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a b s t r a c t

A microscopic interface condition for condensing/evaporating interfaces is developed
by combining a velocity dependent condensation probability [T. Tsuruta, H. Tanaka,
T. Masuoka, Int. J. Heat Mass Transfer 42 (1999) 4107] and Maxwell type interface
conditions with accommodation. Using methods from kinetic theory, macroscopic
interface conditions for mass and energy transport across the phase boundary are derived.
This model only applies to simple substances, where diffusive effects in the bulk phases
are not present. The results are compared to classical non-equilibrium thermodynamics.
The interface conditions are considered for the limit of small deviation from equilibrium,
and the corresponding Onsager coefficients are computed. These results are useful as
boundary conditions for non-equilibrium evaporation and condensation problems, as done
previously by our group [M. Bond, H. Struchtrup, Phys. Rev. E 70 (2004) 061605].

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Mass and energy transfer at liquid–vapor phase boundaries are governed by the details of the interaction between
vapor molecules and liquid. Molecular dynamics experiments have revealed that faster vapor molecules are more likely
to penetrate the liquid where they dissipate their energy to many liquid neighbors and condense, while slower particles are
more likely to bounce back into the vapor [1,2]. In the following, a kinetic theory model is presented which accounts for
velocity dependent condensation probability. The model describes transport of mass and energy across liquid–vapor phase
boundaries in thermal non-equilibrium on the microscopic scale. Macroscopic interface conditions are derived from the
model, and the corresponding interface transport coefficients, i.e., the Onsager resistivities, are computed. This model only
applies to simple substances, where diffusive effects in the bulk phases are not present.

Most of the classical kinetic theory assumes a constant condensation probability for vapor molecules that hit the liquid
surface [3–6]; only a few authors have considered the more general case where the condensation probability depends on
the impact velocity [7,8]. The model developed below accounts for the velocity dependence of the condensation probability
through the molecular evaporation coefficient θc suggested in Ref. [1,2].

The approach is similar to that in Ref. [9], the difference lies in the details of the interface condition. Indeed, the model
in Ref. [9] gives asymmetric Onsager coefficients, which can be traced back to the fact that microscopic reciprocity was not
taken into account. We consider the model developed below, which includes reciprocity, as a correction. The differences
between the new model and the model in Ref. [9] affect the symmetry properties, but not so much the diagonal elements
of the resistivity matrix which are dominant for transport characteristics. Thus, the conclusions drawn from the model
in Ref. [9] remain valid. The new model can be easily implemented into kinetic theory codes, e.g. DSMC solvers [10], to
replace the usual assumption of velocity independent condensation probabilities. The macroscopic interface conditions, on
the other hand, serve as boundary conditions for the solution of the equations of classical hydrodynamics, as outlined in
detail in Ref. [9].
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The remainder of the paper is structured as follows. In Section 2 we recall the basic results and definitions of classical
Linear Irreversible Thermodynamics (LIT) and apply these to describe the macroscopic interface conditions for evaporation
and condensation. Section 3 deals with microscopic kinetic theory interface conditions in general, including the conditions
of microreversibility and microscopic reciprocity, which will be used to develop our model in Section 4. The corresponding
Onsager coefficients (resistivities) are determined in Section 5. In Section 6 we discuss and re-evaluate the molecular
dynamics based determination of Onsager coefficients of Xu et al. [11]; in particular, we show that the data does not suffice
to prove Onsager symmetry conclusively. The paper ends with our conclusions.

2. Linear irreversible thermodynamics

Throughout this paper we consider a planar interface between liquid and vapor at which condensation and evaporation
occur in 1D steady flows normal to the interface; this scenario is discussed in more detail in Ref. [9]. In the present section
we study the macroscopic laws that describe this process.

The balances of energy and entropy at the interface read

jhl + ql = jhv + qv (1)

σ = j(sv − sl)+
qv
Tv

−
ql
Tl

≥ 0, (2)

where j is the mass flux across the interface, ql, qv are the non-convective energy fluxes in liquid and vapor (as given by
Fourier’s law), and Tl, Tv , hl, hv , sl, sv are the respective temperatures, specific enthalpies and entropies at the interface.
Moreover, σ is the non-negative entropy generation rate due to evaporation or condensation. For slow evaporation the
pressure p of the system is constant [9].

