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Pressure-driven and thermally driven rarefied gas flows in long capillaries with circular cross
sections are investigated. For both Poiseuille and thermal transpiration flows, a unified theoretical
approach is presented based on the linear form of regularized 13-moment �R13� equations. The
captured nonequilibrium effects in the processes are compared to available kinetic solutions, and the
shortcomings of classical hydrodynamics, i.e., the Navier–Stokes–Fourier equations, are
highlighted. Breakdown of Onsager’s symmetry is proposed as a criterion to determine the range of
applicability of extended macroscopic models. Based on Onsager’s reciprocity relation it is shown
that linearized R13 equations provide agreement with kinetic data for moderate Knudsen numbers,
Kn�0.25. Two-way flow pattern and thermomolecular pressure difference in simultaneous
pressure-driven and temperature-driven flows are analyzed. Moreover, second-order boundary
conditions for velocity slip and temperature jump are derived for the Navier–Stokes–Fourier system.
The proposed boundary conditions effectively improve classical hydrodynamics in the transition
flow regime. © 2010 American Institute of Physics. �doi:10.1063/1.3500681�

I. INTRODUCTION

The equations of classical continuum gas dynamics, i.e.,
the Navier–Stokes and Fourier laws, can describe gas flows
except in a thin layer adjacent to the boundary, the Knudsen
boundary layer. By increase of the Knudsen number Kn, the
ratio of molecular mean free path to a geometric character-
istic length of the flow, the thickness of the Knudsen layer
increases. As a result, nonequilibrium effects dominate the
flow and the classical Navier–Stokes–Fourier �NSF� system
fails to accurately describe the flow.

Rarefied gas flows, regardless of their rarefaction degree,
are precisely described by Boltzmann’s kinetic equation.1

Nevertheless, due to the complexity of the collision process
and high dimensionality of the microscopic velocity field,
solutions for the Boltzmann equation are computationally
very expensive and still remain formidable.

Alternatively, macroscopic transport equations, which
are deduced from the Boltzmann equation in a rational man-
ner, can be used to describe rarefied gas flows to some extent
of rarefaction degree. The Chapman–Enskog expansion2 and
Grad’s moment expansion3,4 are the classical methods to ex-
tract macroscopic transport equations from the Boltzmann
kinetic equation. Among these, the method of moments has
recently attracted a great deal of interest. This is due to its
stability and also availability of boundary conditions for the
moments. Indeed, Burnett-type equations obtained from the
Chapman–Enskog method suffer from linear instabilities5

and the lack of a unified strategy to construct the required
boundary conditions.6

In the present work, the regularized 13-moment �R13�
equations7,8 and their corresponding boundary conditions9

are employed to investigate nonequilibrium effects in
Poiseuille and transpiration flows of rarefied gas flows in
tubes. The R13 equations are the regularized version of the
original Grad’s 13-moment �G13� equations3 and are appli-
cable to dilute gas flows at early stages of the transition
regime, i.e., Kn�0.5. In comparison to the G13 system, the
R13 equations have shown superiority in describing shock
structures,10 Knudsen boundary layers, and nonequilibrium
bulk effects.9,11–15

Tubes with circular cross section are favored in engi-
neering applications as flow passages. Rarefied gas flows in
circular channels under pressure gradients �cylindrical Poi-
seuille flow� and temperature gradients �cylindrical thermal
transpiration/creep flow� are rigorously investigated through
kinetic approaches, see Ref. 16 for an extensive bibliogra-
phy. Kinetic solutions of cylindrical Poiseuille flow were first
reported in 1966 by Cercignani and Sernagiotto,17 followed
by Ferziger’s improvements.18 They confirmed the presence
of a minimum in the flow rate, which was previously ob-
served in experiments by Knudsen.19

One year later, Sone and Yamamoto,20 and Loyalka,21

initiated kinetic approaches for thermally driven flows in cy-
lindrical tubes. Temperature-driven flows occur in gases
when nonuniform temperature distributions are applied in the
flow boundaries. This type of flow was first reported by
Reynolds22 in 1879 who called it thermal transpiration flow.
The interesting phenomenon in transpiration flows is the ex-
istence of a pumping effect, also known as thermomolecular
pressure difference �TPD�, which was proved by Knudsen
experiments.23

Nowadays, owing to broad improvements in computa-
tional facilities and numerical schemes, the quality of kinetic
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solutions for cylindrical Poiseuille and transpiration flows is
considerably improved. Thus, they provide a reliable bench-
mark for validating the results of macroscopic approaches
and even for calibrating the experiments.

We investigate steady state flows subject to small longi-
tudinal pressure and temperature gradients, where the linear-
ized R13 equations can be used to analyze the problem with
minimum numerical effort. In order to validate our solutions,
we compare them with the most recent kinetic data. More-
over, we present Navier–Stokes–Fourier solutions to high-
light their shortcomings in describing nonequilibrium effects.

An explicit solution for two-way flow pattern, which ap-
pears in simultaneous Poiseuille and transpiration flows, is
discussed. Furthermore, we examine the validity of Onsag-
er’s reciprocity relation for both NSF and R13 equations.
Breakdown of Onsager’s symmetry is used as a new criterion
to determine the range of applicability of macroscopic ap-
proaches.

Finally, in order to improve the accuracy of classical
NSF hydrodynamics, a new set of velocity slip and tempera-
ture jump conditions for Navier–Stokes–Fourier system is
proposed. These conditions are deduced from the R13 kinetic
boundary conditions using a scaling approach.13,15 It is
shown that these second-order boundary conditions for axial
flows in tubes considerably improve the NSF solutions for
the considered boundary value problems.

II. STATEMENT OF THE PROBLEM

We consider a system including two reservoirs contain-
ing the same gas, joined by a capillary of length L, as de-
picted in Fig. 1�a�. The pressure p, temperature T, and mass
density � of the gas in the cold low-pressure and warm high-
pressure reservoirs are denoted by �p1 ,T1 ,�1� and
�p2 ,T2 ,�2�, respectively, and the valves of reservoirs allow to
adjust these conditions.

First, we assume isothermal reservoirs T1=T2, while a
constant pressure difference is maintained between the reser-
voirs by adjusting the valves such that p2� p1. In this setting
a pressure driven Poiseuille flow occurs from the right res-
ervoir to the left one. Quite differently, a thermally induced
flow can be initiated between isobaric reservoirs, p1= p2,
which are kept at different temperatures T1�T2, and a tem-
perature gradient along the capillary wall connects the tem-
peratures of the reservoirs. In this setting the gas flows from
the cold reservoir to the hot one. The arising flow is known
as thermal creep flow or thermal transpiration flow.24

Furthermore, we consider simultaneous Poiseuille and
transpiration flows in a closed system, i.e., when both valves
are closed. Initially, we assume isobaric reservoirs with dif-
ferent temperatures and a temperature gradient along the cap-
illary wall. This setting initiates a thermally driven flow in
the tube in the direction of the temperature gradient. There-
fore, a pressure difference between the reservoirs will estab-
lish, known as the thermomolecular pressure difference.23,25

This, in turn, will induce a pressure driven Poiseuille flow, in
the opposite direction of the transpiration flow. We empha-
size that in such a flow setting temperature and pressure gra-
dients have the same direction along the tube, while their

corresponding flows have opposite directions. There will be
a transpiration flow at the walls and a backward flow in the
center of the pipe. After a sufficiently long time, a steady
state condition will establish in which the closed reservoirs
have constant pressure and temperature ratios, and the net
mass flow in the capillary is zero. The relation between pres-
sure and temperature can be presented by

p2

p1
= �T2

T1
	�

, �1�

where � is the exponent of thermomolecular pressure
difference,16 which strongly depends on the degree of gas
rarefaction,25,26 i.e., the Knudsen number.

Throughout the following monatomic ideal gases are
considered where p=�RT=�� is the equation of state. For
simplicity, the temperature in energy units �=RT is defined,
where R=kB /m is the gas constant, with kB and m as the
Boltzmann constant and mass of the gas molecules, respec-
tively. We investigate steady state flow in a long capillary
with circular cross section of radius R, see Fig. 1�b�. Thus,
cylindrical coordinates x= �r ,� ,z� are employed in our
analysis, where r and z are the radial and axial coordinates,
respectively. The flow is irrotational, v�=0, and independent
of the azimuthal coordinate, i.e., � /��=0.

