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Here,l = C/vg isthe mean free path of a particle, that is, the average distance a particle travels betweerg:
two collisions; the Knudsen number is the ratio between mean free path and macroscopic length scalg
L. One distinguishes the following regimes for processes, with the appropriate transport equations:

e Kn < 0.01: Hydrodynamic regime, NSF equations.
e 0.01 < Kn < 0.1: Slip flow regime, NSF with jump and slip boundary conditions
e 0.1 < Kn < 10: Transition regime, Boltzmann equation or extended macroscopic models

e Kn 2> 10: Free molecular flow, Boltzmann equation.

uo sjelas Areliqi] uosiaydo

As will become clear in the next section, processes with very small Knudsen numbers can be de—11
scribed by the classical transport equations. For relatively small Knudsen numbers in the slip-flow &
regime it suffices to provide appropriate boundary conditions to the NSF equation. All flows with £
Knudsen numbers above 0.1 (say), are rarefied flows, and must be described with extended macroscop
models or the Boltzmann equation.

For small mean free path—and Knudsen number—the gas particles travel only a short distancek
and carry momentum and energy only to their immediate neighbourhood. Thus, transport processes are
essentially local. When the mean free path—and thus the Knudsen number—becomes comparatively
large, the gas particles travel larger distances between collisions, and carry energy and momentum to
more distant locations: transport processes become non-local. Capturing non-local effects with contin-
uum models requires higher-order gradients in the transport laws, as will be seen in the Burnett-type
equations, or extended sets of equations of balance law-type, as will be seen for moment equations.

enl
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2.3 Macroscopic equations

For many processes, the main interest is not the detailed knowledge of the distribution fundtian
the knowledge of its macroscopically meaningful moments, in particular density, velocity, temperature,
shear stress and heat flux. These can be obtained by solving the Boltzmann equati@mébsubse-
guent integration. An alternative to this is to construct, and solve, a set of equations for the macroscopic
quantities{p, v;, 9, .. .}.

Multiplication of the Boltzmann equatio2(4) with{m mg, > C2} andsubsequent integration over
the microscopic velocity yields the conservation laws for mass, momentum and internal energy,

op  Opug
ot + oxx
ovj ovj op = Ooik
- — 4+ -4+ = =0, 2.9
Por TPY "ax Tox T oxe (2:9)
3 08 3 00k 5U|
Epa 2p k—+67=—(p5|1+0u)

Multiplication of the Boltzmann equation with-k In 7 (y is a constant) yields the balance of entropy,
which has a non-negative production. For space reasons, we shall not further discusSetcageani
(1975),Chapman & Cowling1970) andStruchtrup(2005b) for details.

The conservation laws (2.9) together with the definitions for stress and hea? f4).3) are exact,
that is they are valid for any solutiof of the Boltzmann equation. To guarantee the proper physics, the

five conservation laws must be among the equations considered to describe the gas on the macroscopic

level. Obviously, since they contain stregs andheat fluxg;, the conservation laws alone do not form
a closed set of equations for the hydrodynamic variajpes;, 6}; additional equations fasi; andg;
arerequired.

The idea of macroscopic continuum approximations is to close the set of equations by deriving ad-
ditional macroscopic equations fef; andg; from the Boltzmann equation through rational approxima-
tion procedures. Various methods are available to this end, and the corresponding additional equations
for gij andg;, will be discussed in the sequel.

3. Transport equations
3.1 Chapman-Enskog method

The best known approach to derive macroscopic transport equations from the Boltzmann equation is
the CE methodCercignani1975;Chapman & Cowling1970;Kogan 1969;Ferziger & Kaper,1972;
Struchtrup,2005b), which is based on the dimensionless form of the Boltzmann equation (2.8). To
simplify notation, we will not write the hats that denote dimensionless quantities.

In the limit Kn — 0, the collision termS must vanish, and it follows from the properties listed in
Section? that the corresponding phase density is the local Maxwellian (28),= f\. Evaluation of
gij andg; with the Maxwellian gives zero stress and heat flux,

o = =q® =o0. (3.1)

Insertionof this into the conservation Ian.@) yields the Euler equations, which form the appropriate
set of transport equations for flows with negligible Knudsen numbers. Note that the Euler equations do
not describe dissipative processes, viscosity and heat conductivity are effectively zero.
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The idea of the CE expansion method is to add corrections to the local equilibrium distribution by
adding terms of higher orders in the Knudsen number,

f=fO4KnfD4Kn?f@ ..., (3.2)

subject to the condition that the hydrodynamic varialfe;, 6} are the same at any level of expansion,

so that
3 o C?
p[l,Di,Eg}:m/[l,q,7} f(o)dC, 0:/{1,Ci,?]f(a)dC(a>1). (33)

Theabove compatibility conditions guarantee that only the equations for the non-equilibrium variables
gij andg; changewith increasing degree of approximation,

aij = o +Kng\D + Kn%@ + ... g =q® +Kkng? +Kn?gP +. . (3.4)
The expansion parametefs® are determined successively, by plugging the seri@g)(into the
Boltzmann equation, and equating terms with the same factors in powers of the Knudsen number. Th
leads to an iterative structure, where the correction at erdea function of (derivatives of) the lower-
order correctionsf @ = F(f# 0 < g < a), see, e.g.Kogan(1969) andStruchtrup(2005b). All
correction terms depend only on the hydrodynamic variables and their grafigntgthe zeroth-order
term—the Maxwellian—depends only on the hydrodynamic variaples;, 0}. Stress and heat flux are
computed from the approximation (3.2) by accounting for terms up to a certain order, and the resulting
expressions will relatej; andg; to the hydrodynamic variables and their gradients.

