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a b s t r a c t

Rarefied gas flow in a parallel-plate micro-channel is considered, where a streamwise
constant temperature gradient is applied in the channelwalls. An analytical approach to the
problem is conducted based on linearized and semi-linearized forms of the regularized 13-
moment equations (R13 equations), which are a set of macroscopic transport equations for
rarefied gases at the super-Burnett order. Typical nonequilibrium effects at the boundary,
i.e., velocity slip, temperature jump, and formation of Knudsen boundary layers are
investigated. Nonlinear contributions lead to temperature, density, and normal stress
profiles across the channel which are not reported elsewhere in literature.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Thermal creep flows occur in gases when nonuniform temperature distributions are applied in the flow boundaries [1].
In the case of channel flows, this simple boundary treatment induces a tangential creep velocity in the interior gas close to
the walls, such that the gas flows in the direction of the temperature gradient, i.e., from cold to hot. In moderately rarefied
gases, this thermally induced velocity initiates within a thin boundary layer. The thickness of this creep layer is proportional
to the Knudsen number, Kn. In sufficiently long channels, the velocity gradient within the creep layer might fill the whole
channel width, as the result of shear stress diffusion. This phenomenon was first reported in 1879 by Reynolds as thermal
transpiration flow [2]. At the same time, Maxwell was trying to provide a physical explanation for this problem [3]. Later
experimental observations by Knudsen proved the existence of a pumping effect in thermal creep (or thermal transpiration)
flows; he obtained a ten-fold pressure increase between the inlet and outlet of a series of heated tubes [4,5].
Nowadays, nonuniformly heated channels are used in miniaturized devices as pumps or compressors with no

moving parts, so-called Knudsen pumps or compressors, which operate based on thermal creep/transpiration flow [6,7].
Furthermore, thermally-driven and pressure-driven flows may be combined in order to control mass and energy flow rates
in micro-channels.
Similar to other nonequilibrium flows, thermal creep/transpiration flow is not amenable to classical hydrodynamics,

as described by the Navier–Stokes–Fourier (NSF) equations. Consequently, the problem is investigated by several authors
using kinetic models for the Boltzmann equation. The flow between two parallel plates, where a constant unidimensional
temperature gradient is applied to the plates, is a common flow configuration which is used in kinetic approaches. Some
of the kinetic data for this particular problem are collected, and carefully compared in Ref. [8]. In general, the kinetic data
are obtained using either the Bhatnagar–Gross–Krook (BGK) kinetic model for the Boltzmann equation, or the linearized
form of the Boltzmann equation itself (LB). The main difference between the BGK and LB kinetic models is that the BGK
yields a wrong Prandtl number PrBGK = 1, while the correct value can be predicted by the LB method, PrLB = 2/3 (for
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ideal monatomic gases). Kinetic solutions for thermal transpiration flow with the BGK model are reported in Refs. [9–13],
using different numerical schemes. Further kinetic data based on a linearized Boltzmann equation (LB) are also available in
Refs. [14,15].
Approximation methods in kinetic theory [16] derive macroscopic transport equations from the Boltzmann kinetic

equation at different levels of accuracy. Conventionally, these high-order continuum models are derived based on either
the Chapman–Enskog expansion method [17] or Grad’s moment expansion method [18,19].
Burnett-type equations follow from the Chapman–Enskog expansion in the Knudsen number, where the second- and

third-order expansions give Burnett and super-Burnett equations, respectively. It is important to mention that classical
Burentt and super-Burnett equations suffer from instabilities [20,21]. Consequently, several techniques are proposed
to stabilize these equations including the augmented Burnett equations [22], the regularized Burnett equations [23],
consistently ordered extended thermodynamics [24], the hyperbolic Burnett equations [25], and the hybrid Burnett
equations [26].
In the present study amacroscopic approach to temperature induced flows in parallel-platemicro-channels is presented.