Combining the two equations (1) and (2) by eliminating ql gives the interfacial entropy production as

σ = j
[
gl
Tl

−
gv
Tv

+ hv


1
Tv

−
1
Tl

]
+ qv

[
1
Tv

−
1
Tl

]
≥ 0, (3)

where g = h − Ts is the Gibbs free energy.
In classical Linear Irreversible Thermodynamics (LIT) [12,13], the entropyproductionσ is interpreted as a sumof products

of thermodynamic fluxes Jα and thermodynamic forces Fα , that is,

σ =

−
α

JαFα, (4)

where, in our case,

Jα = {j, qv} (5)

Fα =


gl
Tl

−
gv
Tv

+ hv


1
Tv

−
1
Tl


,
1
Tv

−
1
Tl


. (6)

Non-negative entropy production is guaranteed by a linear phenomenological ansatzwith a non-negative definitematrix
rαβ ,

Fα =

−
β

rαβ Jβ . (7)

The elements of the matrix rαβ are the Onsager coefficients, or resistivities.
LIT, as a phenomenological theory, cannot give further insight into the values of the resistivities rαβ , which must either

be measured, or be determined from microscopic theories. Most authors expect the matrix to be symmetric [7,8,13,14],
rαβ = rβα , in extension of the Onsager–Casimir reciprocity relations for transport equations in the bulk, where symmetry
results from reversibility of themicroscopic laws against velocity reversal [15,16,12,17].Wenote that some authors question
the general validity of the Onsager–Casimir reciprocity relations, i.e., the symmetry of the Onsager coefficients, as a general
rule; rather, they say, their validity must be checked for each individual physical phenomenon [18]. Asymmetric Onsager
coefficients were found experimentally in electrical systems in somewhat nonlinear settings [19].

In thermal equilibrium, forces and fluxes vanish so that

Tl = Tv = T , gl(T , psat) = gv(T , psat). (8)

These are the well-known conditions of continuous temperature and chemical potential at equilibrium interfaces which
define the saturation pressure psat(T ).

For small deviation from equilibrium the actual pressure, p, will differ only slightly from the saturation pressure of the
liquid, psat(Tl), and the temperature difference across the interface will be small. Taylor expansion of (6) in 1T = Tv − Tl
and1p = psat(Tl)− p gives, by means of standard thermodynamic property relations, the forces as Fα = {

v̄v−v̄l
Tl
1p,−1T

T2l
},
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where v̄v , v̄l denote the specific volumes at Tl, psat(Tl), i.e., at saturation. Since our aim is to compare a model from kinetic
theory to the phenomenological laws, we assume pressures well below the critical pressure, for which the vapor can be
described by the ideal gas law pv = RT (gas constant R), and the liquid volume can be ignored against the saturated vapor
volume (i.e., v̄v − v̄l ≃ v̄v). Then, the forces can be further simplified to

Fα =


R1p
psat(Tl)

,−
1T
T 2
l


. (9)

For convenient comparison to kinetic theory, we introduce dimensionless phenomenological coefficients r̂αβ by rewriting
the phenomenological interface conditions (7) as

1p
√
2πRTl

−
psat(Tl)
√
2πRTl

1T
Tl

 =

[
r̂11 r̂12
r̂21 r̂22

] j
qv
RTl


. (10)

The matrix r̂αβ is symmetric if rαβ is symmetric.

3. Kinetic theory

3.1. Distribution function

In kinetic theory, the behavior of a system of molecules is described by the distribution function f (xi, t, ci) which is
defined such that f (xi, t, ci)dcdx is the number of molecules with velocities in {c, c + dc} and positions in {x, x + dx} at
time t . Given the distribution function, bulk properties such as mass density, momentum density, internal energy, pressure
tensor and heat flux can be computed. For comprehensive reviews, see Ref. [20,21].

In the context of evaporating/condensing interfaces, we are interested in the mass flux,

jk = ρvk = m
∫

∞

−∞

ckf dc, (11)

and the energy flux,

Qk = m
∫

∞

−∞

1
2
c2ckf dc, (12)

where m is the mass of an individual particle, ρ =
p
RT is the mass density, and vk is the vapor velocity.