III. FLOW IN LONG TUBES

In general, due to compressibility effects, flow in the
tube �cf. Fig. 1� is two-dimensional in the r-z plane, which
requires a numerical approach. As discussed in Ref. 16, in
flows through long passages one can safely discard the small

FIG. 1. �Color online� Poiseuille flow, thermal transpiration flow, and their
combination are illustrated between two vessels �a�, which are connected
through a long pipe �b�. In the case of pressure driven Poiseuille flow, a
constant pressure difference is maintained between the reservoirs by adjust-
ing the valves. In thermal transpiration flow a temperature gradient in axial
z-direction is applied on the tube wall which connects the temperatures of
two vessels. This longitudinal temperature gradient induces a flow from the
cold reservoir to the warm one, while their pressure is the same. When the
system is closed and a temperature gradient is applied on the tube wall,
Poiseuille and transpiration flows occur simultaneously. In such a setting,
temperature and pressure gradients have the same direction along the tube,
but their corresponding flows have opposite directions.
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compressibility effects and describe the overall flow behav-
ior using a one-dimensional transport field. In this section we
use the same approach which is used in Ref. 16 to justify the
unidirectional flow assumption in long tubes.

For sufficiently long tubes where L /R=�	1, one can
assume that density and temperature variations in the cross
section are negligible compared to their longitudinal varia-
tion, so that �=��z� and �=��z�. To proceed, we choose the
radius of the tube as the reference length scale to define the
dimensionless coordinates

r̃ =
r

R
and z̃ =

z

R
. �2�

Indeed, the reservoirs affect the flow at the capillary ends,
but compared to the length of the capillary, the entry/exit
effects are limited to very small regions. Then, ignoring these
effects,27 we have

��0� = �1, ���� = �2, ��0� = �1, ���� = �2. �3�

At any arbitrary cross section z̃= z̃0 along the tube and
for 
z̃− z̃0

1 we can write

��z̃� = ��z̃0� + � ��

� z̃
�

z̃=z̃0

�z̃ − z̃0� +
1

2
� �2�

� z̃2�
z̃=z̃0

�z̃ − z̃0�2 + ¯ ,

�4�

��z̃� = ��z̃0� + � ��

� z̃
�

z̃=z̃0

�z̃ − z̃0� +
1

2
� �2�

� z̃2�
z̃=z̃0

�z̃ − z̃0�2 + ¯ .

The order of derivations can be expressed in terms of the
smallness parameter 1 /�,

��

� z̃
�

�1 − �2

�
= O�1

�
	,

�2�

� z̃2 �
�1 − �2

�2 = O� 1

�2	 ,

�5�
��

� z̃
�

�1 − �2

�
= O�1

�
	,

�2�

� z̃2 �
�1 − �2

�2 = O� 1

�2	 .

Since �	1, the second-order derivatives can be neglected,
and the expansions in Eq. �4� reduce to

��z̃� = �0�1 + ��z̃ − z̃0�� and ��z̃� = �0�1 + ��z̃ − z̃0�� ,

�6�

with

�0 = ��z̃0�, � = � ���/�0�
� z̃

�
z̃=z̃0

= O�1

�
	,

�7�

�0 = ��z̃0�, � = � ���/�0�
� z̃

�
z̃=z̃0

= O�1

�
	 .

Accordingly, we can conclude that near a given cross sec-
tion, z̃0, on a distance of the order of the tube radius R,
density and temperature linearly vary with respect to z̃, and
their gradients are small constants of order �1 /��. Replace-
ment of density and temperature from Eq. �6� into the ideal
gas law gives

p�z̃� = p0�1 + ��z̃ − z̃0��,

with

p0 = �0�0, � = � + � = � ��p/p0�
� z̃

�
z̃=z̃0

= O�1

�
	 , �8�

again, all terms of order �z̃− z̃0�2 are neglected due to linear-
ization.

The constant pressure and temperature gradients are the
driving forces for the Poiseuille and transpiration flows, re-
spectively. As will be shown in Sec. VI, our linear analysis
discards axial compressibility effects and allows to simplify
the problem such that a one-dimensional analysis can be em-
ployed to investigate the local transport field across the tube.

The tube walls are impermeable and there is no velocity
in the radial direction, vr=0. Since the flow is assumed to be
independent of the �-direction, the velocity vector v, the
heat-flux vector q, and the symmetric and trace-free stress
tensor � simplify to

v =  0

0

vz�r�
�, q = qr�r�

0

qz�r�
�,

�9�

� = �rr�r� 0 �rz�r�
0 ����r� 0

�rz�r� 0 �zz�r�
� ,

where all components are only functions of the radial coor-
dinate r. Trace-free condition for the stress tensor gives
����r�=−�rr�r�−�zz�r�.

IV. FULL R13 EQUATIONS

The core equations in the R13 system are the conserva-
tion laws for mass, momentum, and energy, which at steady
state condition and for the proposed geometry �cf. Fig. 1�
reduce to

�p

�r
+

��rr

�r
+

2�rr + �zz

r
= 0, �10�

��rz

�r
+

�rz

r
= −

�p

�z
, �11�

�qr

�r
+

qr

r
= − �rz

�vz

�r
. �12�

Equations �10� and �11� are the components of the mo-
mentum balance in the radial and axial directions, respec-
tively. Referring to our linear analysis, the axial pressure
gradient �p /�z on the right-hand side of Eq. �11� is a small
constant, which can be considered as a body force. Equation
�12� is the energy balance, where the coupling between stress
�rz and shear rate �vz /�r on the right-hand side describes
viscous dissipation. Due to the prescribed geometry, continu-
ity and �-momentum equations are automatically satisfied.

The extended balance equations for the components of
the stress tensor ��rr ,�rz ,�zz� and heat-flux vector �qr ,qz�
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follow from their respective moment equations.7,8,10,28

In cylindrical space coordinates, for the considered geometry
�Fig. 1� they read

4

15
�2

�qr

�r
−

qr

r
	 −

2

3
�rz

�vz

�r
+

�mrrr

�r
+

mrrr − 2mr��

r
= −

p


�rr,

�13�

2

5

�qz

�r
+ �rr

�vz

�r
+

�mrrz

�r
+

mrrz − m��z

r
= −

p


�rz − p

�vz

�r
, �14�

−
4

15
� �qr

�r
+

qr

r
	 +

4

3
�rz

�vz

�r
+

�mrzz

�r
+

mrzz

r
= −

p


�zz, �15�

and

7

2
�rr

��

�r
−

�rz

�
� ��rz

�r
+

�rz

r
	 + �� ��rr

�r
+

2�rr + �zz

r
	

+
2

5
qz

�vz

�r
+

1

2
� �Rrr

�r
+

2Rrr + Rzz

r
	 +

1

6

��

�r
+ mrrz

�vz

�r

= − Pr
p


qr −

5

2
p

��

�r
, �16�

7

2
�rz

��

�r
+ �� −

�zz

�
	� ��rz

�r
+

�rz

r
	 +

7

5
qr

�vz

�r

+
1

2
� �Rrz

�r
+

Rrz

r
	 + mrzz

�vz

�r
= − Pr

p


qz −

5

2
p

��

�z
. �17�

The underlined terms on the right-hand side of Eqs. �14�,
�16�, and �17� represent the Navier–Stokes and Fourier laws
of classical hydrodynamics, i.e., Newtonian viscous shear
and Fourier’s heat conduction. Viscosity of the gas is de-
noted by , and Pr= �5 /2�� /�� is the Prandtl number,
where � is the thermal conductivity coefficient.

The axial temperature gradient �� /�z in Eq. �17� is the
driving force for thermal transpiration flow along the capil-
lary; for the applications in this paper it is considered to be a
small constant. Note that Eqs. �13�–�17� can be further sim-
plified by means of the main conservation laws �cf. Eqs.
�10�–�12��, but to keep some generality we proceed with the
presented form.