This paper forms a sequel to our previous works [27–29], where an accessible analytical approach successfully describes
the interaction between bulk and rarefaction effects in common flow configurations. The regularized 13-moment (R13)
equations in their fully linearized and semi-linearized forms are adapted for thermally-driven flows with arbitrary Knudsen
numbers. The R13 equations are appropriate for rarefied flows in the transition regime, i.e., Kn < 1, and provide a stable
set of transport equations [30,16] of the super-Burnett order, O(Kn3). In contrast to their classical counterpart, i.e., Grad’s
13-moment system [18,19], the R13 equations are able to capture Knudsen boundary layers [31,32]. Thus, they cover the
whole spectrum of flow between the linear regime, where effects like Knudsen layers dominate, and the nonlinear regime,
where nonlinear bulk effects and shocks [33] become important.

2. Regularized 13-moment equations

The regularized 13-moment equations are based on the conservation laws for mass, momentum, and energy

Dρ
Dt
+ ρ

∂vk

∂xk
= 0, (1)

ρ
Dvi
Dt
+
∂pik
∂xk
= ρGi, (2)

ρ
De
Dt
+
∂ (pikvi + qk)

∂xk
= ρGivi, (3)

where t , ρ and e stand for time, mass density, and (total) energy density. The vectors xk, vk, Gi and qk represent spatial
position, velocity, body force and heat flux. The pressure tensor is pik = pδik+σik, where δik is the Kronecker delta. Pressure
p = pkk/3, and stress tensor σik = p〈ik〉 are equilibrium and nonequilibrium parts of the pressure tensor, respectively. Since
we consider ideal monatomic gases, p = ρθ holds as the equation of state, where θ is the temperature in energy units
(θ = RT whereR is the gas constant and T is thermodynamic temperature). The convective derivative is Dt = ∂t + vk ∂xk .
The R13 system includes balance equations for heat-flux vector and stress tensor as their respective moment equations

Dqi
Dt
+
5
2
p
∂θ

∂xi
+
5
2
σik
∂θ

∂xk
− σikθ

∂ ln ρ
∂xk
−
σij

ρ

∂σjk

∂xk
+ θ

∂σik

∂xk

+
7
5
qk
∂vi

∂xk
+
7
5
qi
∂vk

∂xk
+
2
5
qk
∂vk

∂xi
+
1
2
∂Rik
∂xk
+
1
6
∂∆

∂xi
+mijk

∂vj

∂xk
= −Pr

p
µ
qi, (4)

and

Dσij
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where Pr = 2/3 is the Prandtl number for ideal monatomic gases and µ is the gas viscosity. The indices inside angular
brackets indicate symmetric trace-free tensors; the trace-free part of the matrix Aij is A〈ij〉 = (Aij + Aji)/2 − Akk δij/3, and
similarly for three indices, see Ref. [16, pg. 231].
The extended balance equations [cf. Eqs. (4) and (5)] contain the additional higher moments∆, Rij andmijk. These higher

order moments vanish in Grad’s classical 13-moment system [18,19], while the regularization gives
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with Sjk = ∂v〈j/∂xk〉.
In the continuum regime, where the Knudsen number is small, Eqs. (4) and (5) respectively reduce to Fourier and

Navier–Stokes laws

q(NSF)i = −
5
2
µ

Pr
∂θ

∂xi
, σ

(NSF)
ij = −2µ

∂v〈i

∂xj〉
, (9)

where κ = −5µ/(2 Pr) is the thermal conductivity coefficient for ideal gases. Comparing Eqs. (4) and (5) with Eq. (9) shows
that in the hydrodynamic regime only the underlined terms stay within (4) and (5).
We emphasize that solutions for Eqs. (1)–(8) with Pr = 2/3 must be compared only to those kinetic data which are

obtained based on the linearized Boltzmann kinetic model (LB). Comparison with the BGK data requires Pr = 1 in Eq. (4)
and different coefficients in Eqs. (6)–(8). See the textbook [16, pg. 138] for the BGK coefficients.
Here we proceed with the presented form of the R13 equations and assume Pr = 2/3. At the end we validate our results

with the linearized Boltzmann kinetic data.