We have already seen that to zeroth order, the expansion yields the Euler equafipnbhe first-
order correction gives the laws of NSF,

Aisianiun 1e 6J@S|eum0[p104x0'1etuew! wioJy papeojumod
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The most important success of the CE method is that it gives accurate expressions for vigcasity

heat conductivityc, which relate these to the microscopic interaction potential and the hydrodynamic
variables Kogan 1969; Struchtrup,2005b). In particular one finds, in accordance with experiments,
that the viscosity depends only on temperature and not on density. For power potentials, the CE metho
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2
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= — 3.6 =

w=no(z) @o g

R

with o = 1/2 for hard spheres and = 1 for Maxwell molecules; experiments indicate~ 0.8 for N

argon Bird, 1994). Heat conductivity and viscosity are related through the Prandtl nimber, E
2k 3

2Time derivatives are replaced by means of the conservation Kwegm() 1969; Struchtrup 2005b).
30ur defintion of the Prandtl number differs from the usual one by a fa#ttnlueto the use ob instead ofT .
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Thevalue of Pr varies only slightly (less than 1%) with the molecule model, and measured values are
close to 0.66 Chapman & Cowling1970). The BGK model relates viscosity and heat conductivity to
collision frequency agpek = £, andx = g%’ so that Pggk = 1.

For larger Knudsen numbers, i.e., for rarefied flows, higher-order terms must be considered in the
CE expansion. Including second order in Kn results in the Burnett equaBomsdtt,1936; Chapman
& Cowling, 1970;Kogan 1969;Struchtrup2005b),

100 0 10 Ovk Ovj 0
o = Whgy—2(-L (2P ) 4 LK P 0% g
! p 3 oxg oxi \p 0xj) OX(i 0Xk oXi

020 80 dlnp 100 a0
3 0 3-———— +8%i S , 3.7
+ OX(i OXj) + oxi oxj) + 6 ox;i oxj) 8% ”k] S
@ _ u? 7560k6|n9 45 (2 0%k 280k6|n6 +281)k6|n9
T o | 8axk oax 8 \ 3oxcdx | 3%k X oXi OXk
olnp oSk olng
-3 3— + 3.8
L ] 38)

with the abbreviatior; = a; . The many coefficients appearing in the Burnett equations depend on
details of the intermolecular mteractlon that manifests itself in the collision &rite above equations
are valid for Maxwell molecules, sdeeinecke & Kreme(1990) for the appropriate coefficients for
other molecular interaction potentials.

The third-order CE expansion yields the super-Burnett equations. Their computation is extremely
cumbersome, and to our knowledge the full 3D non-linear super-Burnett equations were never derived.
One only finds the linearized equations in 3avaliyey1993;Bobyley, 1982;Struchtrup & Torrilhon,

2003), and the non-linear equations for 1D geome8hayaliyey 1993; Fiscko & Chapman;1989;
Torrilhon & Struchtrup 2004).

The equations of NSF cease to be accurate for Knudsen numbers -ab@¥H, and one would
expect that Burnett and super-Burnett equations are valid for larger Knudsen numbers. Unfortunately,
however, the higher-order equations become linearly unstable for processes involving small wavelengths
(Bobylev, 1982;Rosenaul1989;Torrilhon & Struchtrup2004), and they lead to unphysical oscillations
in steady-state processé&tuchtrup2005a), and thus cannot be used in numerical simulations.

Zhong et al. (1993) suggested the ‘augmented Burnett equations’ where some terms of super-
Burnett order (but not the actual super-Burnett terms) are added to the Burnett equations to stabilize
these. This approach lacks a rational derivation from the Boltzmann equ@tioiiHon & Struchtrup
2004).

For reference in subsequent sections, we print the distribution function for the NSF equations

1) (1) 2
_ ok CiCo , 2%~ (C°_5
f|CE—f|v||:1+ 20 0 +5pHCk(20 5 )| (3.9)

3.2 Grad moment method

Grad suggested an alternative approach in which the number of variables is extended beyond the five
hydrodynamic variableg, vj, 8, by adding stressjj, heat fluxg; and other moments to the list of
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variables Grad,1949,1958). Just like the conservation laws, the transport equations for the additional
variables are obtained by taking moments of the Boltzmann equation. And again, due to the occurrence
of moments which are not among the variables, the resulting set of equations does not form a closed set
for the chosen variables and thus requires a closure argument. For this, Grad suggests to approximate
the phase density by an expansifg in Hermite polynomials about the equilibrium distribution (the
local Maxwellian), where the expansion coefficients are related to the monGais, {949,1958). o

A crucial point in the method is the question which, and how many, moments are needed to descrlbeg
a process. Grad's method does not provide an argument that links the Knudsen number to the set ¢f
moments to be considered as variables. In general, experience shows that the number of moments m@t
be increased with increasing Knudsen numbéiil{er & Ruggeri 1998;Struchtrup2002;Weiss 1995;
Au et al.,2001;Struchtrup2008).

If one considers only the hydrodynamics variallesv;, 0}, the Grad method gives the Euler equa-
tions, which do not include dissipation and are valid only for4n0.

To include dissipation, at least stress and heat flux must be considered as well—this gives the bes
known set of Grad-type moment equations, the 13 moment system with the vafjallesd, aij, g }.
The corresponding moment equations are obtained by multiplying the Boltzmann equation with
{m, mg, %CZ, mC;;Cj,, %CZCi}. This gives the conservation law2.9) plus additional moment
equations for stress and heat flux,

00ij Yo 80” Ovk 4 0q ovjj ovj) n omijk

at o T ”akaFSaxJ T2 T2 o T on — Tie B10)
6q| 6q| 5 o0 5 00 aO'|k oln P 7 61)| 2 al)k
L SNy utd L S St 4 S =X
ot T %o T2Pax T 2% axe V0o " o T 5% o T 5% ox
7 ovk 1loRk 1l1lo4 ovj O'ijaajk
L10Rk  tod . 0vi 000k _ . 3.11
5q OXk 2 OXk 6 OX; + Mijk OXk P OXk P ( )

Equationg3.10) and (3.11) contain additional moments of the distribution function, which are defined
as

A :m/c“(f - fm)de, Rj = m/(Cz—79)C<iCj>fdc, Mijk :m/C<iCjCk>fdc. (3.12)
Theterms on the right-hand sides are the moments of the Boltzmann collision term,
m 2
Pij=m [ CiC;ySdc, P = > C“CiSdc. (3.13)

Obviously, the set of equations can be closed by finding expressions, fy;, mjjk, Pij, P; thatrelate
these to the basic 13 variablgs, vj, 0, ij, i }. To this end, the Grad method provides the distribution
Grad(1949,1958); Struchtrup(2005b)

ciC 2 2
f|l3 = fm |:1+ Tik ik + = % —Cx (C— - §):| . (3.14)

1102 ‘2 Areniga- uo sfenas Areiqi] Uosiaydon “eLoldIA Jo Ausiaaun 1e o speuinolpiop yewew wouj

2p 6 5po \20 2

By comparing the distribution functions (3.9) argi14), it becomes evident that they are quite similar.
However, the first-order CE, phase density contains only the first approximations to stress and heat flux,
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ai(jl) andqi(l), while the Grad distribution contains both as independent variablgandg;, which are
to be determined from the moment equations (3.10) &riL].