The distribution function f is a solution of the Boltzmann equation [20,21],

∂ f
∂t

+ ci
∂ f
∂xi

= S(f ), (13)

where S(f ) denotes the collision term. The balance laws for mass, momentum and energy, as well as the H-theorem (i.e.,
the second law) can be derived by suitable averaging of the Boltzmann equation over the microscopic velocity [20,21].

In thermal equilibrium, the collision term in (13) must vanish. This implies that the equilibrium distribution is the
Maxwellian,

fM(p, T , C) =
p

mRT
1

(2πRT )3/2
exp


−

C2

2RT


. (14)

Here, Ck is the peculiar velocity, defined as

Ck = ck − vk, (15)

with the particle velocity ck and the bulk velocity of the vapor vk; C denotes the absolute value.
Non-equilibrium solutions of the Boltzmann equation are considerably more complex. The Boltzmann equation can be

solved numerically, either directly or by DSMC simulations [10], both of which are computationally expensive; analytical
solutions are available only for a few special cases.

The Chapman–Enskog (CE) expansion gives an approximation of the distribution function, which is obtained from (13)
by expansion of the distribution function in the Knudsen number Kn. For the evaporation problems considered here, shear
stresses can be ignored [9]; then, the first order CE expansion of the Boltzmann equation gives the distribution function [21],

fCE = fM(p, T , C)
[
1 −

2
5
κ

RP
Ck


C2

2RT 2
−

5
2
T

∂T
∂xk

]
, (16)
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with the thermal conductivity κ . In particular, the CE distribution gives the energy flux

Qk =
5
2
RTjk + qk (17)

where the non-convective heat flux qk is given by Fourier’s law of heat conduction,

qk = −κ
∂T
∂xk

. (18)

In Eq. (16), fM(p, T , C) is a Maxwellian with the vapor bulk velocity vk. For evaporation problems it is convenient to
choose the frame of reference such that the evaporating interface is at rest. For slow evaporation, the vapor velocity is small
and the Maxwellian can be approximated as

fM(p, T , C) w fM(p, T , c)

1 +

ckvk
RT


. (19)

Taking only first order terms in vapor velocity and heat flux into account, the distribution (16) reduces to

fCE = fM(p, T , c)

1 +

ckvk
RT

+
2
5
qkck
pRT


c2

2RT
−

5
2


. (20)

The distribution (20) will be used for the computation of interface conditions for condensing/evaporating interfaces. This
is a simplification of the real conditions, since Knudsen layers [20] in front of the interface are ignored.While this introduces
a small error into the analysis, the results are still viable.

3.2. Distribution function at the interface

When a particle from the vapor phase hits the liquid–vapor interface, it interacts with the liquid particles. Depending
upon the microscopic conditions for the particular interaction, the particle can be absorbed by the liquid – it condenses –
or it might be reflected back into the vapor. The energy of the liquid particles at the interface fluctuates, and occasionally a
particle gains enough energy to leave the liquid into the vapor—the particle evaporates.

Evaporation, condensation and reflection processes influence the distribution function at the interface and determine
the rates of mass and energy transfer across the interface. We write the distribution function directly at the interface as

fint =


f −, c ′

n ≤ 0
f +, cn > 0, (21)

where f − is the distribution of incident particles (negative velocity c ′
n normal to the interface), and f + is the distribution of

emitted particles (positive velocity cn normal to the interface). The prime at the velocity of incident particles simplifies to
distinguish between incident and emitted particles.

The distribution of particles leaving the interface is the sumof a term that describes evaporation, and a term that describes
the reflection of non-condensing particles back into the vapor. The relation between the incident and emitted distribution
functions can be written as [7,16],

f +
= θe(ck)fM(psat(Tl), Tl, c)+

1
|cn|

∫
c′n<0

f −Rc(c ′

k → ck)|c ′

n|dc
′. (22)

Here, θe(ck) is the evaporation probability, and Rc(c ′

k → ck) is the condensation–reflection kernel, both will be discussed
shortly.

The liquid side of the interface is assumed to be in local equilibrium [16,22,6,9], and thus evaporating particles leave
in a Maxwellian distribution fM(psat(Tl), Tl, c), where Tl is the liquid surface temperature and psat(Tl) is the corresponding
saturation pressure.

