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The possibility of dissipative contributions to the mass flux is considered in detail. A general thermodynami-
cally consistent framework is developed to obtain such terms, the compatibility of which with general prin-
ciples is then checked—including Galilean invariance, the possibility of steady rigid rotation and uniform
center-of-mass motion, the existence of a locally conserved angular momentum, and material objectivity. All
previously discussed scenarios of dissipative mass fluxes are found to be ruled out by some combinations of
these principles but not a new one that includes a smoothed velocity field v̄. However, this field v̄ is nonlocal
and leads to unacceptable consequences in specific situations. Hence, we can state with confidence that a
dissipative contribution to the mass flux is not possible.
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I. PROBLEM AND ITS HISTORY

The equality of mass flux and momentum density is
widely accepted as a statement of plausibility in hydrody-
namics supported by countless experiments. However, in a
classical paper, Dzyaloshinskii and Volovick �1� proposed
the inclusion of a dissipative mass flux into the hydrody-
namic equations. Starting from a modified kinetic theory,
Klimontovich �2� arrived at the same suggestion. More re-
cently, a dissipative contribution to the mass flux was rein-
troduced and forcefully promoted by Brenner �3,4�, whose
work stimulated significant interest and controversy in the
physics and fluid dynamics communities.

In the early work of Brenner �3�, the mass flux and the
momentum density are taken to be equal and only the vol-
ume velocity, used in Newton’s expression for the stress ten-
sor and in no-slip boundary conditions, differs by a dissipa-
tive term from the mass velocity �see also Brenner’s most
recent work �5��. Brenner’s idea has been expanded in �6�,
where not only Newton’s expression for the stress tensor but
also Fourier’s law for the heat flux has been modified. These
methods yield some elements, e.g., thermal stresses, which
are known in kinetic theory of gases as rarefaction effects,
which only play a role beyond the hydrodynamic regime,
that is, at finite Knudsen numbers.

Indeed, extensions of hydrodynamics to the finite Knud-
sen numbers are widely discussed within kinetic theory �e.g.,
Burnett equations, R13 equations, extended thermodynamics
�7��; none of these includes dissipative contributions to mass
flux, and all reduce to classical hydrodynamics in the limit of
small Knudsen numbers. The modifications to hydrodynam-
ics in �3,6� are not able to produce the whole wealth of
rarefaction effects known in the kinetic theory. Moreover, to
our knowledge, they were never tested successfully against
solutions of the Boltzmann equation or experiments.

Greenshields and Reese �8,9� used Brenner’s equations of
both scenarios �3,4� to describe experimental findings for the

structure of shock waves. In their work, the modified hydro-
dynamic equations are actually considered as the simplest
way of introducing finite Knudsen number effects �7�. How-
ever, the equations should be subjected to a much wider ar-
ray of test problems at small and finite Knudsen numbers
before one can claim that they give meaningful results. Be-
cause we are interested in hydrodynamic theories introducing
a difference between mass flux and momentum density, how-
ever, we do not discuss the ideas of �3,6� any further.

In an unpublished precursor version of �3�, dated October
30, 2002, Brenner actually proposed a difference between
mass flux and momentum density, which is the topic of the
present work. He later returned to this original idea in �4�,
with a specific recommendation for the cross coupling of
density and temperature effects based on his “incompress-
ibility hypothesis.”

Brenner’s work motivated thorough investigations on the
thermodynamic admissibility of a dissipative contribution to
the mass flux �10–14�, which demonstrated that the idea fits
naturally into the “general equation for the nonequilibrium
reversible-irreversible coupling” �GENERIC� framework and
into standard linear irreversible thermodynamics. However,
these investigations focused entirely on nonequilibrium ther-
modynamics and neglected other equally important consid-
erations, such as the local conservation of angular momen-
tum. Such additional criteria were considered earlier in �15�
and corroborated the original �not rigorously justified� state-
ment of Landau and Lifshitz that mass flux and momentum
density must be equal �see footnote at the end of Sec. 49 of
�16��. A concise summary of the current state of the discus-
sion can be found in the comment �17� to the letter �14� and
in the reply �18� to that comment.