The function (3.14) recovers the basic 13 variables and allows to compute the unki@oi&)sahd
(3.13) as

4=Rj=mjk=0, ’Pijz—EUij, Piz—ggqi. (3.15)

u 3u
Insertionof (3.15) into 3.10) and 8.11) gives, together witl2(9), the closed set of equations for the 13
variables.

The Grad 13 equations have two major drawbacks: (a) The equations are symmetric hyperbolic for
most values of the variables, and this leads to shock structures with discontinuities (subshocks) for Mach
numbers above 1.6%Alller & Ruggeri,1998; Weiss 1995). (b) Since Grad’'s method is not linked to
the Knudsen number, the range of applicability for the equations is unclear.

These problems remain for Grad-type equations with more variables, which give smooth shocks
up to higher, but not too high, Mach numbeY8diss 1995). The 13 moment equations do not describe
Knudsen boundary layerS{ruchtrup2003b,2002), however, increasing the number of moments allows
to compute these (Reitebuch & Wei4999;Struchtrup2002,2003a).

For large Mach or Knudsen numbers, one has to face hundreds of moment equations for which com-
putations are only manageable for simple geometries (\WE3S9;Mller & Ruggeri,1998;Struchtrup,

2002). Indeed, the goal of a macroscopic set of equations must be to have a simplification compared to
the Boltzmann equation and using hundreds of moments does not achieve this goal.

Grad moment equations do not posses an entropy. Several variants of the moment method were
suggested in the past to correct for this deficiency. The closure by maximization of erttafbgr(&
Ruggeri,1998; Dreyer,1987;Levermore 1996) leads to severe problems in detail (Jut898,2003;
Dreyeret al, 2001) and cannot provide an explicit closure. Just recently, a set of 13 moment equations
with entropy was suggested I®ttinger (2010a). Solutions to these equations are under development,
and one must wait for these for a proper assessmenStseehtrup & Torrilhon(2010) andOttinger
(2010Db) for preliminary comment.

3.3 Combining the Chapman-Enskog and Grad methods

Equation 8.4) shows that the CE expansion gives stress and heat flux in terms of the Knudsen num-

ber; higher moments can be expanded similarly. Thus, one can apply the CE expansion on moment
equations by expanding the non-equilibrium moments in Kn. Reinecke and Kremer extracted the NSF
and Burnett equations from extended Grad-type moment systeaisgcke & Kremer1990,1996).

In the original CE method, one first expands, and then integrates the resulting distribution function to

compute its moments. In the Reinecke—Kremer—Grad method, the order of integration and expansion is
exchanged.

For Maxwell molecules, Knudsen number expansion of the Grad 13 moment equations yields the
NSF equations at first order, and the Burnett equations at second order. The super-Burnett equations
result from the third-order CE expansion of the 26 moment set (which ddd®s;, mjjk to the list of
variables) (Struchtru®003b;Struchtrup & Torrilhon2003; Torrilhon & Struchtrup2004;Struchtrup,
2005b).

While the Reinecke—Kremer—Grad method does not give new results, it allows for an easier access to
higher-order CE expansions, in particular, the Burnett equations. The method does not solve the stability
problems of the Burnett and super-Burnett equations.
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The Grad equations, on the other hand, are stable, and, as the Reinecke—Kremer—Grad method
shows, they contain higher-order contributions in the Knudsen number. Naturally, the question arises
whether CE-like scaling can be used to relate sets of moment equations to Knudsen number.

Struchtrup and Torrilhon considered the Grad 26 moment system and assumed different time scales
for the 13 basic variables of the 13 moment equations on one side, and all higher moments on the other
(Struchtrup & Torrilhon,2003; Torrilhon & Struchtrup,2004; Struchtrup,2005b). Only the latter are S
expanded in the Knudsen number with the CE method. Effectively, this method—first suggested as &
side note irGrad(1958)—relies on an expansion about a non-equilibrium state which is defined through g
the 13 variables. This gives a correction to the Grad 13 equations, the R13 moment equations.

A similar idea was used earlier Karlin et al. (1998) for the linearized Boltzmann equation. They
compute an approximation to the distribution function, which is used to derive a set of linear equations3
for the 13 moments. Their equations have the same structure as the linearized R13 equations; howeveg,
they did not determine the numerical values of the various coefficients. i

The time scale splitting used in these arguments is somewhat artificial since in reality, all moments;g
change on similar time scales, which are of the order of the mean collision frequency. Thus, an alter—,_s"1

d

0.} papeo

native approach to the problem was develope8tituchtrup(2004a,b2005b), partly based on earlier 2
work by Miiller et al. (2003). 5
Theorder of magnitude methogbnsiders the infinite coupled setalf possible moment equations. 5
The CE expansion is used only to establish the Knudsen number order of the moments: The moment§
¢ are expanded according to c
%.