While in Grad’s original 13-moment system the higher–
order moments �� ,Rij ,mijk� are zero, the regularization
procedure7,28 gives these additional moments as

� = A1
2��rr

2 + �rz
2 + �zz

2 + �rr�zz�
�

+ A2


p
��� �qr

�r
+

qr

r
	

+ qr�5

2

��

�r
−

�

�

��

�r
	 + ��rz

�vz

�r
� , �18�

Rrr =
B1

3

�rr
2 + �rz

2 − 2�zz
2 − 2�rr�zz

�
+

B2

3



p
���2

�qr

�r
−

qr

r
	

+ 2qr� ��

�r
−

�

�

��

�r
	 +

5

7
��rz

�vz

�r
� , �19�

Rrz = B1
�rz��rr + �zz�

�
+

B2

2



p
��

�qz

�r
+ qz� ��

�r
−

�

�

��

�r
	

+
5

7
���rr + �zz�

�vz

�r
� , �20�

Rzz =
B1

3

�rz
2 + �zz

2 − 2�rr
2 − 2�rr�zz

�
+

B2

3



p
�− �� �qr

�r
+

qr

r
	

− qr� ��

�r
−

�

�

��

�r
	 +

5

7
��rz

�vz

�r
� , �21�

mrrr = C


p
���3

5

��rr

�r
−

2

5

2�rr + �zz

r
	 −

3

5

��rr

�

��

�r

−
4

25
qz

�vz

�r
� , �22�

mr�� = C


p
���−

7

15

��rr

�r
−

1

3

��zz

�r
+

8

15

2�rr + �zz

r
	

−
1

3

�

�
���� −

2

5
�rr	 ��

�r
−

4

75
qz

�vz

�r
� , �23�

m��z = C


p
���−

2

15

��rz

�r
+

8

15

�rz

r
	 +

2

15

��rz

�

��

�r

−
4

75
qr

�vz

�r
� , �24�

mrrz = C


p
��� 8

15

��rz

�r
−

2

15

�rz

r
	 −

8

15

��rz

�

��

�r
+

16

75
qr

�vz

�r
� ,

�25�

mrzz = C


p
���1

3

��zz

�r
−

2

15

��rr

�r
−

2

15

2�rr + �zz

r
	

−
1

3

�

�
��zz −

2

5
�rr	 ��

�r
+

16

75
qz

�vz

�r
� . �26�

The coefficients �An ,Bn ,C� in Eqs. �16�–�26� depend on
the underlying kinetic model. Their derivation from the
Boltzmann equation �BE� gives28

PrBE =
2

3
, A1

BE = − 1, A2
BE = − 12,

�27�

B1
BE = −

4

7
, B2

BE = −
24

5
, CBE = − 2,

while the Bhatnagar–Gross–Krook �BGK� kinetic model
gives their value as28

PrBGK = 1, A1
BGK = 0, A2

BGK = − 8,

�28�

B1
BGK = 0, B2

BGK = −
28

5
, CBGK = − 3.

As indicated by the underlined terms in Eqs. �14�, �16�,
and �17�, in classical hydrodynamics, heat flow and stress are
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proportional to the gradients of temperature and velocity, re-
spectively. In the prescribed geometry �Fig. 1�, the laws of
Fourier and Navier–Stokes are

qr
NSF = −

5

2



Pr

��

�r
and qz

NSF = −
5

2



Pr

��

�z
, �29�

and

�rz
NSF = − 

�vz

�r
and �rr

NSF = �zz
NSF = 0. �30�

V. BOUNDARY CONDITIONS

From experimental observations and theoretical consid-
erations it is well known that gas flows slip over the bound-
ing surfaces. Moreover, a temperature jump appears at the
gas-surface interface, when nonisothermal flows are consid-
ered. The magnitude of slip and jump is proportional to the
Knudsen number.1,24

In the NSF theory with �� ,v ,�� as its primary quantities,
discontinuity conditions for velocity and temperature suffice
to solve boundary value problems. However, for extended
systems such as R13, where �� ,v ,� ,q ,�� are the primary
variables, additional discontinuity conditions for the higher-
order moments �q ,�� are required.

A. Kinetic boundary conditions for regularized
13-moment equations

Recently, Maxwell’s boundary condition29 for the Boltz-
mann equation has been successfully applied to obtain mac-
roscopic boundary conditions for high-order moments.9,30

The full set of boundary conditions for the flows depicted in
Fig. 1 is9

�rz =
− �

2 − �
� 2

��
�PVz +

1

5
qz +

1

2
mrrz	nr, �31a�

Rrz =
�

2 − �
� 2

��
�PVz�� − V2 + 6T� −

11

5
�qz −

1

2
�mrrz	nr,

�31b�

qr =
− �

2 − �
� 2

��
�2PT −

1

2
PV2 +

1

2
��rr +

1

15
� +

5

28
Rrr	nr,

�31c�

mrrr =
�

2 − �
� 2

��
�2

5
PT −

3

5
PV2 −

7

5
��rr +

1

75
�

−
1

14
Rrr	nr, �31d�

mrzz =
− �

2 − �
� 2

��
�1

5
PT −

4

5
PV2 +

1

14
Rzz + ���zz −

1

5
�rr	

+
1

150
�	nr, �31e�

with

P = p +
1

2
�rr −

1

120

�

�
−

1

28

Rrr

�
,

�32�
Vz = vz − vz

W, T = � − �W.

Here, Vz and T denote slip velocity and temperature jump at
the wall, respectively, with the sub/superscript “W” referring
to the properties of the tube wall. The wall normal nr points
in radial direction toward the gas, thus nr=−1. The surface
accommodation factor is denoted by �, where �=0 and �
=1 represent fully reflective �smooth� and fully diffusive
�rough� walls, respectively.

In a steady state flow, the mass of the gas in the tube is
constant. This can be used as an auxiliary condition to find
the density distribution in the tube cross section. For a unit
length of tube, �z=1, this condition reads

�
z0

z0+1 �
0

2� �
0

R

��r�rdrd�dz = M0, �33�

where M0 is the mass of the gas.

B. Second-order boundary conditions for NSF
equations

From the viewpoint of the Chapman–Enskog expansion
method2 the R13 boundary conditions in Eqs. �31a�–�31e�
include a range of first-, second-, and third-order moments
�in terms of presence of the Knudsen number�. Therefore,
they can be used to derive high-order slip velocity and tem-
perature jump conditions for the NSF equations. The strategy
to obtain these high-order conditions is presented in Ref. 13,
and it is utilized here to find second-order contributions of
high-order moments to slip velocity and temperature jump in
cylindrical geometry; details are presented in Appendix A.

For the linearized Boltzmann kinetic model with the co-
efficients given in Eq. �27�, the slip condition reads

Vz
NSF-BE = −

2 − �

�
���

2

�rz
NSF

p
nr +

3

4



p

��

�z
−

19

18

qr
NSF�rz

NSF

p2

+
1

6

�

p2 �5
�

�r
+

1

r
	�rz

NSF, �34�

while for the BGK model with coefficients �28� it becomes

Vz
NSF-BGK = −

2 − �

�
���

2

�rz
NSF

p
nr +

1

2



p

��

�z
−

6

5

qr
NSF�rz

NSF

p2

+
�

p2

��rz
NSF

�r
. �35�

Analogously, the jump conditions for temperature are
obtained as
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TNSF-BE = −
2 − �

�
���

2

qr
NSF

2p
nr +

2

35

�

p2 �12
�

�r
+

1

r
	qr

NSF

−
92

175

�qr
NSF�2

p2 + ��2 − �

�
	2�

8
−

29

245
� �

p2 ��rz
NSF�2

�36�

and

TNSF-BGK = −
2 − �

�
���

2

qr
NSF

2p
nr +

1

10

�

p2 �6
�

�r
−

1

r
	qr

NSF

−
16

25

�qr
NSF�2

p2 + ��2 − �

�
	2�

8
−

3

35
� �

p2 ��rz
NSF�2.

�37�

In Eqs. �34�–�37� the quantities qr
NSF and �rz

NSF denote heat
flux and stress according to the Fourier and Navier–Stokes
laws �cf. Eqs. �29� and �30��. The underlined terms indicate
the first-order slip velocity and temperature jump contribu-
tions, while the rest are second-order corrections. The
double-underlined terms are applicable only for the thermal
transpiration flow as they take account for the effects of lon-
gitudinal temperature gradients.

VI. DIMENSIONLESS AND LINEARIZED EQUATIONS

Equations �10�–�26� describe the radial distribution of
flow properties in the presence of constant pressure and tem-
perature gradients. In low speed rarefied gas flows, which are
subject to small density and temperature gradients, Eqs.
�10�–�26� in their linear form can be employed to describe
the flow. To present linear equations the local reference equi-
librium state ��0 ,�0 ,vi

0� at z=z0 is employed.
The following linearized equations are presented in di-

mensionless form. The dimensionless axial and radial coor-
dinates are defined in Eq. �2�, where the radius of the tube, R,
is used as the reference length scale. Dimensionless mass
density, temperature, and pressure are defined as their devia-
tions from the local reference state,

�

�0
= 1 + �̃,

�

�0
= 1 + �̃, and

p

p0
= 1 + p̃ = 1 + �̃ + �̃ .