3. Boundary conditions for regularized 13-moment equations for micro-channel flows

Construction of boundary conditions for extended continuummodels is known as themost challenging task, when these
models are considered for practical applications. Successful simulations with these extended equations strongly depends
on both physical and mathematical consistencies between the boundary conditions and the equations.
Lowest-order moments which construct the classical NSF system and its corresponding boundary conditions all have

meaningful physical interpretations, and can be measured on the boundary. However, in the Grad-type equations, there are
no such physical interpretations for higher-order moments.
In theory, boundary conditions for high-order moments are available if details of gas–surface interaction are known. In

the absence of such information, a simple argument going back to Maxwell can be utilized to derive required boundary
conditions for the high-order moments. Accordingly, kinetic boundary conditions for the R13 equations [34,35] which are
obtained from Maxwell’s boundary condition for the Boltzmann equation (diffuse-reflection boundary condition) are used
to solve the considered boundary value problem.
The full set of R13 kinetic boundary conditions for flows in planar geometry are [34]
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with the abbreviations

P = p+
1
2
σ22 −

1
120

∆

θ
−
1
28
R22
θ
, V1 = v1 − v

W
1 , T = θ − θW . (11)

Velocity slip and temperature jump on the wall are presented byV1 = v1− v
W
1 and T = θ − θW , respectively, with vW1 and

θW as wall velocity and temperature. The surface accommodation factor is denoted by χ , and for simplicity, we set χ = 1,
that is we consider fully diffusive boundaries. The wall normal vector is n = {0, 1, 0}, where n2 = 1 and n2 = −1 represent
normals of the lower and upper walls, respectively [cf. Fig. 1].
The requirement that mass is conserved in the process can be utilized as an auxiliary condition, i.e.,∫

+H/2

−H/2
ρdx2 = constant, (12)

which can be used to find the density distribution between the channel plates.
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flow direction

temperature gradient

L

H

U

D

Fig. 1. Flow setting in thermal transpiration flow between two infinite parallel plates. Constant pressure flow is assumed ∂p/∂x1 = 0, and temperature
gradient is considered to be positive in x1-direction. Wall temperatures are θUW and θ

D
W , which are symmetric around the centerline, x2 = 0.

4. Problem statement

We consider the problem of steady state flow of a dilute ideal gas in a parallel-platemicro-channel, see Fig. 1. The infinite
plates are parallel in direction x1, separatedby adistanceH , located on x2 = ±H/2. Flow is independent of direction x3, that is
we consider rectangular channels with a large cross-sectional aspect ratio. A constant pressure flow is superimposed within
the channel, ∂x1p = 0. The channel walls are stationary, impermeable and heated such that a constant temperature gradient,
∂x1θW = A, exists in the walls. The body force is zero, Gi = {0, 0, 0}, and flow is driven as the result of the temperature
gradient along the channel. Owing to the compressibility effects, we should consider a two-dimensional velocity vector [36],
vi = {v1(x1, x2), v2(x1, x2), 0}. Since the system is independent of direction x3, heat-flux vector and symmetric trace-free
stress tensor reduce to

qi = {q1(x1, x2), q2(x1, x2), 0} , (13)

and

σij =

{
σ11(x1, x2) σ12(x1, x2) 0
σ12(x1, x2) σ22(x1, x2) 0

0 0 −σ11(x1, x2)− σ22(x1, x2)

}
. (14)

Nevertheless, it is important to emphasize that in the present work we do not attempt to tackle the two-dimensional
problem, which demands a numerical solution. Instead, we consider any arbitrary cross-section along the channel and its
corresponding local equilibrium condition to analytically express the local rarefaction effects. This is achieved by employing
both linearized and semi-linearized R13 equations.