¢ = ¢o + Kngy + Kn?pp + Kndpa 4 - - -, g

o

and their leading order is determined by inserting this ansatz into the complete set of moment equationss
A moment is said to be of leading ordgrif ¢4 = Ofor all § < y. After the order of all moments is S
established, new variables are constructed by linear combination such that the number of moments at-‘é

given ordery is minimal. This step does not only simplify the later discussion, but gives an unambiguous
set of moments at order. Finally, a set of equations is said to be accurate of opgewhen stress;;
and heat fluxg;, are known within the order @Kn’?). The appropriate set of equations at orgler
includesonly those terms in all equations whose leading ordeniidiencein the conservation laws is
y < yo- Luckily, in order to evaluate this condition, it suffices to start with the conservation laws, and
step by step, order by order, add the relevant terms that are regBiredttrup2004a,b2005b).

The order of magnitude method was applied to Maxwell molecul&tinchtrup(2004b,2005b).
It yields the Euler equations at zeroth order, the NSF equations at first order and Grad’s 13 momen
equations(with omission of the non-linear terrﬁi%(") at second order. The regularized 13 mo-
ment equations (R13) are obtained as the thirdeorder approximation, they consist of the conservatio
laws (2.9) and the balance laws for stre8slQ) and heat flux3.11) which now are closed by the
expressiorfs

1102 ‘72 Arenig@a4 uoTensas Arelqi] uosiaydo
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4Thereare some differences between the original R13 equatioBsroéhtrup & Torrilhon(2003) and the equations presented
here, which result from the order of magnitude method. The original equations contain some higher (fourth-) order terms, and
were derived for the linearized collision operator, S¢eichtrup(2005b) for details and discussion.
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Rij =77, K%k~ 5 +

oXj) 4 0Xj) 7 kd O0Xk) p a 0Xj)
u| ,00j 00 4  0Ovj 0 op
mir = —25 [ =01 4 T —- 3.16
'k p [ Xk o Xk 5 oxg T paxg (3.10)

The moments of the collision operatoB.(5p 3 are exact for Maxwell molecules, and remain un-
changedpjj= — ﬁpO'ij, P = —%qui. The appropriate phase density for the R13 equations is Grad’s
phase density for 26 moments, where the higher moments are replaced by the constitutive relations
(3.16).

A closer inspection of the regularized equations (3.16) shows that the terms added to the original
Grad 13 moment equations are of super-Burnett order. Accordingly, the CE expansion of the R13 equa-
tions reproduces the results of the CE expansion of the Boltzmann equation up to super-Burnett order
(Struchtrup & Torrilhon2003).

The scaled and dimensionless balance of momentum can be ert%fl as— Mp””' — M250

—Kn Q"Jk Thus, for processes with sufficiently small Mach numbers{Mn, or, for steady flows,

41 24 i 1 ovyj
ﬂ[eaq_uz o0 10, vy 0 .ﬂ}

6
M2 Kn), the pressure gradient is of orde k). It follows that the underlined non-linear terms
in (3.16) contribute above the super-Burnett order and must be removed. Indeed, would these terms
be kept, additional boundary conditions were required for the solution of the equalmmthpn &
Struchtrup2008).

For general, i.e., non-Maxwellian, molecule types the order of magnitude method was performed up
to second order iStruchtrup(2004a,2005b). The resulting equations are a generalization of Grad'’s 13
moment equations, where all terms have coefficients which are related to the Burnett coefficients. The
CE expansion to second order gives the Burnett equations with the proper Burnett coefficients.

For the linearized R13 equations, an entropy inequality was found for the linearized equations
(Struchtrup & Torrilhon2007b), which also includes boundaries.

Jin & Slemrod(2001) andJin et al. (2002) proposed an alternative regularization by construct-
ing a set of equations that gives the Burnett equations in a second-order CE expansion and gives a
positive entropy production for all values of the variables. Up to second order, their equations agree
with the generalized Grad 13 equations to which they add terms of super-Burnett order that were de-
signed to achieve their goal. These higher-order terms cannot be justified from the Boltzmann equation
(Struchtrup2005b).

The R13 equations give smooth shock structures for high Mach numbers, and they are stable. There-
fore, this combination of the CE and Grad methods yields a marked improvement over the original
methods.

4. Boundary conditions
4.1 How many boundary conditions are required?

For the solution of boundary-value problems, all sets of macroscopic equations, NSF, Burnett and super-
Burnett, Grad, or R13 equations, must be furnished with an appropriate set of boundary conditions.

Before we show how to obtain boundary conditions for the transport equations, we ask how many

boundary conditions are actually required for their solution. A detailed discussion and evaluation of the

ideas summarized below is foundTorrilhon & Struchtrup(2008).
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NSF equations, Grad moment equations and regularized moment equations can all be written as a
first-order system. In compact notation,

oup Kk oup
Bag—— + Ajyp——
AB S T AAB o

= Pa,
WhereAgB, Bas andPp arefunctions of the variablesa. For instance, in the R13 equationg =
{p,vi,0,aij, 0, Mjk, 4, Rij}, and the matri3ap is diagonal, with value zero fdmijk, 4, Rij}.

We have not tried to bring the Burnett and super-Burnett equations into the same form, therefore w
cannot say whether for these the matrices depend only on the variables of the first-order gy3t@m (
whether they also depend on the derivatives ofithe 3

Thenumber of initial and boundary equations required is equal to the number of integrations one hasz
to perform with respect to time or space variables. Therefore, the number of initial conditions required§
is equal to the number of non-zero eigenvalue8 g, which equals the number of non-zero diagonal '
elements, and thus the number of primary variables, gagui, 6, oij, ¢ } for R13.

Correspondingly, the number of non-zero eigenvalues of the mamg%sequalsthe number of
boundary conditions required for boundaries with normal pointing into direkti@inceA'j\B depends
on the upa, this number can depend on the flow conditions. For flows with conditions such that the
underlined pressure gradient terms in the R13 equatihd§) can be ignored, the boundary conditions
given below will suffice.

wouy pSpeojumog
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4.2 Microscopic boundary condition

Since the macroscopic transport equations are derived from the Boltzmann equation, it is natural to bas
the derivation of their boundary conditions on the boundary condition for the Boltzmann equation.