�38�

The local thermal speed, ��0, and reference density, �0, are
used to define the remaining dimensionless quantities,

ṽi =
vi

��0

, �̃ij =
�ij

�0�0
, q̃i =

qi

�0
��0

3
,

�39�

�̃ =
�

�0�0
2 , R̃ij =

Rij

�0�0
2 , m̃ijk =

mijk

�0
��0

3
.

Furthermore,  /0=1+ ̃ is the dimensionless viscosity
with 0=��0�. Dimensionless deviations vanish in the ref-
erence equilibrium state. In the following dimensionless and
linearized equations, viscosity appears through the Knudsen
number Kn, defined as the ratio of mean free path � to the
characteristic length scale L,

Kn =
�0

L
=

0
��0

p0R
. �40�

Here �0=0
��0 / p0 is the molecular mean free path in the

reference equilibrium state and the radius of the tube R is
chosen as the reference length.

Linearization leads to decoupling of equations, such that
Eqs. �10�–�26� and their corresponding boundary conditions
�31a�–�31e� can be separated into the following three sets of
ordinary differential equations.

�i� The velocity problem.
R13 case. In the linear case, to find the gas velocity we

need to solve the following subset of equations:

� �

� r̃
+

1

r̃
	�̃rz = − � , �41a�

− � +
1

2
� �

� r̃
+

1

r̃
	R̃rz = −

Pr

Kn
q̃z −

5

2
� , �41b�

2

5

� q̃z

� r̃
+

�m̃rrz

� r̃
+

m̃rrz − m̃��z

r̃
= −

1

Kn
�̃rz −

� ṽz

� r̃
, �41c�

with the constitutive relations

R̃rz =
1

2
B2 Kn

� q̃z

� r̃
, m̃rrz = −

8

15
C Kn�� +

5

4

�̃rz

r̃
	,

�42�

m̃��z =
2

15
C Kn�� + 5

�̃rz

r̃
	 ,

and the linearized boundary conditions

�̃rz =
− �

2 − �
� 2

�
�Ṽz +

1

5
q̃z +

1

2
m̃rrz	nr, �43a�

R̃rz =
�

2 − �
� 2

�
�Ṽz −

11

5
q̃z −

1

2
m̃rrz	nr. �43b�

Equation �41a� is the dimensionless and linearized axial mo-
mentum balance �cf. Eq. �11��, �=�p̃ /�z̃ was introduced in
Eq. �8�. Also, Eq. �41b� is the dimensionless and linearized

axial heat-flux balance �cf. Eq. �17�� with �=��̃ /�z̃, as the
constant and dimensionless axial temperature gradient �Eq.
�6��. Equation �41c� is the dimensionless and linear form of
the shear-stress balance.

Navier–Stokes–Fourier case. In the hydrodynamic limit,
where high-order moments vanish, the velocity problem con-
sists of axial momentum balance and axial heat-flux balance
�Eqs. �41a� and �41b��,

� �

� r̃
+

1

r̃
	 � ṽz

� r̃
=

�

Kn
, 0 = −

Pr

Kn
q̃z −

5

2
� . �44�

In Eq. �44� Navier–Stokes law for shear-stress in dimension-
less form was used, i.e.,
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�̃rz
NSF = − Kn

� ṽz

� r̃
. �45�

Equation �44� is Fourier’s law for axial heat conduction �ap-
plicable only for thermally driven flows�,

q̃z
NSF = −

5

2

Kn

Pr
� . �46�

Since �rz is of O�Kn�, it follows from Eq. �41a� and also
from Eq. �44� that pressure gradient � is first-order in terms
of Knudsen number, O���=O�Kn�. Hence, � in Eq. �41b�
provides a second-order contribution to the axial heat flow,
and as depicted in Eq. �44� it vanishes in the hydrodynamic
limit.24 The radial velocity distribution can be found by in-
tegrating Eq. �44�. Depending on the kinetic model, the in-
tegrating constants must be evaluated from the linearized
form of the approximate slip conditions �cf. Eqs. �34� or Eq.
�35�� that read

Ṽz
NSF-BE =

2 − �

�
��

2
Kn

� ṽz

� r̃
nr +

3

4
Kn �

−
1

6
Kn2�5

�

� r̃
+

1

r̃
	 � ṽz

� r̃
,

�47�

Ṽz
NSF-BGK =

2 − �

�
��

2
Kn

� ṽz

� r̃
nr +

1

2
Kn � − Kn2�2ṽz

� r̃2 .

In Eq. �47� both Navier–Stokes and Fourier laws in dimen-
sionless form �Eqs. �45� and �46�� were used.

�ii� The temperature problem.
R13 case. Thermal behavior of the gas is governed by

the equations

� �

� r̃
+

1

r̃
	q̃r = 0, �48a�

� �

� r̃
+

1

r̃
	m̃rzz = −

1

Kn
�̃zz, �48b�

−
4

5

q̃r

r̃
+

�m̃rrr

� r̃
+

m̃rrr − 2m̃r��

r̃
= −

1

Kn
�̃rr, �48c�

��̃rr

� r̃
+

2�̃rr + �̃zz

r̃
+

1

2
� �R̃rr

� r̃
+

2R̃rr + R̃zz

r̃
	 +

1

6

��̃

� r̃

= −
Pr

Kn
q̃r −

5

2

� �̃

� r̃
, �48d�

with the constitutive relations

�̃ = R̃zz = 0, R̃rr = − B2 Kn
q̃r

r̃
,

m̃rrr =
3

5
C Kn� ��̃rr

� r̃
−

2

3

2�̃rr + �̃zz

r̃
	 ,

�49�

m̃r�� = C Kn�−
7

15

��̃rr

� r̃
−

1

3

��̃zz

� r̃
+

8

15

2�̃rr + �̃zz

r̃
	 ,

m̃rzz = C Kn�1

3

��̃zz

� r̃
−

2

15

��̃rr

� r̃
−

2

15

2�̃rr + �̃zz

r̃
	 ,

and the linearized boundary conditions

q̃r =
− �

2 − �
� 2

�
�2T̃ +

1

2
�̃rr +

1

15
�̃ +

5

28
R̃rr	nr, �50a�

m̃rrr =
�

2 − �
� 2

�
�2

5
T̃ −

7

5
�̃rr +

1

75
�̃ −

1

14
R̃rr	nr, �50b�

m̃rzz =
− �

2 − �
� 2

�
�1

5
T̃ +

1

14
R̃zz + �̃zz −

1

5
�̃rr +

1

150
�̃	nr.

�50c�

Equation �48a� is the linearized energy balance in dimension-
less form where the nonlinear viscous heating term is omit-
ted, compare with Eq. �12�. The other equations are linear-
ized balance equations for normal components of the stress
tensor and heat-flux vector.

Navier–Stokes–Fourier case. Fourier’s law for the
radial direction is given on the right-hand side of

Eq. �48d�, q̃r=−�5 /2��Kn /Pr�� �̃ /�r̃. Substitution into Eq.
�48a� gives an explicit equation for temperature,

� �

� r̃
+

1

r̃
	 � �̃

� r̃
= 0. �51�

Integrating the above equation introduces a constant which
must be determined from the linearized temperature jump
condition,

T̃NSF-BE =
2 − �

�

15

8
��

2
Kn

� �̃

� r̃
nr

−
3

14
Kn2�12

�

� r̃
+

1

r̃
	 � �̃

� r̃
,

�52�

T̃NSF-BGK =
2 − �

�

5

4
��

2
Kn

� �̃

� r̃
nr

−
1

4
Kn2�6

�

� r̃
−

1

r̃
	 � �̃

� r̃
.