5. Linear approach

The temperature distribution in thewalls is θW = θ0+Ax1, where θ0 is thewall temperature at reference location, x01 = 0.
For a sufficiently long channel the same temperature gradient exists in the flow. A corresponding reference equilibrium state
(at the reference location, x01 = 0) is defined by {ρ0, θ0, v

0
i }, which is used for nondimensionalization and linearization. In

fact, the reference temperature is set to the local wall temperature, and we are interested in the local difference between
gas and wall temperatures. The reference density, ρ0, relates the reference wall temperature to the pressure via the ideal
gas law.
Dimensionless position vectors are x̃1 = x1/L and x̃2 = x2/H , where H (height) and L (length) are macroscopic length

scales; for a long micro-channel ε = H/L � 1. Dimensionless density and temperature are defined as their deviation
from the equilibrium state, ρ̃ = ρ/ρ0 − 1, and θ̃ = θ/θ0 − 1. In the reference state, the moments assume the values
ρ0 = θ0 = p0 = 1, and v0i = q

0
i = σ

0
ij = ∆0 = R

0
ij = m

0
ijk = 0. The rest of the variables in dimensionless form read

ṽi =
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θ0
, σ̃ij =

σij
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3 ,
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0
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2
0
, m̃ijk =

mijk

ρ0
√
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3 ,

(15)

where
√
θ0 denotes thermal speed at the reference state. Also, µ̃ = µ/µ0−1 is the dimensionless viscositywithµ0 = µ(θ0)

as the reference viscosity. Accordingly, deviations vanish in the reference equilibrium state, i.e., ρ̃0 = θ̃0 = µ̃0 = 0.
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5.1. Linearized R13 equations

For the linearized equations, only terms that are linear in deviations from the reference equilibrium state are considered.
This means that only very small temperature and density gradients are allowed, which implies A � 1. Accordingly,
p̃ = 1 + ρ̃ + θ̃ is the linearized equation of state for the ideal gas. The dimensionless and linearized continuity equation
reads as

ε
∂ṽ1

∂ x̃1
+
∂ṽ2

∂ x̃2
= 0, (16)

which somehow represents an incompressible flow. The first terms is multiplied with the smallness parameter ε, and is
negligible. In our fully linear approach, we claim that ṽ2 is a nonlinear effect. Consequently, we set ṽ2 = 0 in the following
linear calculations, and finally, based on the obtained results, we will show that this assumption is consistent. Note that,
according to this assumption, streamwise gradients of heat flux and stress vanish in the linear system.
In dimensionless variables, the R13 system [cf. Eqs. (1)–(8)] for the considered flow configuration reduce to the following

ordinary differential systems.
(i) Velocity problem,
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2
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(ii) Temperature problem,
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5
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2
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(iii) Density/pressure problem,

−
2
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+
4
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1
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dθ̃
dx̃2
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dρ̃
dx̃2
+
dσ̃22
dx̃2
= 0. (19b)

Here, Kn = λ0/H is the Knudsen number at the reference equilibrium state, with λ0 = µ0
√
θ0/p0 as the reference mean

free path, i.e.,

Kn =
µ0
√
θ0

p0H
. (20)

Eqs. (17a) and (19b) are momentum conservation laws in x1 and x2 directions, respectively, while Eq. (18a) is the linearized
energy balance. The remaining equations are the extended balance equations for heat flux and stress. The term ε (dθ̃/dx̃1)
in Eq. (17c) represents the dimensionless temperature gradient, α = AH/θ0.
Integration of the above equations gives the general solution (C1 to C11 are integrating constants)

σ̃12 = C1, (21a)
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and

q̃2 = C5, (22a)

σ̃22 = C6 sinh
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5

√
6Kn
x̃2

)
+ C7 cosh
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2
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and finally for the density/pressure problem
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ρ̃ = C11 − θ̃ − σ̃22. (23b)

The hyperbolic functions in Eqs. (21b), (22b) and (23a) describe Knudsen boundary layers,which are absent in hydrodynamic
(Navier–Stokes–Fourier) solution. Note that σ11 and σ22 are pure Knudsen boundary layers, and thus are pure rarefaction
effects. The solutions for the other macroscopic quantities are superpositions of bulk solutions and Knudsen layers,
e.g., solution for q̃1 is summation of Knudsen layers (hyperbolic sine and cosine terms) and bulk solution, q̃NSF1 = −15Knα/4.