In thermal equilibrium, no net evaporation or condensation occurs, the vapor and the liquid have the same temperatures,
Tv = Tl, the vapor pressure is equal to the saturation pressure, p = psat(Tl), and the vapor is in the correspondingMaxwellian
distribution fM(psat(Tl), Tl, c). The latter is ensured by the microreversibility condition [22].

f +
|eq = f −

|eq = fM(psat(Tl), Tl, c), (23)

which is a restriction on evaporation probability and condensation–reflection kernel.

3.3. Condensation–reflection kernel

The condensation–reflection kernel Rc in (22) gives the probability that a particle that hits the interface with velocities
in {c ′

k, c
′

k + dc ′
} will be scattered with velocities in {ck, ck + dc} [20].



J.P. Caputa, H. Struchtrup / Physica A 390 (2011) 31–42 35

The reflection probability α(c ′

k) is the probability that a vapor particle that hits the interface is reflected at all, and the
condensation probability θc(c ′

k) is its complement, thus [7]

α(c ′

k) = 1 − θc(c ′

k) =

∫
cn>0

Rc(c ′

k → ck)dc ≤ 1. (24)

For reflecting interfaces the interaction between particles and interface is described by a reflection kernel R(c ′

k → ck).
Since the probability for an incident particle to leave the reflecting interface is unity, the reflection kernel must satisfy the
normalization condition∫

cn>0
R(c ′

k → ck)dc = 1. (25)

The reflection kernel R(c ′

k → ck) is subject to the reciprocity relation [16,15,20,7],

|c ′

n|f0(Tl, c
′)R(c ′

k → ck) = |cn|f0(Tl, c)Rt(−ck → −c ′

k), (26)

with the reduced Maxwellian

f0(Tl, c) =
1

2π(RTl)2
exp


−

c2

2RTl


. (27)

For purely reflecting surfaces (i.e., no condensation/evaporation), reciprocity guarantees microreversibility (23).
The proof of the reciprocity condition (26) was first given by Kuscer [15] and later extended by Cercignani [20]. Both

proofs are presented for reflecting walls, but not for evaporation and condensation. Nevertheless, it is expected that
reciprocity holds also for these processes [16,7], so that the condensation–reflection kernel is reciprocal, that is

|c ′

n|f0(Tl, c
′)Rc(c ′

k → ck) = |cn|f0(Tl, c)Rc(−ck → −c ′

k). (28)

3.4. Evaporation coefficient

The evaporation coefficient θe in (22) is determined from themicroreversibility condition (23). With the assumption that
the liquid phase is in thermal equilibrium [16,22,6], the non-equilibrium in the vapor will not affect the evaporation rate,
which therefore can be determined by considering the thermal equilibrium between vapor and liquid.

When the vapor distribution is the equilibrium Maxwellian fM(psat(Tl), Tl, c ′), the distribution (22) of particles leaving
the interface becomes

f +
= θe(ck)fM,sat +

1
|cn|

∫
c′n<0

|c ′

n|f
′

M,satRc(c ′

k → ck)dc′, (29)

where we abbreviated fM(psat(Tl), Tl, c) = fM,sat and fM(psat(Tl), Tl, c ′) = f ′

M,sat .
Substitution of the above into the microreversibility condition (23) gives the evaporation coefficient as

θe(ck) = 1 −


c′n<0 |c ′

n|f
′

M,satRc(c ′

k → ck)dc′

|cn|fM,sat
. (30)

Due to the reciprocity of the kernel the evaporation probability equals the condensation probability [7],

θe(ck) = 1 −

∫
c′n<0

RR
c (−ck → −c ′

k)dc
′
= θc(−ck). (31)

4. Model for evaporation and condensation

4.1. Maxwell kernel and Tsuruta et al. condensation

The condensation–reflection kernel presented below is based upon combining Maxwell’s classical interface
condition [20,21] with the condensation probability suggested by Tsuruta et al. [1,2].

The Maxwell kernel, which is frequently used to describe particle–interface interaction in kinetic theory, considers only
two simple types of interactions between particles and interface: specular reflection and full thermalization (also known as
diffusive reflection) [20,21]. Thermalized particles leave the interface in aMaxwellian distribution governed by the interface
temperature Tl.

The Maxwell reflection kernel reads

RM(c ′

k → ck) = (1 − γ )δ(c ′

k − ck + 2njcjnk)+ γ |cn|f0(Tl, c), (32)
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where the first term describes specular reflection, and the second term describes thermalization; f0 is the reduced
Maxwellian (27) and ni is the interface normal. The accommodation coefficient γ is defined as the relative number of ther-
malizing interactions, 0 ≤ γ ≤ 1. While the accommodation coefficient could depend on impact velocity, we shall consider
it as a constant for simplicity. The Maxwell kernel is properly normalized and fulfills the reciprocity requirement (26).