To obtain a more complete picture, we here first develop a
general thermodynamically consistent scenario of hydrody-
namics with dissipative mass flux and then apply the follow-
ing additional criteria: Galilean invariance, possibility of
steady rigid fluid rotation, existence of a locally conserved
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angular momentum, and consistency with uniform center-of-
mass motion. To keep the present analysis as simple as pos-
sible, we restrict ourselves to single-component fluids, we
assume the absence of external forces, and we use a vanish-
ing bulk viscosity. All these limitations can be removed with-
out changing the arguments or conclusions in any essential
way.

In the following, we shall show that a consistent system
of hydrodynamic equations with a difference between mass
flux and momentum density is only possible if an additional
velocity, denoted as v, is introduced. While this velocity first
arises as a modeling possibility—a free parameter—within
the GENERIC framework, it turns out that the criteria listed
in the previous paragraph can only be fulfilled for nonvan-
ishing and homogeneous v. However, we shall argue that a
homogeneous velocity with these properties is nonphysical.
We conclude that dissipative contributions to mass flux are
forbidden by the intricate interplay of the various physical
requirements. Previous discussions did not consider the full
breadth of physical criteria and thus could not completely
exclude dissipative mass flow.

II. DEVELOPMENT OF MODIFIED HYDRODYNAMIC
EQUATIONS

To provide a reliable starting point for our discussion, we
first introduce a generalization of a previously developed
thermodynamically consistent scenario for hydrodynamic
equations with a dissipative contribution to the mass flux
within the GENERIC framework of nonequilibrium thermo-
dynamics. Because we are concerned with the mass flux and
the momentum density, the key equations are the continuity
equation for the mass density � and the equation of motion
for the momentum density M. To elucidate thermodynamic
aspects and to identify dissipative fluxes unambiguously, we
add the balance equation for the entropy density s to obtain a
complete set of hydrodynamic equations, so that our final set
of equations is for the variables x�= �� ,M ,s�. For the formu-
lation of the friction matrix, however, it is more convenient
to work with the variables x= �� ,M ,��, where � is the inter-
nal energy density.

For the formulation of classical hydrodynamics within the
GENERIC framework of nonequilibrium thermodynamics,
we refer the reader to Sec. 2.2 of �10�. The generators energy
and entropy are given there, together with the Poisson and
friction matrices turning the gradients of energy and entropy
into the reversible and irreversible contributions to time evo-
lution, respectively. We here restrict ourselves to the formu-
lation of a dissipative contribution to the mass flux, which is
achieved through an additional contribution to the friction
matrix. Compared to the diffusive contribution Mdiff to the
friction matrix given in Eq. �2.77� of �10�, we here consider
a more general choice of a factorized form of rank unity,

Mdiff = C D�CT, �1�

where D��0 is a transport coefficient associated with diffu-
sion, and the column vector C and its transpose will be dis-
cussed below.

The dissipative contribution to the transport equations is
given by �see �10�, Eqs. �1.1� and �2.54��

Mdiff�S

�x
= Mdiff�−

�

T

0

1

T
� ,

where S denotes the entropy of the system, and � is the
chemical potential; �

�x denotes a functional derivative. The
friction matrix Mdiff has to fulfill the requirement of degen-
eracy of energy E �see �10�, Eqs. �1.5� and �2.49��

Mdiff�E

�x
= Mdiff�−

1

2
v2

v
1
� = 0, �2�

which requires CT �E
�x =0.

The elements of C are a vector, a tensor, and a vector. To
construct C, we assume that its elements must be tensorial
combinations of � �

�r ,v ,v�, where v denotes the velocity as-
sociated with momentum, and v denotes another velocity,
which is introduced to account for possible differences be-
tween mass velocity and momentum velocity, as stated in the
introduction.