5.2. Linearized boundary conditions

Boundary conditions are required to evaluate integrating constants in our solutions [cf. Eqs. (21)–(23)]. To be consistent
with the linearized equations, we should use linear boundary conditions as well. The kinetic boundary conditions [cf. Eq.
(10)] in their dimensionless and linear form read
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Due to the symmetry of flow with respect to the center line (x̃2 = 0), terms that are odd functions of x̃2 will vanish in
the solutions, so that

C1 = C2 = C5 = C6 = C9 = 0. (25)

The remaining integrating constants will be determined from the above boundary conditions at the lower wall, where
the normal vector of the boundary is n = {0, 1, 0}, see Fig. 1. Thus, five boundary conditions will suffice to find
{C3,C4,C7,C8,C10}.
The constant C11 follows from Eq. (12), which assumes the form∫

+1/2

−1/2
ρ/ρ0dx̃2 =

∫
+1/2

−1/2
(ρ̃ + 1) dx̃2 = 1. (26)

5.3. Linear results

For the linear case, with the help of fully linear boundary conditions, the unknown integrating constants are found as

C3 = αKn
45χ
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12χ
2−χ

√
2
π
cosh

( √
5

6Kn

)
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Fig. 2. Dimensionless distribution of normalized heat flux q̃1/α and velocity ṽ1/α across the channel are show for transpiration flow. The R13 results
(lines) which are obtained for fully diffusive walls χ = 1 in different Knudsen numbers are compared to kinetic data (symbols) from Ref. [14]. For the
sake of consistency in comparison, the dimensionless kinetic data are multiplied with

√
2. (Solid line, white diamonds) Kn = 0.088; (dotted line, black

diamonds) Kn = 0.177; (dashed line, white circles) Kn = 0.353; (dash-dotted line, black circles) Kn = 0.530.

C4 = αKn
−3
√
5 sinh

( √
5

6Kn

)
12χ
2−χ

√
2
π
cosh

( √
5

6Kn

)
+ 4
√
5 sinh

( √
5

6Kn

) , (27b)

C7 = C8 = C10 = C11 = 0, (27c)

which must be used in the linear solutions [cf. Eqs. (21)–(23)]. Accordingly, the local solution for the linear problem reads

σ̃11 = σ̃12 = σ̃22 = q̃2 = θ̃ = ρ̃ = 0, (28a)

q̃1 = −
15Knα
4
+ C3 cosh

(√
5

3Kn
x̃2

)
, (28b)

ṽ1 = C4 +
3Knα
2
−
2C3

5
cosh

(√
5

3Kn
x̃2

)
, (28c)

whereC4+3Knα/2 in Eq. (28c) represent the slip velocity (temperature-driven plug flow). The solution in (28) shows that in
the linear limit nonequilibrium effects arise only for the tangential heat flux and velocity, while the other quantities remain
in the local reference state.
Conventionally, in kinetic approaches a rarefaction parameter k for channel flows is defined as

k =
√
π

2
H
λ0
, (29)

where H and λ are reference length scale (height of the channel) and mean free path, respectively. The kinetic theory of
gases gives the mean free path with respect to macroscopic quantities, i.e.,

λ0 =

√
πθ0

2
µ0

p0
. (30)

Replacement of λ from Eq. (30) into Eq. (29) and then comparison with Eq. (20) gives

Kn =
1
√
2k
, (31)

which relates our definition of the Knudsen number to that which is used in kinetic approaches.
Profiles for normalized velocity and parallel heat flux, according to Eqs. (28b) and (28c) are depicted in Fig. 2. These

results are compared with direct numerical solutions of the linear Boltzmann equation from Ref. [14]. The plots are shown
for four different Knudsen numbers and perfectly diffusive walls, χ = 1. As postulated by the Fourier’s law, the tangential
heat flow is in the opposite direction of the temperature gradient; from hot to cold. The decrease of heat flow close to the
walls is due to the non-Fourier contribution in the Knudsen layer, i.e., the hyperbolic cosine function in Eq. (28b). Unlike
the thermal energy flow, the velocity plots show that mass flow is in the direction of the temperature gradient. The slip
velocity on the walls are predicted with an outstanding accuracy. This gives further evidence of the reliability of the applied
boundary conditions. As expected, the R13 system is reliable within the transition regime (Kn 6 0.5), hence for k = 0.6 (or
Kn = 0.53) some deviations from the Boltzmann solution appear in the bulk flow.
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a b c