Based on molecular dynamics simulations for argon-like particles, a velocity dependent condensation coefficient was
proposed by Tsuruta and co-workers [1,2],

θc(c ′

n) = ψ

[
1 − ω exp


−

c ′2
n

2RTl

]
. (33)

This condensation probability depends on the normal impact velocity c ′
n = c ′

knk. Faster particles aremore likely to condense,
since they can more easily penetrate the liquid and dissipate their energy to a larger number of neighboring particles. The
coefficientsω,ψ are constants that describe the details of the condensation probability. Themolecular dynamics simulations
indicate that ω and ψ have values in 0.086–0.554 and 0.685–0.971, respectively [1].

4.2. Reciprocal kinetic theory interface model

The Maxwell reflection kernel can be combined with the velocity dependent condensation probability such that the
condensation–reflection kernel satisfies the reciprocity requirement (28),

Rc(c ′

k → ck) = α(c ′

k) [(1 − γ )δ(c ′

k − ck + 2cjnjnk)+Λα(−ck)γ |cn|f0(c)]. (34)

Here, α(c ′

k) = 1 − θc(c ′
n) is the Tsuruta reflection probability (33), and Λ is a normalization coefficient that is obtained as

follows:
Inserting the kernel (34) into the definition of the reflection probability (24) gives

α(c ′

k) = α(c ′

k)

[
(1 − γ )+ γΛ

∫
cn>0

|cn|f0(ck)α(−ck)dc
]
.

Accordingly, the bracket must give unity, which is the case for the normalization coefficient

Λ =
1

cn>0
|cn|f0(c)α(−c)dc

. (35)

4.3. Macroscopic interface fluxes

The next step is to calculatemass and energy fluxes across the interface, and the corresponding transport coefficients. For
this, we consider the CE distribution (20) at the interface as the distribution of incoming particles, f −

= fCE. The distribution
of emerging particles, f +, is obtained from (22) by inserting f − and the Tsuruta–Maxwell kernel (34). We use the resulting
distribution function f = {f +, f −

} and the kernel (34) to compute the interfacial mass flux j (11) and the interfacial heat
flux Q (12), respectively. After tedious manipulations, the results can be written in the form j0

Q0

RTl


=

[
R11 R12
R21 R22

] j
Q
RTl


, (36)

with the forces

j0 = η(Tl, Tl)
psat(Tl)
√
2πRTl

− η(Tl, Tv)
p

√
2πRTv

, (37)

Q0

RTl
= 2ϕ(Tl, Tl)

psat(Tl)
√
2πRTl

− 2ϕ(Tl, Tv)
p

√
2πRTl


Tv
Tl
. (38)

The mean mass and heat transfer coefficients that appear above are defined as

η(Tl, T ) = ψ


1 −

Tlω
Tl + T


, (39)

and

ϕ(Tl, T ) = (1 − γ )ψ


1 − ω


Tl + 1

2T

Tl

(Tl + T )2


+ γ

T
T + Tl

− γ [1 − ψ(1 − ω)]
[1 − ψ(1 −

3ω
8 )]

1 − ψ(1 −
ω
2 )

T 2
l

T (T + Tl)

+ γ
ψ

1 − ψ


1 −

3ω
8


+

ω
8


1 − ψ


1 −

ω
2

 Tl
T + Tl

. (40)
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In thermal equilibrium, where Tl = Tv and p = psat(Tl), the forces {j0,Q0} and the fluxes {j,Q } vanish. Thus, the model
includes the proper equilibrium conditions.