The elements of the column vector C are subject to the
following restrictions:

�a� The dissipative contribution to the transport equations
Mdiff �S

�x contains only second-order space derivatives, so that
the additional dissipative contributions have the same struc-
ture as the classical dissipative contributions from the laws
of Navier-Stokes and Fourier; thus, C must be of first order
in �

�r .
�b� The contributions to mass and momentum balance

must be of divergence form, so that these have the proper
form of conservation laws; thus, the gradient must be on the
left in the first and second terms.

�c� C is at most quadratic in the velocities. Due to the
degeneracy requirement �2�, this implies that the first two
elements of C must at most be linear in the velocities.

From the above follows immediately, that C�1�= �
�r , which

implies CT�1�=− �
�r .

At first glance, the second element could be of the general
form C�2�= � �

�ra1v�T+ � �
�ra2v�T. We anticipate the require-

ments of Galilean invariance. Galilean invariance of the mo-
mentum balance is only fulfilled for a1+a2=1, and since the
velocity v is undefined yet, we can redefine it as a1v+ �1
−a1�v→v. Thus, we have C�2�= � �

�rv�T and CT�2�=−�v �
�r �T.

The third component follows from the degeneracy of en-
ergy as CT�3�= �

�r
1
2v2−v · � �

�rv�T+ �̂ �
�r . Here, �̂ is a scalar

quantity which possibly can depend on the velocities. Gal-
ilean invariance of the dissipative mass flux requires that
��̂− 1

2 v̄2� is Galilean invariant, so that we must have

�̂ −
1

2
v̄2 = �̄ + 	�v − v̄�2 = � ,

where �̄, 	 are velocity-independent scalars, and � is a
velocity-dependent Galilean invariant scalar.
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There actually is the possibility to add a further term of
the form �� /�r��v̂−v� to C�2�, without transposition, and a
compensating term �v̂−v�div v to C�3�. This ansatz involves
a further velocity field v̂. The resulting additional pressure
tensor contribution turns out to be isotropic and proportional
to div v. In the following, we do not further consider such a
bulk-viscosity-type effect by choosing v̂=v.

Summarizing, we have the following:

C =�
�

�r

	 �

�r
v
T

1

2
v2 �

�r
− 	v

�

�r

T

· v +
�

�r
	1

2
v2 + �
� , �3�

and

CT =

− � �

�r
	v

�

�r

T �

�r

1

2
v2 − v · 	 �

�r
v
T

+ 	1

2
v2 + �
 �

�r
� .

�4�

In these equations, the velocity field v=M /� occurs as the
functional derivative of the energy with respect to the mo-
mentum density field, whereas v and � appear as free param-
eters in the most general form of the friction matrix and need
to be interpreted according to their respective role in the
hydrodynamic equations. For v=v, one recovers the previ-
ously suggested scenario formulated in �10�. The parameter
� implies a cross effect describing the influence of a tem-
perature gradient on the diffusive mass flux. We refer to v as
a smoothed velocity field. As will be seen in the course of
our arguments, nonvanishing v is necessary to obtain all re-
quired properties of the modified hydrodynamic equations.
The question whether such a velocity exists will be discussed
in our conclusions �Sec. VIII� based on the various restric-
tions that will become apparent in the course of the paper.

The generalized contribution Mdiff defined in Eqs. �1�–�4�
has all the properties required by the thermodynamic frame-
work: by construction Mdiff is symmetric, positive-
semidefinite, and fulfills the degeneracy of energy. The rank
of Mdiff is chosen to be unity because Mdiff represents a
single additional dissipative process.

For the generalized friction matrix with the contribution
�1� due to diffusion, after transforming from the variables x
to x�, we obtain a hydrodynamic scenario expressed by the
following equations:

��

�t
= −

�

�r
· �M − j�� , �5�

�M

�t
= −

�

�r
· 	1

�
MM − j�v + p1 + �
 , �6�

and

�s

�t
= −

�

�r
· 	1

�
Ms + js
 +

�2j2

D�
+

jq2


qT2 +
�:�

2�T
. �7�

For completeness, we also give the energy balance, which
can be obtained from combining mass and entropy balance
via the Gibbs equation,

�u

�t
= −

�

�r
· 	M

�
u + je
 + �− p1 + ��:

�

2�
+ ��v − v� ·

�v
�r

· j .