Fig. 3. The normalized mass flow rateMT /α vs. Kn in thermal transpiration flow. The R13 results (solid line) are compared to linearized Boltzmann data
(symbols) from Refs. [14,15]. Dependence of mass flow rate on accommodation coefficient χ are shown in the plots. In transpiration flow, mass flow rate
diverges infinitely in the limit of free molecular flow when Kn→∞, and vanishes in the continuum limit, i.e., Kn→ 0.

While in the force-driven Poiseuille flowmass flux vs. Knudsen number exhibits the so-called Knudsen minimum, in the
temperature-driven flow, mass flux increases with Knudsen number. We define the mass flow rateMT as [8,14,15]

MT =
√
2
∫
+1/2

−1/2
ṽ1dx̃2, (32)

where the required velocity function is given in Eq. (28c), and the factor
√
2 is used for consistency with the kinetic data.

This integral yields a linear expression in α for the mass flow rate,

MT = α
3Kn

2
√
2

2− 5
√
π +

36
√
2χ

2−χ Kn

5
√
π +

3
√
10χ
2−χ coth

( √
5

6Kn

)
 . (33)

In Fig. 3, our results for the normalized mass flow rate MT/α are compared with kinetic data from Refs. [14,15] which
are the solutions for the linearized Boltzmann equation. In the plots, mass flow rates for different surface accommodation
coefficients χ = {1.0, 0.75, 0.5} are compared. As illustrated, for larger Knudsen numbers, smooth channels with small
accommodation coefficients allow larger mass flow rates. This occurs due to the slip increase on the channel walls. For fully
diffusewalls (χ = 1) our results agreewith kinetic data for Kn < 0.5 [cf. plot (a)], while forχ = 0.5 the R13 results are valid
for Kn < 0.7, see plot (c). As shown previously for Couette and Poiseuille flows [27,28,34,37], the validity of R13 equations
within the transition regime is again confirmed here.
Similar to the mass flow rate, the thermal energy flow rate ET can be defined as [8,15]

ET = −
√
2
∫
+1/2

−1/2
q̃1dx̃2, (34)

where the required heat flux function is given in Eq. (28b). This integral yields a linear expression inα for the thermal energy
flow rate,

ET = α
3Kn

2
√
2

5− 36
√
5χ

2−χ Kn
√
10π + 6χ

2−χ coth
( √

5
6Kn

)
 , (35)

which similar to MT is a function of dimensionless temperature gradient α, surface accommodation coefficient χ , and
Knudsen number Kn.
In Fig. 4, we compare our results for the normalized thermal energy flow rate ET/α with the kinetic data in Ref. [15].

Variations of energy flow rate with respect to χ and Kn is similar to the mass flow rate.

5.4. Consistency of linear results

The nonvanishing constants in Eq. (27) are all first-order in α, thus, as shown in Eq. (28), O
(
q̃1
)
= O (ṽ1) =

O
(
dṽ1/dx̃2

)
= O

(
dq̃1/dx̃2

)
= O (α). Those nonequilibriumquantities that vanish in the linear limit, i.e.,

{
σ̃11, σ̃12, σ̃22, q̃2

}
,

should be second-order (or higher) in α.
Recall that in our linear approach, in order to simplify the continuity equation, we assumed v2 = 0. Now, this assumption

can be justified using the linear results. The steady state continuity equation can be written as