�iii� The density/pressure problem.
R13 case. Once the temperature problem is solved, we

can integrate the linear form of the radial momentum balance
�Eq. �10��,
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� p̃

� r̃
+

��̃rr

� r̃
+

2�̃rr + �̃zz

r̃
= 0. �53�

On account of Eq. �38� one can recast Eq. �53� as

� �̃

� r̃
+

� �̃

� r̃
+

��̃rr

� r̃
+

2�̃rr + �̃zz

r̃
= 0, �54�

in order to find radial density deviations. Integrating the
above equation introduces another integrating constant,
which must be determined from the auxiliary condition �33�,
which in proper dimensionless form reads

�
0

1

��̃ + 1�r̃dr̃ = const. �55�

Navier–Stokes–Fourier case. Based on the Navier–
Stokes law the normal stress components, also known as
non-Newtonian stresses, vanish in the hydrodynamic limit
�̃rr= �̃zz=0. Then the density/pressure problem simplifies to

�̃+ �̃=const.

VII. SOLUTIONS

In this section, explicit linear solutions for Poiseuille and
thermal transpiration flows in tubes are presented for the ve-
locity problem. Although the temperature problem in Eqs.
�48� and �49� is linear, due to the coupling between the non-
Newtonian components of the stress tensor via the curvature
terms, an explicit solution for it is not accessible. This re-
striction of obtaining analytical solution for the temperature
problem is also reported in our discussion of cylindrical Cou-
ette flows.15

As in Ref. 15, the linear temperature problem can be
solved numerically with basic finite difference methods,

which yield q̃r= �̃zz= �̃rr= �̃=0 for symmetric temperature
distributions on the tube. Similarly, trivial solutions for den-
sity and pressure can be concluded from the temperature
problem solution that are �̃= p̃=0. This trivial solution means
that in the linear regime flow is isothermal. Nonzero solu-

tions for �q̃r , �̃zz , �̃rr , �̃ , �̃ , p̃� can be obtained when a non-
symmetric temperature distribution is defined on the tube
wall, however, this is not a conventional setting for tube
flows.

A. Poiseuille flow

In the Poiseuille flow where the process is driven by the
pressure gradient �, the velocity problem �Eqs. �41� and
�42�� reduces further to

� �

� r̃
+

1

r̃
	�̃rz = − � , �56a�

− � +
B2 Kn

4
� �

� r̃
+

1

r̃
	 � q̃z

� r̃
= −

Pr

Kn
q̃z, �56b�

2

5

� q̃z

� r̃
= −

1

Kn
�̃rz −

� ṽz

� r̃
. �56c�

The solution for the above system follows by integration as

�̃rz =
C1

r̃
−

�

2
r̃ , �57a�

q̃z = C2J0� 2

Kn
�Pr

B2
r̃	 + C3Y0� 2

Kn
�Pr

B2
r̃	 +

Kn

Pr
� ,

�57b�

ṽz = C4 +
�

4 Kn
r̃2 −

C1

Kn
ln�r̃� −

2

5
q̃z. �57c�

C1−C4 are the integrating constants, which need to be deter-
mined from the boundary conditions.

The underlined terms indicate the solution for the NSF
equations. Note that both R13 and NSF systems yield the
same solution for shear stress. The NSF system predicts heat
flux only in the direction of the temperature gradient, thus, it
cannot predict the axial heat flux q̃z in this isothermal flow.
This streamwise heat flow, also known as mechanocaloric
heat flux,31,32 is not driven by temperature gradient, and is a
pure rarefaction effect. The zeroth-order Bessel functions
�J0 ,Y0� in the mechanocaloric heat-flux describe Knudsen
boundary layers, and Kn� /Pr is a second-order bulk effect,
as described in Sec. VI, O���=O�Kn�. The term C4 is the
macroscopic slip velocity, while the microscopic slip veloc-
ity is −2q̃z /5 �at r̃=1�.

B. Transpiration flow

The thermal transpiration �creep� flow is induced by the
axial temperature gradient �, while �=0. Hence, the velocity
problem in Eqs. �41� and �42� takes the form

� �

� r̃
+

1

r̃
	�̃rz = 0, �58a�

B2 Kn

4
� �

� r̃
+

1

r̃
	 � q̃z

� r̃
= −

Pr

Kn
q̃z −

5

2
� , �58b�

2

5

� q̃z

� r̃
= −

1

Kn
�̃rz −

� ṽz

� r̃
. �58c�

Integrating Eq. �58� gives the general solution as
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�̃rz =
C1

r̃
, �59a�

q̃z = C2J0� 2

Kn
�Pr

B2
r̃	 + C3Y0� 2

Kn
�Pr

B2
r̃	−

5 Kn

2 Pr
� ,

�59b�

ṽz = C4 −
C1

Kn
ln�r̃� −

2

5
q̃z, �59c�

with the underlined terms as hydrodynamic solutions. Simi-
lar to Poiseuille flow, the stress solutions for NSF and R13
are identical. The axial heat flux is a superposition of Knud-
sen boundary layers �J0 ,Y0� and a Fourier heat conduction
that is forced by the axial temperature gradient �. In the
velocity solution, C4 and the contribution of the Fourier’s
law represent the slip velocity �temperature-driven plug
flow�.

VIII. RESULTS AND DISCUSSION

This section provides comparison between our theoreti-
cal results and kinetic solutions for the Boltzmann equation.
Radial distributions of stress, velocity, streamwise heat flux,
and Knudsen layers are compared to available kinetic data.
Moreover, for both Poiseuille and transpiration flows, the
reduced mass flow rate, M, and the reduced thermal energy
flow rate, E, are compared to Boltzmann data. The mass and
thermal energy flow rates are defined as16,33,34

M = 2�2�
0

1


ṽz
r̃dr̃, E = 2�2�
0

1


q̃z
r̃dr̃ , �60�

where the factor 2�2 is included to match dimensionless
definitions of M and E in the kinetic simulations. The influ-
ence of gas rarefaction, kinetic model, and boundary accom-
modation coefficients will be investigated on mass and en-
ergy transport in the axial direction.

Based on the applied kinetic model, we categorize the
available kinetic data in two groups, namely, the linearized
Boltzmann equation �BE� data and Bhatnagar–Gross–Krook
�BGK� data. In each category different numerical schemes
are utilized,16 but the main difference between the BE and
BGK models is the value of the Prandtl number Pr, where the
BGK model fails to predict the correct Prandtl number. In
comparisons of our solutions with kinetic data we use the
coefficients given in Eqs. �27� and �28� as approximates for
the BE and BGK models. Our general solutions in Eqs. �57b�
and �59b� explicitly show that Pr and B2 affect the thickness
of Knudsen layers and bulk values. This observation is one
of the advantages of analytical approach, which is not easily
achievable in kinetic solutions.

Conventionally, in kinetic approaches a rarefaction pa-
rameter � is defined as16

� =
��

2

L
�0

, �61�

where L and �0 are reference length scale �here, the radius of
the tube R� and mean free path in the local equilibrium state,
respectively. The kinetic theory of gases gives the mean free
path with respect to macroscopic quantities as35

�0 =���0

2

0

p0
. �62�

Replacement of �0 from Eq. �62� into Eq. �61� and then
comparison with Eq. �40� gives a relation between Knudsen
number and rarefaction parameter

Kn =
1

�2�
, �63�

which has been used to relate our solutions to the kinetic
data.

A. Poiseuille flow

The solution for Poiseuille flow is given in Eq. �57�,
where for the sake of compatibility with the Boltzmann data
we shall set �=1. Since the solutions must be finite at r̃=0,
then C1=C3=0. The only unknown constant in the Navier–
Stokes–Fourier solution is C4 which can be evaluated from
the linearized slip condition �47� at r̃=1. For the R13 solu-
tion the constants �C2 ,C4� follow from the boundary condi-
tions �43a� and �43b�. Expressions for these constants are
presented in Appendix B. Since C1=0, shear stress in NSF
and R13 linearly depends on radial position, and its magni-
tude is proportional to the constant pressure gradient �or
force�, i.e., �̃rz=−�r̃ /2.

In Fig. 2 the radial distribution of velocity and mecha-
nocaloric heat flux are shown for �=1 and Kn
= �0.07,0.14,0.35�, corresponding to �= �10,5 ,2�. For
proper scaling the kinetic data are multiplied with the factor
�2 /�. Plots �a� and �b� compare the velocity solutions with
both BGK and linear Boltzmann equation �BE� data, respec-
tively. In Poiseuille flow the solutions for BGK and BE are
very close. As shown in plot �b�, for the small Knudsen
number Kn=0.07, all models show fair agreement with the
kinetic solution. As the Knudsen number increases the
Navier–Stokes–Fourier equations with first-order slip condi-
tion yield unsatisfactory bulk solution, however, it provides a
better approximation of the slip velocity. By predicting a
larger slip, the second-order slip condition shifts the NSF
solution toward the R13 and kinetic results. Compared to
NSF with second-order slip condition, R13 shows better
agreement with kinetic data near the wall. This improvement
is the effect of third-order boundary conditions and Knudsen
boundary layer.