�8�

On the right-hand sides of these equations, there occur the
local-equilibrium pressure p= p�� ,s�, as well as the dissipa-
tive fluxes of mass ��j�, momentum ���, heat �jq�, entropy
�js�, and energy �je�.

These fluxes are given in terms of transport coefficients
and gradients of intensive quantities,

jq = 
qT2 �

�r

1

T
= − 
q�T

�r
�9�

is the thermal contribution to nonconvective energy trans-
port, in terms of the thermal-conductivity parameter 
q and
the gradient of the absolute temperature T. The complete
nonconvective energy flux is given by

je = jq − �j�� +
1

2
�v − v̄�2� ,

clearly, � describes a cross effect. Furthermore,

� = − �� �

�r
v + 	 �

�r
v
T

−
2

3

�

�r
· v1� �10�

is Newton’s expression for the stress tensor in terms of the
viscosity � and the gradient of the velocity �as mentioned
before, it is convenient to assume that the bulk viscosity
vanishes�, and

�j = D�� �

�r

�̃

T
− �

�

�r

1

T
−

1

T
�v − v� · 	 �

�r
v
T� �11�

is the dissipative mass flux in terms of the coefficient D�,
which is closely related to the diffusion coefficient, the cross
coefficient �, and the gradient of a velocity-modified version
of the chemical potential per unit mass � in addition to the
gradient of temperature

�̃ = � −
1

2
�v − v�2, �12�

the total mass flux is given by �M− j��.
Finally,

js =
1

T
jq +

�̃ − �

T
�j =

1

T
je +

�

T
�j �13�

is the total entropy flux; the second equation shows the ex-
pected form of the entropy flux for systems with energy and
diffusion fluxes.

There occurs a natural quadratic entropy production term
associated with the dissipative mass flux �j �that is, with
diffusion�, so that the entropy production remains positive-
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semidefinite. Equation �7� suggests that the added diffusion
effect is on the same footing as the dissipative effects in
conventional hydrodynamics.

The natural occurrence of a velocity-dependent chemical
potential has previously been found in �15� �however, with-
out v�. Such a modification of the chemical potential sug-
gests that a possible diffusion process is more subtle than
viscous stresses or thermal conductivity. Note that the gen-
eralizations occur only through second-order terms in the
deviations from equilibrium. In linearized hydrodynamics, v
does not play any role.

From a conceptual perspective, it is important to notice
that we need to introduce two different velocities v and v
before we can formulate a dissipative contribution to the
mass flux. Therefore, the discrepancy between mass flux and
momentum density is not the primary reason for the occur-
rence of two different velocities; rather two different veloci-
ties are needed to introduce diffusion into hydrodynamics.
Unlike momentum velocity v= M

� and mass velocity M
� − j,

the additional velocity v does not have an obvious intuitive
interpretation; as the equations show, nonzero v would mani-
fest itself through its contribution to diffusion.

III. GALILEAN INVARIANCE

Galilean invariance was already used in the construction
of the friction matrix Mdiff, although we did not present ex-
plicit arguments to shorten the presentation.

If we introduce v0 as an arbitrary constant velocity shift
and make the replacements

M → M + �v0, v → v + v0,
�

�t
→

�

�t
− v0 ·

�

�r
,

�14�

in the hydrodynamic scenario given by the mass balance �5�,
the momentum balance �6�, and the entropy balance �7�, they
keep their original form. For this to be true, it is essential that
� and �̃ and hence also j and js are invariant under Galilean
transformations and also the cross coefficient � needs to be
invariant. As indicated in the previous section, the require-
ment of invariance already was considered in the construc-
tion of the friction matrix. We note that invariance of the
transport equations does not require invariance of the friction
matrix.

While Galilean invariance concerns the transformation
between inertial systems, one can also consider the question
of transformations into noninertial frames, which in classical
hydrodynamics leads to the occurrence of inertial forces
�20�. In the present context of modified hydrodynamics with
diffusive mass flow, there will be inertial terms in the mass
flux as well, with subtle consequences for material objectiv-
ity �20�. Our line of arguments does not require discussion of
noninertial frames and will lead to the conclusion that diffu-
sive contributions to mass flow are not possible; hence, we
refrain from a more detailed discussion of these issues.