ρ
∂v1

∂x1
+ v1

∂ρ

∂x1
+
∂ρv2

∂x2
= 0, (36)
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a b c

Fig. 4. Thenormalized thermal energy flow rate ET /α vs.Kn in thermal transpiration flow. The R13 results (solid line) are compared to linearized Boltzmann
data (symbols) fromRef. [15]. Dependence of thermal energy flow rate on accommodation coefficientχ are shown in the plots. In transpiration flow, energy
flow rate diverges infinitely in the limit of free molecular flow when Kn→∞, and vanishes in the continuum limit, i.e., Kn→ 0.

where, according to the linear solution, the first term is zero and the second one is of the order α2, since ∂x̃1 θ̃ = −∂x̃1 ρ̃ = α.
Therefore, the last term should be second order in α, and is zero in the linear case. This argument gives ρv2 = const, which
is valid within the linear theory. Finally, the boundary condition of impermeable walls requires that v2 = 0.

6. Semi-linear approach

In the semi-linear approach we include some nonlinear terms within the R13 equations which are of order α2. Referring
to the linear results, q̃1(dṽ1/dx̃2) (and its derivative with respect to x̃2) is the only nonlinear term in the R13 equations that
is certainly of second-order in α.
In the semi-linear case, unlike the linear one, we cannot assure a one-dimensional flow. However, in order to decouple,

and analytically solve the equations, we assume ṽ2 = 0. Under the assumption of one-dimensional flow the continuity
equation reduces to ṽ1∂x̃1 ρ̃+∂x̃1 ṽ1 = 0, which describes the compressibility effects along the channel. In the present study,
we are not interested in the two-dimensional problem of compressible flow along the channel, instead, we focus on local
solution, that is profiles across the channel.
Moreover, we consider sufficiently long micro-channels where O(ε) = O(α). This dimensional assumption leads to

neglection of streamwise flow deviations, as they appear to be of third-order (or higher) in α.

6.1. Semi-linearized R13 equations

To study the coupling between tangential heat flux and velocity gradient (shear rate) we introduce q̃1(dṽ1/dx̃2), and its
derivative with respect to x̃2 into the linear R13 equations.
Incorporation of these nonlinear terms does not affect the linear velocity problem, however, the semi-linearized

temperature problem now becomes

dq̃2
dx̃2
= 0, (37a)

−
6
5
Kn
d2σ̃22
dx̃22
+
8
25
Kn
d
dx̃2

(
q̃1
dṽ1
dx̃2

)
= −

1
Kn
σ̃22, (37b)

5
2
dθ̃
dx̃2
+
dσ̃22
dx̃2
+
2
5
q̃1
dṽ1
dx̃2
= −

2
3Kn
q̃2, (37c)

and the semi-linearized density/pressure problem becomes

−
2
3
Kn
d2σ̃11
dx̃22
+
4
15
Kn
d2σ̃22
dx̃22
−
32
75
Kn
d
dx̃2

(
q̃1
dṽ1
dx̃2

)
= −

1
Kn
σ̃11, (38a)

dρ̃
dx̃2
+
dθ̃
dx̃2
+
dσ̃22
dx̃2
= 0. (38b)

The underlined terms in Eqs. (37) and (38) correspond to the nonlinear terms. By employing the solutions of the linear
velocity problem, and considering the symmetry with respect to the channel center [cf. Eq. (25)] the general solutions for
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the above ODEs are obtained as
q̃2 = 0, (39a)

σ̃22 = C7 cosh

( √
5

√
6Kn
x̃2

)
−
4C3Knα
5

cosh

(√
5

3Kn
x̃2

)
−
16C23
375

cosh

(
2
√
5

3Kn
x̃2

)
, (39b)

θ̃ = C8 −
2C7

5
cosh

( √
5

√
6Kn
x̃2

)
+
2C3Knα
25

cosh

(√
5

3Kn
x̃2

)
+
62C23
1875

cosh

(
2
√
5

3Kn
x̃2

)
, (39c)

and

σ̃11 = −
C7

2
cosh

( √
5

√
6Kn
x̃2

)
+
64C3Knα
85

cosh

(√
5

3Kn
x̃2

)
+
704C23
4875

cosh

(
2
√
5

3Kn
x̃2

)
+ C10 cosh

( √
3

√
2Kn
x̃2

)
, (40a)

ρ̃ = C11 − θ̃ − σ̃22. (40b)
Comparison of the above solutions with Eqs. (22) and (23) shows that the consequence of including the nonlinear terms is
the formation of more Knudsen layers and additional bulk terms.