The temperature dependent matrix elements in (36) are

R11 =
2 − ψ

2
+
ψω

2
T 3/2
l


Tl + 5

2Tv


(Tl + Tv)5/2
, (41a)

R12 = −
3ψω
10

T 5/2
l

(Tl + Tv)5/2
, (41b)

R21 = γ (1 − ψ)
1 − ψ


1 −

3ω
8


1 − ψ(1 −

ω
2 )

+
3
4
(1 − γ )ψω

√
TlT 3

v

(Tl + Tv)7/2
+

21
8
ψω

T 3/2
l T 2

v

(Tl + Tv)7/2

+ γψω
1 − ψ


1 −

3ω
8


1 − ψ


1 −

ω
2

 T 5/2
l (Tl + 7

2Tv)
(Tl + Tv)7/2

−
γψω

8
1 − ψ(1 − 3ω)
1 − ψ(1 −

ω
2 )

T 3/2
l T 2

v

(Tl + Tv)7/2
, (41c)

R22 =


1 −

γ

2
−
ψ

2
(1 − γ )


− (1 − γ )

ψω

10
T 3/2
l T 2

v

(Tl + Tv)7/2

+
ψω

20
[2(11γ − 5)(ψ − 1)+ (5 −

19
2 γ )ψω]

1 − ψ

1 −

ω
2

 T 5/2
l

(Tl + Tv)7/2

−
7
40
ψω

ψω

1 +

2
7γ

− 2


1 +

5
7γ

(1 − ψ)

[1 − ψ(1 −
ω
2 )]

T 5/2
l Tv

(Tl + Tv)7/2
. (41d)

The above expressions for the interface fluxes have the same structure as those presented in Ref. [9]. The details are different,
however, since in Ref. [9] a non-reciprocal condensation–reflection kernel was used. Nevertheless, since the structure is the
same, the discussion of the relation of the extendedmodel to the classical Hertz–Knudsen [3,4] and Schrage [5] laws remains
the same, as long as the new expressions for the coefficients η(Tl, T ), ϕ(Tl, T ) and RAB are used. For space reasons, we shall
not repeat this discussion for the corrected coefficients.

4.4. Linearized fluxes

The kinetic theory based interface relations (36) are nonlinear in the deviations from equilibrium, 1T = Tl − Tv and
1p = psat(Tl) − p. In order to compare to the dimensionless resistivities r̂αβ of LIT of Eq. (10), we need to linearize by
expanding the equations to first order in the deviations. Expansion of the forces {j0,Q0} yields

 j0
Q0

RTl

 = A·


1p

√
2πRTl

−
psat(Tl)
√
2πRTl

1T
Tl

 , (42)

where the dimensionless matrix A has the elements

A11 = ψ

1 −

ω

2


, A12 = −

ψ

2
(1 − ω), A21 = 2ψ


1 −

3ω
8


,

A22 =
ψ

8
(1 + ω)+ 2γ

1 − 2ψ

1 −

7ω
16


+ ψ2


1 −

7
8ω +

5
32ω

2


1 − ψ

1 −

ω
2

 . (43)

To bring the interface conditions (36) into the LIT form (10), we introduce the non-convective heat flux qv = Q − jhv , where
hv =

5
2RTv is the ideal gas enthalpy of the vapor. Due to linearity, all coefficients must be evaluated at Tv = Tl, which gives

the dimensionless resistivities as

r̂ = A−1
·




R̂11 +
5
2

R̂12


R̂12

R̂21 +
5
2

R̂22


R̂22

 , (44)

with the equilibrium values R̂AB = RAB(Tl, Tl).
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Table 1
The values of the r̂ab matrix coefficients evaluated at the bounding values of the range suggested by Tsuruta et al. for the velocity dependent sticking
probability.

γ ω ψ r̂11 r̂12 r̂21 r̂22

1 0.086 0.685 1.07 0.115 0.114 0.250
1 0.086 0.971 0.636 0.115 0.115 0.251
1 0.554 0.685 1.47 0.0391 0.0351 0.258
1 0.554 0.971 0.896 0.0427 0.0433 0.270
0.5 0.086 0.685 1.10 0.162 0.162 0.350
0.5 0.086 0.971 0.639 0.123 0.123 0.267
0.5 0.554 0.685 1.49 0.0826 0.0799 0.399
0.5 0.554 0.971 0.901 0.0589 0.0591 0.323
0 0.086 0.685 1.13 0.234 0.235 0.501
0 0.086 0.971 0.643 0.131 0.131 0.284
0 0.554 0.685 1.51 0.163 0.162 0.659
0 0.554 0.971 0.908 0.0796 0.0793 0.390