In the velocity profile for Kn=0.35, R13 shows maxi-
mum error at r=0 and r /R=1. In plot �b� these errors are
10% and 22% at the center of tubes and on the wall, respec-
tively. These errors are calculated as �data�R13�/R13.

In plot �c�, the mechanocaloric heat flux �Knudsen layer�
in Poiseuille flow is compared to BE data �BGK data are not
available for this case�. This high-order nonequilibrium heat

112004-9 An extended macroscopic transport model for rarefied gas flows Phys. Fluids 22, 112004 �2010�

Downloaded 30 Nov 2010 to 142.104.86.46. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



flow, which points in opposite direction to mass flow and is
not driven by temperature gradient, cannot be predicted by
NSF. As depicted, for small Knudsen numbers, a two-way
heat flow occurs; streamwise in a narrow layer near the wall
and counter-stream elsewhere. This phenomenon is also ob-
served in Poiseuille flow in parallel-plate microchannels.12

Figure 3 shows the reduced mass flow rate in Poiseuille
flow MP for fully diffusive walls �=1 in the hydrodynamic
regime. It shows that for small Knudsen numbers both NSF
and R13 agree with kinetic data, taken from Ref. 38. Indeed,
the agreement between velocity profiles �cf. Fig. 2� is the
reason for the precise prediction of mass flow rate. The ki-
netic data in Fig. 3 are obtained based on the BGK model,

hence we used coefficients in Eq. �28� to evaluate our results.
Similar BGK data were also reported earlier by Cercignani
and Sernagiotto.17

Kinetic solutions for Poiseuille flow in the transition re-
gime confirm Knudsen’s experimental observation,19 that in
low pressure Poiseuille flows the mass flow rate as a function
of Knudsen number exhibits a minimum. This phenomenon,
which is known as Knudsen minimum paradox, is observed
in both parallel-plate channel and tube flows.1

Figure 4 shows the variations of mass flow rate in Poi-
seuille flow with respect to Knudsen number and accommo-
dation coefficient of the tube surface. Unlike Fig. 3, which is
restricted to the hydrodynamic regime, here the Knudsen
number varies across the transition regime. NSF solutions
with first- and second-order slip conditions are shown in
plots �a�–�d�, while R13 results are given in plots �e� and �f�.
Additionally, we compared our solutions with both BGK
�left plots� and BE �right plots� data. The symbols present
kinetic data for different accommodation coefficients �
= �0.6,0.8,1.0�. Small values for � represent smooth walls
with less friction that result in larger flow rates. The results
in Fig. 4 show that for small values of � the validity of
macroscopic models is extended to larger values for Kn.
Here, we compare the accuracy of NSF and R13 with kinetic
data for �=1, which is commonly assumed in engineering
applications. NSF with first-order slip condition in plots �a�
and �b� does not exhibit any minimum and is acceptable only
for very small Knudsen numbers, Kn�0.1. The second-
order slip condition extends the validity of the NSF system
up to Kn
0.6 and enables the NSF system to capture a
minimum. The R13 solution �cf. plots �e� and �f�� provide
acceptable approximation of the flow rate in the transition

FIG. 2. �Color online� Radial distribution of velocity and mechanocaloric heat flux �Knudsen layer� in Poiseuille flow for Kn= �0.07,0.14,0.35� and fully
diffusive tube surface, �=1. Results from Navier–Stokes–Fourier with first-order slip condition �NSF1; long-dashed blue line�, Navier–Stokes–Fourier with
second-order slip condition �NSF2; dotted red line�, and regularized 13-moment with third-order boundary conditions �R13; solid black line� are compared to
kinetic data �symbols�. The BGK data are taken from Refs. 33 and 34 and BE data are from Refs. 36 and 37.

FIG. 3. �Color online� The reduced mass flow rate in Poiseuille flow ob-
tained from Navier–Stokes–Fourier with first-order slip condition �NSF1;
long-dashed blue line�, Navier–Stokes–Fourier with second-order slip con-
dition �NSF2; dotted red line�, and regularized 13-moment with third-order
boundary conditions �R13; solid black line� are compared to BGK kinetic
data �symbols� from Ref. 38. The comparison is presented for small Knud-
sen numbers and fully diffusive tube surface, �=1. The comparison con-
firms that in the slip flow regime where Kn�0.1, the results are very close.
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regime; they are valid for Kn�1.0 in the BGK model and
Kn�1.7 in the BE model. Our criterion to set these range for
Knudsen number is �data�model�/model
7%, since in en-
gineering applications �depending on the application� �10%
error is generally recognized as a reasonable error margin.

For better comparison, the results for fully diffusive
walls are compared in plots �g� and �h�. For �=1 the kinetic
solution gives the minimum around Kn=2.0, while as our
best candidate, R13, predicts this minimum around Kn=0.7
and Kn=1.0 for BGK and BE models.

We emphasize that for proper comparison with the ki-
netic data our results in Fig. 4 are obtained separately with
BGK model coefficients �28� and linearized Boltzmann
model coefficients �27�. The reduced thermal energy flow
rate in Poiseuille flow, EP, is discussed in Sec. VIII C.

B. Transpiration flow

The solution for thermal transpiration/creep problem is
given in Eq. �59�, where for the sake of compatibility with

FIG. 4. �Color online� The effects of Knudsen number and surface accommodation on the reduced mass flow rate in Poiseuille flow in transition flow regime.
Navier–Stokes–Fourier with first-order slip condition �NSF1; long-dashed blue line�, Navier–Stokes–Fourier with second-order slip condition �NSF2; dashed
red line�, and regularized 13-moment with third-order boundary conditions �R13; solid black line� are compared to kinetic data �symbols� for �
= �0.6,0.8,1.0�. Left and right plots correspond to BGK and BE solutions, respectively. BGK data for �=1 shown by circles are from Ref. 38, while triangles
and cubes are taken from Refs. 39 and 40. The BE data for �=1 shown by black circles and diamonds are from Refs. 36 and 37, respectively. All other data
are from Ref. 25. It is shown that second-order slip condition improves the NSF solution in transition flow regime. In plots �g� and �h� all solutions for �
=1 are compared.

112004-11 An extended macroscopic transport model for rarefied gas flows Phys. Fluids 22, 112004 �2010�

Downloaded 30 Nov 2010 to 142.104.86.46. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



the kinetic data we set �=1. Since these solutions are finite at
r̃=0, then C1=C3=0. The constant C4 for the NSF system
can be evaluated from the linearized slip condition in Eq.
�47� at r̃=1. For the R13 solution the constants �C2 ,C4�
require boundary conditions �43a� and �43b�. Expressions for
these constants are presented in Appendix B.

With C1=0 the shear stress for both NSF and R13 sys-
tems vanishes, �̃rz=0. Accordingly, for thermal transpiration
flow, the slip conditions �34� and �35� in dimensionless form
reduce to

Ṽz
NSF-BE =

3

4
Kn �, Ṽz

NSF-BGK =
1

2
Kn � ,

that means in the linear limit the second-order slip condition
degrades to a first-order condition. Due to this simplification,
the effects of accommodation coefficients do not appear in
the slip condition for hydrodynamics.

In Fig. 5 profiles of velocity and heat flux in transpira-
tion flow are shown for �=1 and Kn= �0.07,0.14,0.35�,
which correspond to �= �10,5 ,2�. Plots �a� and �b� compare
the velocity solutions with BGK and linear Boltzmann equa-
tion �BE� data, respectively. For proper scaling the kinetic
data are multiplied with the factor �2 /�. As depicted, unlike
the Poiseuille flow, in transpiration flow the solutions for
BGK and BE models are quite different. Our analytical so-
lution shows that this inconsistency roots in the different
values for Pr and the coefficient B2. The results confirm that
the magnitude of mass and heat flows increases with the
rarefaction degree. Navier–Stokes–Fourier yields a plug flow
across the tube cross section and drastically overestimates
the mass and heat fluxes near the wall. In plot �c�, the axial

heat flux in transpiration flow is compared to BE data. This
heat flow is a superposition of Fourier heat flow, i.e., the
NSF solution, and the mechanocaloric heat flow �see Eq.
�59b��. The mechanocaloric heat flow �Knudsen layer�,
which occurs in mass flow direction competes with the con-
stant Fourier heat flow, and helps the R13 solution to match
the kinetic results. For small Knudsen numbers, where the
effects of Knudsen boundary layers are limited to the wall
neighborhood, NSF and R13 predict the same heat flux at the
center of the pipe.