IV. INTEGRABILITY

Subtracting �− �j�
�t � from both sides of the momentum bal-

ance �6� gives the transport equation for the total mass flux

�M− j��. This equation is a conservation law if a suitable
function J exits as a potential for j�, so that

j� =
�J

�r
. �15�

In general, J could be a tensor, but in the following we con-
sider only scalar functions. Note that the existence of a po-
tential J is sufficient for local conservation of the mass flux
but not necessary; that is, the mass flux could be conserved
under weaker conditions. For the further arguments, how-
ever, a detailed discussion of the condition �15� turns out to
be useful.

For constant �i.e., homogeneous� parameters D�, �, and v
in Eq. �11�, the dissipative contribution to the mass flux can
trivially be written in the form �15�. However, such a repre-
sentation holds under much weaker conditions on D�, �, and
v and that is our motivation for proposing it. In the follow-
ing, we refer to Eq. �15� as the integrability condition.

A local conservation law for the mass flux is, in fact,
expected from general considerations of statistical mechanics
�19�, and it probably is the reason why one usually concludes
without hesitation that the mass flux must coincide with the
well-known conserved momentum density. Below, it will be
shown that a second conservation law originates in the con-
dition �15� which, in turn, is needed to obtain a uniform
center-of-mass motion.

We consider the most general form for J as a function of
the hydrodynamic variables up to second-order terms in ve-
locity, which reads as

J = J1��,T� −
1

2
J2��,T��v − c�2. �16�

Galilean invariance of J requires the dependence on a veloc-
ity difference, hence the appearance of the additional veloc-
ity c, which will be determined by comparing Eqs. �11� and
�15� for the ansatz �16�. We find right away that

�c

�r
= 0, �17�

that is the velocity c must be homogeneous �constant in
space�.

Next, we identify the diffusion coefficient as

D�

T
=

�J1

��
−

1

2

�J2

��
�v − c�2. �18�

Thus, an arbitrary functional form of the diffusion coefficient
can be reproduced by choosing a suitable � dependence of J1
and J2. In fact, to restrict the constitutive law �11� to second
order in velocity, one will choose

�J2

�� =0, so that J2=J2�T�.
By comparing the remaining terms, we further obtain

v = v +
TJ2�T�

D�
�c − v� , �19�

and

� = � +
T2

D�

�J1

�T
−

1

2
	1 − D�

�

�T

1

J2

�v − v�2. �20�
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We consider special choices of J2, and their influence on
the constitutive Eq. �19� for v. Note that the previously sug-
gested choice J2=0 �10� gives v=v by Eq. �19� in agreement
with �10�. If D� depends only on temperature, the natural
choice J2=D��T� /T leads to the simple expression v=c; in
this case, because of Eq. �17�, v must be a constant. How-
ever, if D� depends also on �, the reference velocity v can-
not just be a constant.

With the assumption that for an ideal gas the mass diffu-
sion coefficient D� behaves similar to the self-diffusion co-
efficient, D��
T depends only on T, so that J1=�D� /T and
J2=D� /T are the most natural choices. We hence find

v = c, � =
1

2
�̃ . �21�

The example of the ideal gas demonstrates that the integra-
bility condition can indeed be consistent with the generalized
hydrodynamic scenario. The expression �21� for � differs
from the values considered in the pertinent literature �4,10�.
While one might argue that the above result for � for an
ideal gas casts the idea of integrability into doubt, one should
take into account that all suggestions for nonzero values of �
and D� �and thus nonzero dissipative contribution to mass
flux� are based solely on plausibility arguments but not on
derivation from first principles nor on experimental evi-
dence. Note also that under the assumption of integrability,
the above discussion suggests that v is homogeneous �at least
for the ideal gas�.

