
Comment on ‘‘Thermodynamically Admissible 13
Moment Equations from the Boltzmann Equation’’

Rarefied gas flows cannot be described by the equations
of classical hydrodynamics—the laws of Navier-Stokes
and Fourier—and require extended transport models,
which can be derived from the Boltzmann equation.

In a recent Letter, Öttinger [1] presents a nonlinear set of
13 moment equations with H theorem for the description
of rarefied gas flows. His derivation is based on the exis-
tence of an entropy conserved by reversible processes and
the possibility of a Hamiltonian formulation of reversible
dynamics. While Öttinger focuses on the thermodynamic
structure of the equations, he relaxes the relation to the
Boltzmann equation and does not ask whether his equa-
tions produce physically meaningful results. We show
below that his equations fail to describe a basic transport
mechanism: heat transfer at steady state.

Possibly, an extension of Öttinger’s approach could lead
to a nonlinear entropy for the regularized 13 moment (R13)
equations (see [2–5] and references therein), which have
been shown to describe all transport mechanisms with
good accuracy, including steady state heat transfer and
all known rarefaction effects, and which reduce to the
equations of hydrodynamics in the limit of small
Knudsen numbers. Presently, the R13 equations have an
accompanyingH theorem only for the linear case [3]; anH
theorem for the nonlinear case would further increase the
confidence in the moment approach.

While Öttinger’s equations possess anH theorem for the
nonlinear case, they do not include classical hydrodynam-
ics in the limit of small Knudsen numbers. The hydro-
dynamic limit of his equations is given in [1] as (with
tr� ¼ 3mkBT and a correction for the trace-free velocity
gradient)
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The first equation is the proper Navier-Stokes law, and the
second equation should describe heat transfer, but does not.
With the definition q ¼ Q:� [1], the coefficients in
Eq. (15) of Ref. [1] are related as �Q2 ¼ ð5 �Q1 � 1Þ=’.
Then, Eqs. (15)–(17) give to leading order
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By combining the above equations, one finds
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This equation does not imply Fourier’s law, jq ¼ ��ðTÞ @T@r
[2], which, in fact, cannot be extracted from the equations.

For steady state heat transfer in a gas at rest, the energy
balance—the trace of Eq. (14) (Ref. [1])—reduces to @

@r �
jq ¼ 0, and Eq. (4) implies jq ¼ 0, that is no heat transfer
at all. Also, the fully nonlinear equations fail to describe
heat transfer, but we have no room for details.
Moreover, the entropy inequality (19) of Ref. [1] lacks a

term with nonconvective entropy flux. It is clear from the
Boltzmann equation that such a nonconvective entropy flux
js is expected; in the hydrodynamic limit it should reduce
to js ¼ jq=T [2]. Likely, the failure to describe heat trans-
fer is linked to the missing entropy flux.
All problems mentioned originate from Eq. (18) of

Ref. [1], which is missing crucial terms. Indeed, the equa-
tion differs from the corresponding one that is obtained
from the moment equations of the Boltzmann equation; the
latter should serve as a guideline to correct Eq. (18).
The problematic structure of (18) is further reflected in

the division by’: Since’ ¼ q � ��1 � q, and q vanishes in
equilibrium, in close-to-equilibrium processes the term in
the second line of the equation becomes dominant over all
other terms. This gives another hint that heat transfer is not
properly described. It also complicates the linearization of
the equations and implies singular signal speeds close to
equilibrium, which poses mathematical and practical prob-
lems to the solution of the equation.
We believe that the basic ideas of [1], in particular, the

variable transforms by means of the tensor�, will open the
door to finding H theorems for moment equations. The
presented 13 moment equations with entropy, however,
suffer from the following problems: They cannot describe
heat transfer, they cannot be reduced to the equations of
classical hydrodynamics, their structure is not in accor-
dance with the Boltzmann equation, they cannot be prop-
erly linearized, and their entropy inequality does not
include a nonconvective entropy flux.
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