For Kn=0.35 the R13 solution for velocity shows 18%
error with respect to kinetic data at r /R=1. For the heat flux
solution the error is around 14% at r /R=1 and 7% at r /R
=0.65. These errors are calculated as �data�R13�/R13.

Figure 6 shows the variations of the reduced mass and
energy flow rates in thermal transpiration flow with respect
to Knudsen number and surface accommodation coefficient.
Our analytical results are compared to BGK and BE kinetic
data for moderately rarefied flows in the transition regime.
The BGK data in plots �a� and �c� are taken from Ref. 41.
BGK data for �=1 are also available in Ref. 33. The BE data
in plots �b� and �d� are from Refs. 25 and 36. Plots �a� and
�b� show that for Kn�0.3 the mass flow rate is a weak
function of accommodation coefficients. However, for larger
Knudsen numbers the effects of the accommodation coeffi-
cient become significant. Linearized NSF provides a rough
approximation of the kinetic data for Kn
0.2. Nevertheless,
it neglects the effects of surface accommodation and drasti-
cally overestimates the mass transfer when surface effects
come into account, i.e., for Kn�0.3. The R13 system, on the
other hand, yields remarkable agreement with kinetic data up

FIG. 5. �Color online� Radial distribution of velocity and heat flux in transpiration flow for Kn= �0.07,0.14,0.35� and fully diffusive tube surface, �=1.
Results from Navier–Stokes–Fourier �NSF; dotted red line� and regularized 13-moment �R13; solid black line� are compared to kinetic data �symbols�. The
BGK data are taken from Refs. 33 and 34 and BE data are from Refs. 36 and 37. Note that for both velocity and heat flux NSF yields constant solutions. In
transpiration flow the first- and second-order slip conditions for NSF are equivalent.

112004-12 P. Taheri and H. Struchtrup Phys. Fluids 22, 112004 �2010�

Downloaded 30 Nov 2010 to 142.104.86.46. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



to Kn=0.5. The boundary conditions �43a� and �43b� allow
the R13 system to take account for the surface effects. For
small values of � this agreement extends to Kn=0.7 for the
BGK model, and Kn=1.0 for the BE model. Similar to Fig.
4, our criterion to set these range for Knudsen number is
�data�model�/model
7%.

Plots �c� and �d� in Fig. 6 show the reduced thermal
energy flow rate in transpiration flow. The Navier–Stokes–
Fourier system, which only considers Fourier heat flow due
to the axial temperature gradient, overestimates the energy
flow above Kn=0.1, and fails to capture the surface effects.
Similar to the reduced mass flow rate, R13 results are accu-
rate for moderate Knudsen numbers. To the authors’ knowl-
edge, there are no linearized Boltzmann kinetic data avail-
able for reflective-diffusive surfaces ���1�.

C. Validity of Onsager’s reciprocity relation

The well-known phenomenological laws of nonequilib-
rium thermodynamics are derived from the Onsager’s theo-
rem which relates thermodynamics forces to thermodynam-
ics fluxes. Despite the independency of thermodynamics
forces, they might cause several fluxes, i.e., cross effects.42

An example for this is coexistence of both mass and energy
fluxes due to pressure �or temperature� gradient in Poiseuille
�or transpiration� flow, where the pressure �temperature� gra-
dient is considered as the driving thermodynamic force.

For steady state flows in the linear regime the Onsager
reciprocity relation can be derived43,44 as

EP = MT. �64�

Thus, energy flux driven by pressure force should be equal to
the mass flux which is driven by temperature force �note that
these quantities are defined in dimensionless form�.

In Fig. 7 our theoretical results for the reduced thermal
energy flow rate in Poiseuille flow EP and the reduced mass
flow rate in transpiration flow MT are compared to kinetic
data from Refs. 25 and 36. In the kinetic simulations Eq. �64�
is valid for the entire range of Knudsen numbers and is usu-
ally used to validate the accuracy of computations. As
shown, in the absence of a longitudinal temperature gradient,
NSF fails to predict the mechanocaloric energy flux in Poi-
seuille flow, hence, the Onsager reciprocity relation is valid
for the NSF system only when Kn→0. On the other hand,
R13 gives partial agreement, which extends up to Kn

0.25, with approximately 7% deviation.

D. Two-way Poiseuille and transpiration flows

In the case of simultaneous Poiseuille and transpiration
flows, it is straightforward to show that a superposition of
Poiseuille and transpiration solutions satisfies the general ve-
locity problem �Eqs. �41a� to �43b��. Accordingly, the gen-
eral solution for the velocity reads

FIG. 6. �Color online� The effects of Knudsen number and surface accommodation on the reduced mass and thermal energy flow rates in transpiration flow
in the transition regime. Results from Navier–Stokes–Fourier �NSF; dotted red line� and regularized 13-moment �R13; solid black line� are compared to kinetic
data �symbols� for �= �0.6,0.8,1.0�. Plots �a� and �c� present comparisons with BGK kinetic data taken from Ref. 41. In plot �b� and �d� our solutions are
compared to BE kinetic data from Refs. 25 and 36, respectively. In transpiration flow the first- and second-order slip conditions for NSF are equal and fail to
capture the influence of the accommodation coefficient.
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ṽz = C4 +
�

4 Kn
r2 −

2

5
�C2J0� 2

Kn
�Pr

B2
r̃	 +

Kn

Pr
� −

5 Kn

2 Pr
�� ,

�65�
where, again, �C1 ,C3�=0, and �C2 ,C4� are superpositions of
the corresponding integrating constants for Poiseuille and
transpiration flows, see Appendix B. In steady state condi-
tion, the net mass flow rate is zero,

�
0

1

ṽzr̃dr̃ = 0. �66�

Substituting the velocity solution �65� into condition
�66� and then integrating, gives a relation between �, �, and
Kn, which reads

� = ��2

5
−

Pr

8 Kn2	 +
2

5
�Pr B2C2J1� 2

Kn
�Pr

B2
	 −

Pr C4

Kn
.

�67�
Since the BGK model yields incorrect Prandtl number, it is
erroneous in describing isothermal and nonisothermal flows
simultaneously.25 Thus, in this section we use BE
coefficients �27� in our calculations, which correspond to the
correct Prandtl number.

Figure 8 shows velocity profiles in simultaneous
Poiseuille and transpiration flows for fully diffusive walls,
�=1. As illustrated, a two-way flow is formed in the tube, in
which the pressure-driven flow is dominant in the center of
the tube and close to the wall thermal creep occurs in the
opposite direction. In plot �a� the dimensionless pressure
gradient is �=0.1, while the values for Knudsen number
are Kn= �0.1,0.15,0.2�, which correspond to �

= �2.05,1.19,0.86� according to Eq. �67�. For a constant
pressure gradient, when the Knudsen number increases, the
required temperature gradient to satisfy condition �66� de-
creases. In plot �b�, the Knudsen number is constant, Kn
=0.1, and different pressure gradients are chosen �
= �0.1,0.3,0.5�, which yield �= �2.05,6.15,10.25�. Indeed,
for a given set of �Kn,Pr,� ,B2�, Eq. �67� gives a linear
relation between � and �.

E. Thermomolecular pressure difference

By replacing the integrating constants �C2 ,C4� into Eq.
�65� and integrating as in Eq. �66�, the net mass flow rate
splits as

FIG. 7. �Color online� Validity of Onsager’s reciprocity relation, Ep=MT, is examined for Navier–Stokes–Fourier �NSF; dotted red lines� and regularized
13-moment �R13; solid black lines� equations. Our solutions for �= �1.0,0.8,0.6� over moderate Knudsen numbers are compared to BE kinetic data �symbols�
from Refs. 25 and 36. It is evident that in NSF system the Onsager’s condition holds only for very small Knudsen numbers. However, R13 yields Onsager
symmetry for Kn�0.2.