5. Resistivities

5.1. Impact independent resistivities

In most contributions to classical kinetic theory of phase interfaces it is assumed that the condensation coefficient θc
does not depend on impact energy, i.e., ω = 0, and that all vapor particles that are not condensing are thermalized, i.e.,
γ = 1, so that the constant condensation coefficient ψ is the only parameter. Under these assumptions, accurate kinetic
theory calculations give the symmetric matrix of resistivities [6,13,23]

r̂kin. theory =

 1
ψ

− 0.40044 0.126

0.126 0.294

 . (45)

Under the same assumptions, applying the expansion (44) to the model (41), we find

r̂ω=0,γ=1 =


1
ψ

−
7
16

1
8

1
8

1
4

 =

 1
ψ

− 0.437 0.125

0.125 0.25

 . (46)

The exact kinetic theory result accounts for Knudsen layer effects, which were ignored in the derivation of (46). The
omission of Knudsen layers explains the – relatively small – differences in the coefficients. Differences in jump and slip
boundary conditions due to the omission of Knudsen layer effects arewell known in kinetic theory; often one uses correction
coefficients to adjust to detailed kinetic theory computations [20].

5.2. Impact dependent resistivities

Fig. 1 shows the values of the resistivity matrix r̂αβ for pure thermalization, γ = 1, and Fig. 2 shows the matrix for
γ = 0.5; in both figures the data is plotted over the suggested range for ω andψ [1]; the actual resistivity values at several
choices of values are also included in Table 1. The figures and table show a clear dependence of Onsager resistivities on
the parameters ω, ψ , and γ . Depending on the values of these coefficients, the resistivities may differ substantially from
their values obtained for velocity independent condensation coefficients as given in (46). Accordingly, it is expected that
simulations of non-equilibrium evaporation and condensation processes depend on the values of these coefficients.

Interface models in classical kinetic theory are constructed such that the matrix of Onsager coefficients is
symmetric [3–8], and ourmodel follows this lead. Sharipov has proven the symmetry of Onsager coefficients for kernels that
obey the reciprocity condition (28) [7,8]. In accordancewith this, ourmodel gives symmetric resistivities for all condensation
coefficients. While there is no visible asymmetry in the figures, a closer look on the data reveals a very small asymmetry
that must be attributed to the omission of Knudsen layers.

6. Onsager coefficients frommolecular dynamics simulations

It is extremely difficult to measure the Onsager coefficients for evaporation and condensation, and we are not aware of
any experimental measurement that could be used to determine the values of the coefficients {ω,ψ, γ }.

In an ingenious approach, Xu et al. [13,11] used non-equilibrium Molecular Dynamics (MD) to determine the Onsager
coefficients for evaporation and condensation. They determined the Onsager resistivities as defined above in (5)–(7), and for
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Fig. 1. The matrix elements r̂β plotted for γ = 1 (pure thermalization) withψ and ω in the range suggested by Tsuruta et al. [1]; the matrix is symmetric.

an alternative choice of fluxes, where {j, ql} is used instead of {j, qv}; we denote the resistivities for this choice as r̄αβ . The off-
diagonal coefficients r̄αβ are related to the resistivities r̂αβ (10) as r̄αβ = r̂αβ −1h̄ r̂11 (for α ≠ β), where1h̄ = (hv −hl)/RTl
is the dimensionless heat of evaporation.

The results presented in Ref. [11], obtained by using the classical kinetic theory interface prediction for r22 and r12 of
Ref. [6] for determining r11 and r21, suggest that the coefficients for the liquid side, i.e., the r̄αβ , are symmetric. However,
the data clearly shows strong scatter that does not allow asymmetry to be fully excluded. The results for the vapor side, i.e.,
the r̂αβ , are subject to even more significant scatter and more clearly do not allow one to exclude asymmetry. Here, it must
be noted that r̄12 − r̄21 = r̂12 − r̂21, while the absolute values of r̄αβ are significantly larger than those of r̂αβ ; therefore,
asymmetry is more difficult to detect for the r̄αβ .