For the discussion, we consider Maxwell’s well-known wall boundary condition, where the fraction
(1 — y) of incident particles is reflected elastically, and the remaining fragtisthermalized, that is,
leaves the wall in a Maxwellian governed by wall veloczbff)’ andwall temperaturéy (Cercignani,
1975; Struchtrup,2005b); y is the accommodation coefficient. With the particle velocity in the rest
frame of the wall denoted b@' = ¢ — vV, Maxwell's boundary condition reads

)

(4.1)

F rfw+@=xfe, C¥nc=0
fe, C¥ng < 0.
Here, fg denoteghe distribution function of the gas, which is also the distribution of incident particles,

n is the wall normal,fg = fa(C)¥ — ZC}Nnj nk) is the distribution of the specularly reflected particles
(inverted normal velocity component), arfig is the wall Maxwellian,

3
C2
=ML g [__W} . 4.2)
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Thedensitypyw hasto be determined such that the wall does not accumulate particles, i.e., from

/ CWny fdc= —/ CWn fdc.
C¥ne<0 C¥Wn =0
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Theslip velocityV; = vj — oiW is parallel to the wall\Vknk = 0. Therefore, particle velocitg;, particle
velocity relative to the WaICiW , and peculiar velocityL; arerelated as

CV=c-o"=Ci+V, c"ni=cn. (4.3)

4.3 Boundaryconditions for moments

Boundary conditions for moments are constructed as follows: we write the momeni&aj w,fdc,
where¥a(ck) denoteshe moment generating tensor polynomialgirwith a suitable multi-indexA.
The flux of the momentia is Fax = | ¥ack f dc. For an observer resting with the wall, who observes
the particle velocit)Ci‘"’, the normal flux computed with the distribution function directly at the wall,
i.e., the distributionf of (4.1), must be equal to the flux computed with the distribution funcfigrof
thegas just in front of the wall§truchtrup,2005b), that is, aC\Wnk f dc = [ ¥aCYVni fg dcor

TACLIE / PACMICW i fw + (L= ) fs — fo)de =0, (4.4)
V=0

With some substitutions this can be cast in the form

/ PACWny fg dc = 1L PACW N[ fw — feldc+ / [Pa—¥alCYVn f dc, (4.5)

— X JCWn=0 CWni=0

where@ = SUA(C?('V - 2Can nk) is evaluated with inverted normal velocity.

Now, we ask for which moments, and thus for which functidfs the above conditions must be
evaluatedGrad(1949) argues as follows: for a specularly reflecting wall, where 0, (4.5) reduces
to

/ PACny fg dc =0, if ¥a is eveninCVny,

(4.6)
/ YaCWnk(fe — fe)dc=0, if ¥aisoddinCVny.
C¥ni=0

Then,in case that the gas distribution is evdg, = fg, for odd ¥a (4.5)reduces to a mere identity, and
not to a meaningful boundary condition. Therefore, concludes Grad, boundary conditions for moments
must be constructed from (4.5) only for functiofg thatare even in the normal velocity component.

We show boundary conditions constructed such only for 2D geometry, with the wall normal
pointing into directionx,, and x; as the tangential direction. Due to the relations (4.3), the
conditions||¥’A(C|\(N)|| = 0 and||¥a(Ck)|| = O are equivalent. Evaluation of (4.5) fé#fa = {C1, C2,

Cf, C%, C2C4} with the distribution function for the R13 equations gives the boundary condit®uas (
& Emerson,2007;Torrilhon & Struchtrup 2008)

X 2 wy, 1 o1
=——2— |/ —|P1— = Zmyxo|n
012 27— 7r9|: (01 01)+5ql+2 122 | N2

X 2 P —ow) = 2Ppvea Lot 4+ 2Ron|n
®="5" Vo w) =5 V022t gt pgher| N2
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X 2 [1 4  , 1
miz=—-2%— /< | ZRi1+6 ——9 Pe bw) — £ PV + =4
112=—5" V70 [14 11+ 60011 022+ = P( W) + 150
x [272 3, 7 11
Moo= —%— [ Z 2P = w) — PV2 = L00pp+ — 4 — —Rop|n
222= 5 p 0[5 ( W) 5 5 022+75 127z | 2
2 11 1
Rip= 24— POy — oY) — =01 — Z0my2o— PV3 + 6PV (0 — ) [ n
2—y 70 5 2
Here,»}V andé\ arethe velocity and temperature of the wall, aRd= p0 + 1022 — 1354 — 35

Vanishing normal velocity)2 = 0, is already incorporated into the above.

(4.7)

Rez
2.
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The first two equations describe velocity slip and temperature jump at the wall. An equivalent set @

of boundary conditions for the linearized R13 equations was found from phenomenological thermo-
dynamic arguments istruchtrup & Torrilhon(2007b). For extended moment systems, e.g., the R26
equations, additional boundary conditions are required which follow from the same set of arguments b

using the appropriate extended phase density (Gu & Emg28@9;Gu et al.,2010).

4.4 Slip and jump conditions for NSF

Classical hydrodynamics—the NSF equations—requires only boundary conditions for velocity and tem-
perature, that is, the first two condition& ) on each side of the domain. Different levels of accuracy
can be achieved for these boundary conditions, depending on the gas distribution function that is used f
evaluation. If only the first approximatio.Q) is used, one finds the first-order jump and slip boundary

conditions

o1 — oW _ _ 2— X/é’ﬁ 1q(l)
T x V2 p 5p°

9_9W=_2__X/ﬁﬁ+}g£
x V& p 4 p-

(4.8)

Experienceshows that the capability of the NSF equations for the prediction of rarefied flow phenom-
ena can be improved by second-order slip conditi@eigsler,1964;Lockerbyet al.,2004;Hadjicon-
stantinou2006). By making use of geometry and scaling arguments, the R13 equations can be used t
construct higher-order boundary conditions frofirf; ». As an example, we show the result for plane

channel flows, where slip and jump conditions re&ttijchtrup & Torrilhon 2008)

w_ 2=z [1001  5p000; 19976
X 2 p 6p2 oxp 18 p?

@) 2 1) @) COPNEY
2 17 n 0 2— 71 178
9—0W=—_X q2 n _iq_2+|:%< X) :|O-12012 a; 9 )

v V8 p 27 35,p ox P 1470 pp 525 p?