FIG. 8. �Color online� Two-way velocity fields in simultaneous Poiseuille and transpiration flows, where pressure-driven flow occurs in the middle of the tube,
and temperature-driven flow close to the boundary. The flows have opposite directions, such that the net flow rate is zero. In plot �a� the pressure gradient is
constant and the effects of Knudsen number variation are shown. In plot �b� the Knudsen number is fixed and different pressure gradients are examined. Both
plots are shown for fully diffusive walls, �=1.
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Mnet = �MT − �MP = 0. �68�

Substitution of � and � from Eqs. �7� and �8� yields a simple
expression for the exponent of thermomolecular pressure dif-
ference � �cf. Eq. �1��,

� =
MT

MP
. �69�

In Fig. 9, values for � obtained from our linear approach
are compared to linear kinetic data.25 Similar to our previous
calculations for mass and energy flow rates, we observe con-
sistency between our model and kinetic data for Kn�0.5.
For small accommodation coefficients this consistency ex-
tends to Kn�1.0.

IX. CONCLUSION

A compact analytical model to describe moderately rar-
efied gas flows through long tubes caused by small pressure
and temperature gradients has been presented. The model is
based on the regularized 13-moment system, which from the
previous studies12–15,45 is realized as the smallest set of mo-
ment equations capable of approximating a rather rich array
of rarefaction effects.

In the present work, dominant rarefaction effects in slow
rarefied gas flows, i.e., Knudsen boundary layers, and their
influence on mass and energy transfer along the tube, are
described by the linearized R13 equations at very modest
computational expense. The coefficients which describe Poi-
seuille flow, thermal transpiration flow, and their combina-
tion are calculated and compared to corresponding kinetic
data. We included linear Navier–Stokes–Fourier results in
our comparisons to emphasize their imperfection in describ-
ing rarefied gas flows.

Our calculations show that in contrast with classical hy-
drodynamics, the R13 equations successfully capture the
mechanocaloric heat flow �Knudsen boundary layers� in both
Poiseuille and thermal transpiration flows. This non-Fourier
heat flow, which is not driven by temperature gradient, oc-
curs near the tube walls. Although the amplitude of the
mechanocaloric heat flow is small, it occupies a considerable
portion of the cross section, therefore, it has a great impact
on mass and energy flow rates. The Navier–Stokes–Fourier

system fails to describe these nonequilibrium effects, how-
ever, the proposed second-order boundary conditions allow
partial compensation for the missing rarefaction effects.

Furthermore, motivated by kinetic simulations, we ex-
amined our model subject to simultaneous Poiseuille and
transpiration flows, which allows to investigate Onsager’s
reciprocity relation, two-way flow patterns, and thermomo-
lecular pressure difference. Comparisons showed that the
R13 equations yield satisfactory agreement with Boltzmann
data in the early transition flow regime. Satisfaction of On-
sager’s relation is proposed as a new criterion to determine
the range of validity of macroscopic transport equations �in
terms of Knudsen number�. It is shown that, according to
Onsager’s reciprocity relation, linearized R13 equations are
applicable for flows in which Kn�0.25.

To conclude, we must highlight the insufficiency of
regularized 13-moment equations for highly rarefied flows,
in which the magnitude of rarefaction effects is beyond the
resolution of R13 equations. In such conditions, larger sys-
tems of moment equations are required.46
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APPENDIX A: SECOND-ORDER SLIP AND JUMP
CONDITIONS FOR AXIAL FLOW IN TUBES

Explicit expressions for slip velocity Vz=vz−vz
W and

temperature jump T=�−�W can be obtained form the R13
boundary conditions �31a� and �31c� as

Vz = −
2 − �

�
���

2

�rz

P
nr −

1

5

qz

P
−

1

2

mrrz

P
�A1�

and

T = −
2 − �

�
���

2

qr

2P
nr +

1

4
V2 −

1

4

��rr

P
−

1

30

�

P
−

5

56

Rrr

P
.

�A2�

The above boundary conditions are of third-order, O�Kn3�.
The underlined terms correspond to the well-known first-
order slip velocity and temperature jump conditions,28 where
�rz and qr require the NSF relations, i.e., Eqs. �29� and �30�,
and PNSF= p. We emphasize that in thermal-creep flow qz in
Eq. �A1� has a first-order contribution postulated by Fouri-
er’s law, but in Poiseuille flow qz only represents second-
order corrections. The additional terms in Eqs. �A1� and �A2�
are higher-order moments which vanish in the NSF theory.
However, their second-order contributions can be used to
provide second-order corrections for the slip and jump con-
ditions. To do so, we use a scaling approach based on the
Chapman–Enskog expansion as in Ref. 9.

FIG. 9. The exponent of thermomolecular pressure difference �, obtained
from R13 equations for different accommodation coefficients, is compared
to kinetic data �symbols� from Ref. 25.
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Density, temperature and velocity are equilibrium quan-
tities and are not expanded, since they are of zeroth-order.
The radial heat flux and shear stress are first-order quantities

qr = Kn q*r, �rz = Kn �* rz, �A3�

while second-order quantities are

qz = Kn� q*z, �rr = Kn2 �* rr, �zz = Kn2 �* zz, � = Kn2 �
*

,

Rrr = Kn2 R
*

rr, Rzz = Kn2 R
*

zz, mrrz = Kn2 m* rrz, �A4�

m��z = Kn2 m* ��z.

Note that the axial heat flux is of first-order in transpiration
flow ��=1�, and second-order for Poiseuille flow ��=2�.
The remaining quantities, which promote the R13 boundary
conditions to be of third-order, are

Rrz = Kn3 R
*

rz, mrrr = Kn3 m* rrr,

�A5�
mr�� = Kn3 m* r��, mrzz = Kn3 m* rzz.

The moments in �A3�–�A5� are scaled as M=Kn� M*
,

where the rescaled moment M*
is of order unity and � is the

order of the moment M.
Replacement of the scaled moments into the extended

balance Eqs. �16�–�26� allows to identify their second-order
terms. Accordingly, normal heat flux and shear stress balance
reduce to the Fourier and Navier–Stokes laws,

q*r = −
5

2 Pr

��

�r
, �* rz = − 

�vz

�r
, �A6�

and the required second-order moments read

q*z =
7

5
�1 +

1

Pr
	�* rzq

*
r

p
−



� Pr
� ��* rz

�r
+

�* rz

r
	 , �A7�
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4
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2

p
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�* zz =
8

5
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p
, �A9�
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7 Pr A2
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75
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p
. �A12�

To obtain second-order corrections to slip and jump con-
ditions, the third-order corrections in Eq. �A5� are dropped.

Subsequent substitution of Eqs. �A7�–�A12� into Eq.
�A4� and then into Eqs. �A1� and �A2� gives the second-
order slip and jump conditions, as presented in Eqs.
�34�–�37�. The last step includes replacement of Eq. �A6�
into the obtained boundary conditions.

APPENDIX B: INTEGRATING CONSTANTS

For Poiseuille flow, the first- and second-order integrat-
ing constants for Navier–Stokes–Fourier solutions �cf. Eq.
�57c�� can be obtained from their corresponding slip condi-
tions, which give

C4
NSF1

= − �
� + �2� Kn

4� Kn
, �B1�

and

C4
NSF2

= − �
� + �2� Kn + 2� Kn2

4� Kn
, �B2�

where �=� / �2−��.
Similarly, the constants for regularized 13-moment solu-

tions �Eqs. �57b� and �57c�� can be obtained from their
boundary conditions �43a� and �43b�,

C2
R13 = �

4��C Pr − 12�Kn − 5�2� Pr

Pr�48�J0�f� + 10�2�B2 PrJ1�f��
, �B3�

C4
R13 = −

�

20� Kn Pr� 2��65�2� Pr Kn + 60� Pr − 4��7C Pr − 24��Kn2 J0�f�

24�J0�f� + 5�2�B2 PrJ1�f�

+
5�B2 Pr�10� Pr Kn + 5�2�� Pr − 2�2���C Pr − 2�Kn2�J1�f�

24�J0�f� + 5�2�B2 PrJ1�f� � , �B4�
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with

f =
2

Kn
�Pr

B2
.

For the thermal transpiration flow the constants read

C4
NSF1

= C4
N SF2

= − �
Kn

2 Pr
, �B5�

and

C2
R13 = �

60� Kn

Pr�24�J0�f� + 5�2�B2 PrJ1�f��
, �B6�

C4
R13 = − �

5��B2 Kn J1�f�

24��2 PrJ0�f� + 10��B2 Pr J1�f�
. �B7�
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