In the MD simulations the vapor is not in the ideal gas regime, and the degree of non-equilibrium is high, so that it
is quite difficult to compare to kinetic theory results for ideal gases in the linear regime. Nevertheless, we determine the
dimensionless Onsager coefficients from the MD results in Ref. [11]. For this, we rewrite (10) as

psat(Tl)
ZR

√
2πRTl

F1

psat(Tl)Tl
Z
√
2πRTl

F2

 =

[
r̂11 r̂12
r̂21 r̂22

] j
qv
RTl

 , (47)

where Fα are the measured thermodynamic forces, j, qv are the measured fluxes, and Z =
psatvsat

RTl
is a real gas correction

factor, determined from the Redlich–Kwong equation and the saturation pressure, which are both given in Ref. [11]. Kinetic
theory suggests that the dimensionless Onsager coefficients are constants. Then, one can use two pairs (i, j) of the data sets
given in Ref. [11] to find the four coefficients r̂αβ from the four equations

F̂ (i)α = r̂αβ Ĵ
(i)
β , F̂ (j)α = r̂αβ Ĵ

(j)
β . (48)

Only 22 of the 48 data sets in Ref. [11] were used: all cases with surface tension below 0.0035 N/mwere discarded to ensure
sufficient distance from the critical point; cases 7 and 16 were removed since they gave clear outliers, most probably due to
nonlinear deviation from equilibrium. The computation was done only for the vapor side with the appropriate data. There
are cases with j ≠ 0 (cases 8,9,10,13,14) and j = 0 (cases 27,28,30–32,34,35,38–47); any two cases with j = 0 cannot be
paired.
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Fig. 2. The matrix elements r̂αβ plotted for γ = 0.5 with ψ and ω in the range suggested by Tsuruta et al. [1]; the matrix is symmetric.

Fig. 3. r̂12 (�) and r̂21 (•) for vapor determined from MD data [11]. Due to the large scatter, and the mean values ⟨r̂12⟩ = 0.138, ⟨r̂21⟩ = 0.229 might not
be meaningful.

Fig. 3 shows the obtained values of the cross coefficients r̂12 and r̂21 for the 95 different data pairs that were used in
the evaluation. There is only a small number of cases with non-zero j, and thus there is not enough data to allow for
strong conclusions. In particular, the scatter is relatively large and thus the given mean values might not be meaningful.
Nevertheless, asymmetry of the coefficients cannot be excluded. Fig. 4 shows the corresponding values for the diagonal
coefficients r̂11 and r̂22, which also exhibit substantial scatter.

With the scatter observed in theMDdata, there is no point in trying to fit the coefficients {ω,ψ, γ } to theMD simulations.
Indeed, in the MD simulations the temperatures of liquid and vapor differ by more than 10%, which makes it likely that the
MD experiments are in the nonlinear regime, for which symmetry cannot be expected. Moreover, real gas effects play a role,
and it is unclear how to properly correct the MD data for these. Without more accurate data, a proper fit for the coefficients
is not possible.
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Fig. 4. r̂11 (•) and r̂22 (�) for vapor determined from MD data [11]. Due to the large scatter, the mean values ⟨r̂11⟩ = 0.909, ⟨r̂22⟩ = 0.248 might not be
meaningful.

7. Summary

In this paper we constructed a microscopic interface condition for evaporating and condensing phase interfaces, based
on a velocity dependent condensation probability and Maxwell’s reflection model. Macroscopic interface conditions were
derived from the microscopic model.

We are not aware of other attempts in the literature to construct a detailed evaporation–reflection kernel with velocity
dependent condensation that can be used in kinetic theory. Therefore, themodel presented here, and its precursor in Ref. [9],
must be seen as a first attempt to link velocity dependent condensation probability withmacroscopic equations at the phase
interface.

We emphasize that transport is governed by all terms of the Onsager matrix. As can be seen in Figs. 1 and 2, the
resistivity matrices depend markedly on the coefficients {ω,ψ, γ } in the condensation probability, which therefore affect
the macroscopic behavior at phase boundaries.

Molecular dynamics simulations of phase interfaces do not allow us to conclude on Onsager symmetry, most likely due
to real gas effects and nonlinearity. The kinetic theory interfacemodel (34) and itsmacroscopic counterpart (36) can be used
to study nonlinear effects at evaporating/condensing interfaces in more detail.

Indeed, reliablemacroscopicmodels that include asmuch of themicroscopic behavior as possible should be highly useful
for increased understanding of non-equilibrium condensation and evaporation.

Recently, Phillips and co-workers measured the Onsager coefficients of heat transport across stationary liquid/vapor
interfaces in pure substances (reviewed in Ref. [24]). We are currently comparing our kinetic theory model to these
measurements; this shall be a subject of a future paper.
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