(4.9)

Similar equations can be obtained for cylindrical channel flows (Taheri & Struch2Q(®,2010a).
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4.5 Boundaryconditions for the Burnett equations

As said earlier, to our knowledge, a detailed discussion of the number of boundary conditions required
for the Burnett or super-Burnett equations is not available in the literature. Thus, it is presently un-
clear how many and which boundary conditions should be used for their solution. Obviously, second-
order jump and slip boundary conditions must be used, but one would expect the need for additional
conditions.

For some problems, in particular flow between parallel plates, the Burnett equations decouple some-
what, so that for the computation of the velocity and temperature fields second-order jump and slip con-
ditions suffice Lockerby & Reese2003;Bao & Lin, 2008;Uribe & Garcig 1999). However, additional
conditions are required to find the density and pressure distribution, and these are uratkarky
& Reese 2003;Bao & Lin, 2008).Uribe & Garcia(1999) fit to DSMC data to show that the Burnett
equations can give meaningful results.

A complete theory of boundary conditions for Burnett equations, however, is currently lacking.
Therefore, it is not possible to use these equations for analysis of more complicated flows. Most im-
portantly, the time instability of the equations makes it impossible to produce reliable solutions for
time-dependent problems or from time-dependent numerical methods like time stepping into steady
state. We recommend to use moment equations instead, in particular regularized equations, which are
stable, and are furnished with a complete theory of boundary conditions.

5. Bulk effects and Knudsen layers

In the introduction, we listed the most important rarefaction phenomena. Space limitation prevents us
from showing that the R13 equations can indeed accurately describe all of these, provided that the
associated Knudsen number does not exceed:Kxb.

The early publications on the R13 equations focused on boundary-free problems, in particular
their linear stability, their agreement with measured phase speeds and attenuation of ultrasound waves
(Struchtrup & Torrilhon2003; Struchtrup,2004b), and their ability to predict smooth shock structures
(Torrilhon & Struchtrup2004;Torrilhon, 2006) solved a 2D shock—bubble interaction. The evaluation of
the linearized equation already gave evidence that, other than the Burnett-type equations, the R13 equa-
tions exhibit Knudsen boundary layers (Struchtrup & Torrilha@03; Struchtrup,2005a;Struchtrup
& Thatcher 2007a), however, agreement to DSMC simulations was reached by fitting of integration
constants, not by applying a complete set of boundary conditions.

The path to fitting-free solutions of boundary-value problems was opened when Gu and Emerson
applied Grad’s ideas on boundary conditions to the R13 equat@ng.(Emerson2007). Their numer-
ical solutions showed spurious sub-Knudsen layers at the walls, which are an artefact of their numerical
method, which prescribes more boundary conditions as are mathematically required. After this issue
was clarified inTorrilhon & Struchtrup(2008), the door was open to solve the R13 equations for Cou-
ette and Poiseuille flow in flaf@heriet al, 2009b) and cylindrical{aheri & Struchtrup2009,2010a)
geometries, for linear and non-linear transpiration flow (Taheri & Struch#0p0b), and some linear
time-dependent problems (Tahetial.,2009a). Corresponding results for the R26 equations in for flat
geometry are presented@u & Emerson(2009);Gu et al. (2009) andGu et al. (2010).

5.1 Poiseuille flow

A particularly important feature of the R13 and R26 equations is that they are accessible to analytical
solutions of boundary-value problems, even for somewhat non-linear processes. As an example, we
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study the analytical results for force-driven Poiseuille flow between infinite resting parallel plates of
uniform temperaturéyy (Taheriet al.,2009b). This flow is dominated by shear, and thus quadratic terms

in shear-related quantities such as shear stress and velocity gradients were kept in the R13 equations,

while they were linearized else. The analytical results for the relevant variables read

Gix3 2
=C1G;1 — - =
01 151~ S 5Q1,
1 G2x5 488 956 VB%2 32012 ., /BXz
0= C,G2 — ——122 4 “G?x2 4+ C3G1 | —GiKncosh sinh
O +C2G1 — go 5 + 555G + CaG1| 37561 3Kkn T 3545 3Kn
2 5
— C4G%= cosh V/5x2 ,
5 V6Kn
012 = G1Xo, (5.1)
84G2Kn? 6 152 VB2 12015 . v/BXo
=———1 " _ ZG?x%-C3G1| ==G1Kncosh inh
022 25 5 U273 1[25 NSy ¥ 58 =" 3kn
V/Bxz
+ C4G?cosh ,
ae1 V/BKn
_ NG
ql - n )
1G3x3 6 _ ABxp 2 NG
== — C3G1 | —=G1Knsinh—— — —g12cosh .
®=37kn Y5/ ! 3kn 5723y
andthe R13 constitutive equation3.({6) reduce to
dap doy
A =262, —12Kn| —= —
012 ( X + 012 dxz) )
12 dql
Rio = ——Kn—=
12 5 "%
4 2 16 qu 5 dl)l
Rop = T g0 T 2%,
22 21012 (d2+ 12d2 >
16 doi2
M2 = ——Kn—
dX2
6 doo, 4 dl)]_
Mpop = ——Kn | —=5 — —
222= "5 (dxz 15 dx,

Here,all quantities are made dimensionle&s, is the (dimensionless) force that drives the flow &hd
arethe integrating constants that must be determined from the boundary conditisndNe have made
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their dependence o6, explicit, so that theC, arenumbers that depend on Knudsen number; to save
space, their details are not shown.

In the above solution, those terms that would be present in the classical description of the pro-
cess via the NSF equations are underlined. Thus, all terms that are not underlined describe rarefaction
phenomena.

Before we discuss these, we have a short look at the NSF solution, which reads

G1x2
(NSF) 1X5 (NSF) _ (NSF)
—CiGi- o2, o =Gue, P =0

1 G2x4 1 G2x3
NSF 2 172 (NSF) 172 (NSF) _
o (NSF) _9W+C2G1_Z5W’ 5 I a =0.

Theresult is well known: the velocity profile is parabolic, while shear stress is linear. Viscous dissipation
in the energy balance leads to a fourth-order temperature profile, and a corresponding heat flux
towards the walls. There are no normal stresses) (@and there is no heat fluy into the direction of

the flow. Temperature profile and heat flgxarenon-linear effects as can be seen by the occurrence of
the square of51.