6.2. Semi-linearized boundary conditions

For semi-linear calculations, nonlinear behavior should be observed from the boundary conditions as well. In the
boundary conditions for temperature and density problems [cf. Eqs. (10b), (10d) and (10e)], Ṽ21 is the only term that is
second-order in α. Then, semi-linear boundary conditions to be used for determination of the unknown constants in Eqs.
(39) and (40) are

q̃2 =
−χ

2− χ

√
2
π

(
2T̃ −

1
2

Ṽ2 +
1
2
σ̃22 +

1
15
∆̃+

5
28
R̃22

)
n2, (41a)

m̃222 =
χ

2− χ

√
2
π

(
2
5

T̃ −
3
5

Ṽ2 −
7
5
σ̃22 +

1
75
∆̃−

1
14
R̃22

)
n2, (41b)

m̃112 =
−χ

2− χ

√
2
π

(
1
5

T̃ −
4
5

Ṽ2 + σ̃11 −
1
5
σ̃22 +

1
150

∆̃+
1
14
R̃11

)
n2. (41c)

The nonlinear terms are underlined.

6.3. Semi-linear results

For the semi-linearized system the velocity problem remains unchanged, i.e., C3 and C4 are the same as calculated for the
linear case, see Eqs. (27a) and (27b). The constants {C7,C8,C10,C11} turn out to be nonzero coefficients which are quadratic
in α, however, their lengthly expressions are not presented here.
All terms in Eqs. (39) and (40) are second-order in α, which is why they did not appear in the fully linear solutions.

Moreover, the above solutions are completely constructed by Knudsen layers (all terms include hyperbolic cosine functions),
where C8 is related to the temperature jump. To our knowledge, nonlinear effects in transpiration flow have not been
investigated so far. Thus, we were unable to find any previously published data for comparison sake. Figure 5 shows the
normalizeddistributions of temperature, density, andnon-Newtonian stress components. As shown,when the flowbecomes
more rarefied, the Knudsen layers extend further into the bulk.

7. Conclusion

Fully linearized and semi-linearized forms of the regularized 13-moment equations were employed to investigate
thermally-driven rarefied gas flows in parallel-plate micro-channels, where analytical solutions for both linearized and
semi-linearized systems are accessible. In the linear case and for fully diffusive walls which are common in engineering
applications, the accuracy of our results is confirmed with linear Boltzmann equation data up to a Knudsen number of
around 0.5. All nonlinear terms in the semi-linearized equations correspond to the coupling between parallel heat flux and
shear rate, which yields temperature, density, and non-Newtonian stress solutions as a superposition of several Knudsen
layers.
The important advantage of the presented approach, as compared to numerical solutions of the Boltzmann equation, is its

minimal computational effort. Also, an approximatemacroscopic approach is presented to predict nonlinear effects. It seems
that nonlinear effects in transpiration flow were not considered elsewhere. Although these effects are small, they should
appear in solutions of the Boltzmann equation, either by direct numerical simulation, or by means of the direct simulation
Monte Carlo (DSMC) method.
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Fig. 5. Dimensionless distribution of normalized stress components {σ̃11/α2, σ̃22/α2}, temperature θ̃/α2 , and density ρ̃/α2 across the channel are show
for transpiration flow. Semi-linearized R13 results which are obtained for fully diffusive walls χ = 1 in different Knudsen numbers are shown. Note that in
the linear theory all these quantities are constant, i.e., remain unchanged with respect to the reference equilibrium state. (Solid line) Kn = 0.088; (dotted
line) Kn = 0.177; (dashed line) Kn = 0.353; (dash-dotted line) Kn = 0.530.
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