V. ANGULAR MOMENTUM

In any hydrodynamic theory, one should be able to con-
struct a locally conserved angular momentum resulting from
the existence of rotational symmetry �21�. The conservation
or nonconservation of angular momentum is related to the
structure of the momentum balance equation. When the latter
is taken into the cross product with r, we find a balance for
the local angular momentum density l=r
M, which we
write in index notation as

�li

�t
= −

�

�rl
�1

�
Mlli + �ijkrj�− jl�v̄k + p�kl + �kl�� − �ijk�j jv̄k.

�22�

One finds −�ijk�j jv̄k= �v
 j��i as a local source of angular
momentum. This contribution stems from the nonsymmetric
contribution −j�v to the momentum flux tensor, which there-
fore potentially causes a problem. With the identity

�ijk�j jv̄k =
�

�rl
��ljk�j jv̄kri� + riv̄k	�kjl

��j j

�rl

 − ri�j j	� jkl

� v̄k

�rl

 ,

�23�

it becomes clear that we can obtain a locally conserved an-
gular momentum provided that the last two terms in Eq. �23�
vanish, that is, if �i� the integrability condition �15� holds,
and �ii� the modified velocity field v is curl free.

Clearly, condition �ii� is fulfilled if we take v as indepen-
dent of position. For the previous choice v=v, however, this

condition will not be fulfilled; that is, this choice would lead
to the violation of conservation of angular momentum, and
thus is not physical.

Conservation of angular momentum together with the in-
tegrability requirement of Sec. IV leads to a strong reduction
in the possible constitutive equations. Together with curl free
v, the condition �19� can only be fulfilled for arbitrary fields
T ,�, v if D� is independent of �v−c�. Because of Eq. �18�,
this implies that J2 must be independent of � and then van-
ishing curl of Eq. �19� requires D�=TJ2�T�, so that D� must
depend only on T. With this, Eq. �18� reduces to D��T�
=T

�J1

�� , which implies J1�� ,T�= �
T D��T�. Thus, integrability

and conservation of angular momentum together require v
=c, that is, constant v. We found the same in Sec. IV for the
ideal gas; the present argument extends the findings to all
materials as sufficient but not necessary conditions.

Can one construct a locally conserved angular momentum
without assuming integrability? It is generally expected that
a nonsymmetric stress tensor is associated with some internal
angular momentum. However, we did not succeed in con-
structing an internal angular momentum in such a way that
the total angular momentum is conserved. A hydrodynamic
theory without the possibility to construct a locally con-
served angular momentum density field needs to be rejected.
The only construction we could find is based on integrability
and constant v and hence rules out the previous formulations
of modified hydrodynamics �4,10� with a dissipative contri-
bution to the mass flux based on v=v. Any alternative sug-
gestion of a scenario with a dissipative mass flux must come
with an explicit suggestion for the total angular momentum
density.

VI. STEADY RIGID FLUID ROTATION

To obtain a further criterion for the admissibility of a
dissipative contribution to the mass flux, we look for a par-
ticular solution of the different sets of hydrodynamic equa-
tions introduced in the preceding sections. Namely, we ex-
pect that a fluid performing a rigid body rotation should
provide a solution of any valid set of hydrodynamic equa-
tions. The existence of dissipation-free rigid rotations is not a
necessary condition. If one believes that such solutions
should exist, however, one finds additional restrictions on
modifications of transport processes.

In particular, for steady rigid fluid rotation, all dissipative
flux contributions must vanish. Moreover, the pressure must
increase radially to provide the required centripetal forces,

dp

dr
= �

v2

r
, �24�

where r is the distance from the axis of rotation.
For the further arguments, it is important that thermody-

namic local-equilibrium states are fully characterized by two
intensive state variables. Because the pressure p must have
the spatial variation �24�, at most one intensive local-
equilibrium variable can be constant throughout the system.