With the NSF results in mind, we return to the solutidnl) of the R13 equations. The—un-
underlined—rarefaction terms can be split into two groups: Knudsen layer effects and bulk effects.

All contributions with hyperbolic sine and cosine functions describe Knudsen layers. These terms
describe exponential decay away from the wall over few mean free paths. For small Knudsen numbers,
the Knudsen layers are limited to the vicinity of the wall, but for larger Knudsen numbers, they con-
tribute to the flow anywhere in the domain. In fact, linear rarefied flows can be dominated by Knudsen
layers.

The other contributions are bulk effects, most of which are non-linear in the driving @&ycEor
small Knudsen numbers, these terms can be ignored against the—underlined—hydrodynamic contribu-
tions, but for finite-Knudsen numbers they contribute considerably.

A particularly interesting effect can be seen in the equation for temper@tw@ch contains the
1465

45an Kn xz] The first term is the hydrodynamic contribution, and the second

term is a non-linear bulk rarefaction effect. Since both terms have different sign, they compete, which
leads to a significant dip in the temperature curve. This dip can be found from analytical considerations
of the Boltzmann equation and from its numerical solution (Alaoui & Sarit®82;Tij & Santos 1994;
Tij et al, 1998;Mansouret al,, 1997;Aoki et al,, 2002;Zhenget al, 2002;Xu, 2003;Xu & Li, 2004).
This phenomenon can only be captured by a macroscopic model that is accurate to super-Burnett order.
Although there is no temperature gradient in flow direction, there is a heatflinflow direction,
which is also well established in kinetic theory (Barangizél.,1992;Todd & Evans1995,1997;Uribe
& Garcia,1999;A0ki et al.,2002).
Figure 1, reprinted fronTaheriet al. (2009b), shows plots for the relevant moments for a variety
of Knudsen numbers. The comparison to DSMC simulations shows good agreement. We point out that
the temperaturé@ and heat fluxg, aregoverned by non-linear bulk effects, while the heat ftyxis
governed by Knudsen layers only, and the normal sttessurve results from the interplay of Knudsen
layers and bulk effects. Thus, the figure gives good evidence that the R13 equations can describe both
classes of rarefaction phenomena: Knudsen layer effects and (non-linear) bulk effects.
Knudsen layer dominant flow is also encountered in thermal transpiration fiharipov &
Selezney1998;Taheri & Struchtrup2010b).
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FiG. 1. Force-driven Poiseuille flow with dimensionless fofg = 0.2355. Profiles are computed for Ka 0.072 (solid
line), 0.15 (dashed line), @.(dotted line) and D (dash-dot line). Circles are DSMC simulations for kn0.072 (Taheriet al.,
2009b).

5.2 More on Knudsen layers

The analytical results for Poiseuille flovs.() show that most significant bulk rarefaction effects are
non-linear in the driving force. Knudsen layers, on the other hand, are linear effects which will be
dominant for linear flow regimes.

As the solution shows, for plane walls, Knudsen layers describe exponential decay away from

the boundary of the form e>{p—y %] with a numerical coefficieny of order unity. We recall that

Kn = 1/L, where is the mean free path, arid the length scale of interest which is used to non-
dimensionalize the space variable. Thus, the layer extends few mean free paths from the wall into theg
flow domain. For flows with small Knudsen numbers, the layer is restricted to the close vicinity of the
wall, while for flows with larger Knudsen numbers, the layer can extend all through the flow domain. i
Obviously, when one is interested in resolving the Knudsen layer (KL), the length scale of interest is theR
mean free path, k. = 4, and the corresponding Knudsen number is unitygKe- 1.

The CE method relies on an expansion in the Knudsen number, for which the Knudsen number must
be well-below unity. It follows that in the CE method Knudsen layers (for whiclyKe- 1) are not
accessible. Accordingly, it is not surprising that the higher CE expansions, i.e., the Burnett and super-
Burnett equations do not give the full array of Knudsen layers contributions or even show unphysical
oscillations (Struchtru005a,b).
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Thefull array of moment equations, on the other hand, gives proper Knudsen layers. Moment equa-
tions and their Knudsen layers are discussed for a simple kinetic equatRiruichtrup(2008). There
it is shown that in the moment framework the actual Knudsen layer is a linear combination of many
exponential terms,

KL=> A,exp [—ya:?—ri]. (5.2)

The y5 are numerical coefficients of order unity which give the width of the various contributions,
and theA,, arethe corresponding amplitudes which are determined from the boundary conditions. The
analysis shows that for small Knudsen numbers the amplitudes vanish, so that in this limit—classical
hydrodynamics—Knudsen layers can be neglected. For larger Knudsen numbers, the results converge
with increasing moment number; converged results require a relatively large number of moments. For
smaller number of moments, the Knudsen layer curvature differs from the converged result, but, in-
terestingly, the overall results are surprisingly good. Indeed, the lack of curvature close to the wall is
compensated by additional jump at the boundary, so that overall even a small set of moment equations
can do well—the moment system with proper boundary conditions finds a best approximation to the
boundary-value problem.

The order of magnitude method uses the CE scaling for model reduction, but it does not expand in
the Knudsen number. Since the reduction is based on the CE scaling, in fact it aims at getting proper
equations for the bulk. However, compared to the CE method, the order of magnitude method is less
restrictive. In particular, the method leaves the structure of the moment equations intact, and thus gives
Knudsen layers. In other words: while the order of magnitude method does not aim for Knudsen layers,
it does not remove them from the moment equations where they are present. The CE expansion also
aims at the bulk but removes the Knudsen layers.

We also mention attempts to add modelling of Knudsen layers to the NSF equatiBesbeet al.

(2007) and_ockerby & Rees€2008). In these models, the Knudsen layers are modelled through modi-
fying the Navier—Stokes strain—stress relation close to the wall, with functions and coefficients adjusted
to give a best fit with solutions of the Boltzmann equation. Since the models are constructed, but not
derived from the Boltzmann equation, it is unclear how good they will be for predicting results for other
processes. For instance, the analysis of regularized moment equations shows that in cylindrical prob-
lems, the Knudsen layers are Bessel functions (Taheri & Strugh0g®,2010a) and not exponentials

as in flat geometry. Thus, result for flat geometry cannot be just extrapolated to curved geometry. More-
over, these models do not incorporate Knudsen layers and bulk rarefaction effects for higher moments
such as heat flux and stress, and thus are not able to predict important features of rarefied gas flows.
In our opinion, a closed set of equations—here, the R13 or R26 equations—that is derived from the
underlying microscopic behaviour—here, the Boltzmann equation—is preferable over fitted equations
with unclear range of applicability.

5.3 R13 and R26 equations and beyond

The R13 equations are the smallest set of moment equations that describes Knudsen layer effects for the
13 variableqp, vi, 0, gij, 0; }, moreover, they are accurate to super-Burnett order in the bulk. They give
accurate results for Knudsen numbers up toXr.5. Extending the number of moments adds more
Knudsen layer contributions, se®.2), and thus gives more accurate description of these, while it also
increases the accuracy in the bulk to orders above super-Burnett.
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The R26 moment equations allow a more accurate description of Knudsen |&ye&Emerson
2009;Guet al.,2009;Guet al.,2010), their bulk accuracy should be of fifth ord8truchtrup2005b).
Numerical solutions of the R26 equations show that they extend the range towards larger Knudsen
numbers of up to K~ 1.0.

For microflow problems Knudsen layer effects dominate, while higher-order bulk effects are less
important. For these problems, somewhat linearized versions of the equations are highly useful, as
demonstrated for the R13 equationsTaheriet al. (2009b). To reduce the numerical effort, a similar
reduction could be done for the R26 equations, so that high-order non-linearities are removed.

Increasing the moment number further, say to 45 or mom&ttac¢htrup,2005b), will yield better
results, but this comes at the price of having to handle an even larger array of equations and boundarg
conditions. The aim of a moment system must be to obtain good results at reduced effort, which become3
more difficult for larger systems. The preparation of the equations for numerical codes becomes mor
complex for more extended systems, the more so when one makes use of the geometry—already t
formulation of the R13 equations in cylindrical geometry was quite cumbersoameli & Struchtrup
2009,2010a).

papeojuUMO

6. Conclusions and outlook

Macroscopic transport equations can be reliable tools for the description of rarefied gas flows for not
too large Knudsen numbers. A successful model must be able to describe bulk rarefaction effects an
Knudsen layers, as well as their interplay.

Due to their derivation from an expansion in the Knudsen number, models obtained from the CE £
expansion, i.e., the Burnett and super-Burnett equations, fail to give Knudsen layers for all varlables.g
Moreover, these equations suffer from instabilities in time-dependent problems and are not accompanieg
by a full set of boundary conditions. While the equations can describe some of the rarefaction phenom<
ena in the bulk, they have so many disadvantages that they cannot be considered as a reliable tool fé’r

Aisianiug-1e 610'5|eum0[p104x0'1ﬁu@?u|

the description of rarefied gas flows. o
Reduced moment systems, like the R13 and R26 equations, describe Knudsen layers and bulk raE‘;
efaction effects well. The R13 equations predict flows with Ki©.5 with errors below~5-7%. For ‘§

larger Knudsen numbers, the equations still describe the qualitative behavior well, and thus will be use<.
ful for the understanding of rarefied flow phenomena. The R26 equations allow to extend the range Ofm
accuracy to Kre1 with errors below~5-7%.

These equations are stable and are furnished with complete boundary conditions, and thus are a%
cessible for a wide array of problems—as long as the Knudsen number of the process does not exceetl
the limit of validity for the respective set of equations. At present, the R13 and R26 moment equations, 2, s
with their boundary conditions, are the only macroscopic models that can describe Knudsen layers an(%
bulk effects with sufficient accuracy.

Macroscopic models for rarefied flows have two particularly appealing features. (a) The equatlonsN
can be solved analytically for linear and non-linear problems. The analytical solutions offer additional * o
insight into rarefaction phenomena, and on the influence the various macroscopic quantities have or§
each other. (b) The equations are accessible to numerical solutions with various methods. Most solvers
for the Boltzmann equation use time stepping into steady state for finding steady-state solutions, which
is costly due to the stiffness of the equation. Due to the reduced number of variables, time stepping
is considerably cheaper for moment syste@s & Emerson2007;Gu & Emerson2009), but it can
be avoided altogether with suitable cod@sr¢ilhon & Struchtrup 2008). We are presently extend-
ing the numerical method dfforrilhon & Struchtrup(2008) for 2D flow; preliminary results indicate
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computationatimes of minutes for processes that need days for the solution of the Boltzmann equation,
while showing good agreement to the latter.

Together with suitable numerical methods, the regularized moment equations with 13 or 26 mo-
ments offer a reliable tool for the description of rarefied gas flows with Knudsen numbers below unity.
The equations capture all thermal and kinematic rarefaction phenomena—linear and non-linear—at a
fraction of the numerical cost of microscopic solvers.

So what needs to be done in the future? (a) Fast numerical methods for complex geometries are

mandatory. (b) Solutions of open systems, e.g., a micro-pipe connecting two pressurized and thermalized

containers, require inflow and outflow conditions to avoid computation of the containers—up to now this
problem was not tackled. (c) Currently, regularized moment equations are available only for monatomic
gases. Since most gases of technical interest are diatomic (air!), or polyatomic, the theory must be
extended to go beyond the monatomic gas. (d) Similarly, many technical applications deal with gas
mixtures (air, again!)—a macroscopic theory for mixtures is desirable. (e) A deeper understanding of
the mathematical structure of the extended equations could contribute to the development of better
numerical methods. (f) Presently, the H-theorem (second law of thermodynamics) is available only for
the linearized equations, the extension to the non-linear equations would be desireable.
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