We first consider the case where v=v, as was suggested
for the original modifications to hydrodynamics �4,10�. For
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this case, according to Eqs. �9� and �11�, vanishing dissipa-
tive fluxes jq= j=0 would require that the two intensive vari-
ables T and � be constant throughout the system, which is at
variance with the spatial variation of p given in Eq. �24�.
This implies that for the previously proposed formulation,
there can only be a single process, either heat conduction
�that is, standard hydrodynamics� or just the combined effect
of diffusion and heat conduction described by j. In other
words, two dissipative processes driven by gradients of two
intensive local-equilibrium variables, as assumed in all pre-
vious papers �2,4,9–12�, are excluded by the assumption of a
solution describing steady rigid fluid rotation.

For a single combined Brenner-type process, one expects
to find a nontrivial temperature profile for the rigidly rotating
fluid. This is so because the pressure profile is dictated by the
centripetal forces, and the combination of pressure and tem-
perature gradients that drives the mixed process must vanish
in the dissipation-free state of rotation. Note, however, that
the existence of such a solution for a rigidly rotating fluid
does not guarantee the general conservation of angular mo-
mentum.

For our more general formulation in the center-of-mass
system, for which we assume v=0, according to Eqs. �9�,
�11�, and �12�, vanishing dissipative fluxes jq= j=0 would
require only the intensive variable T to be constant through-
out the system, whereas constant �̃ for rigid rotation trans-
lates into

d�

dr
=

d

dr
	1

2
v2
 =

v2

r
. �25�

According to the Gibbs-Duhem relation, that is, dp=sdT
+�d�, Eq. �25� is perfectly consistent with the radial pres-
sure distribution �24� at constant temperature.

Whereas inhomogeneous equilibria caused by external
forces can be described in the previously suggested formula-
tion because the external forces appear in the thermodynamic
driving forces of the dissipative processes �11�, the inhomo-
geneous equilibrium due to fluid rotation can only be
handled through the velocity-modified chemical potential of
the generalized approach.

Note, however, that the above argument requires v=0 in
the center-of-mass system, this condition must be seen as a
severe constriction for v. Integrability has not been assumed
in this section.

VII. CENTER-OF-MASS POSITION

In the absence of external forces, the center-of-mass mo-
tion of a system must be uniform. This fundamental insight
allows us to reconstruct the center-of-mass position at time
t=0, which is a constant of motion. More generally, one
actually expects

b = �r − Mt �26�

to be the density of a locally conserved quantity. From the
perspective of special relativity, this locally conserved quan-
tity b is the natural partner of the angular momentum density
l, and b is known as the booster density �15�. From the defi-

nition �26� and the balance Eqs. �5� and �6�, we obtain

�b

�t
= −

�

�r
· �1

�
Mb − j��r − vt� − t�p1 + ��� − j� . �27�

Under the integrability condition �15�, the uniform center-of-
mass motion is associated with a locally conserved quantity
b. Integrability, locally conserved angular momentum, lo-
cally conserved mass flux, and locally conserved booster are
hence intimately related features. The generalized setting in-
troduced in this paper provides a formally acceptable modi-
fication of standard Navier-Stokes-Fourier hydrodynamics
provided that we assume integrability.

Like for the angular momentum density l, we might con-
sider the possibility to define the booster density b in terms
of the mass flux instead of the momentum density. Such a
definition would seem plausible because the local effects on
the rearrangement of the center-of-mass position are given
by the mass flux. It then becomes evident that a local con-
servation law for the modified booster is directly equivalent
to a local conservation law for the mass flux, without using
integrability as an intermediate link. There, hence, exists a
deeper reason for a separate conservation law for the mass
flux.

VIII. CONCLUSIONS AND OPEN PROBLEMS

In spite of its thermodynamic admissibility, the most
widely discussed scenario for introducing a dissipative con-
tribution to the mass flux in hydrodynamics �2,4,9–12� must
be rejected because it violates the local conservation of an-
gular momentum. Moreover, it does not allow for steady
rigid fluid rotation. Through the occurrence of an additional
curl-free velocity v, the balance Eqs. �5�–�7� together with
the constitutive Eqs. �9�–�11� provide a generalized set of
hydrodynamic equations with a dissipative contribution to
the mass flux. For a suitable choice of the smoothed velocity
field v, and with the assumption of an integrability condition,
all the following criteria can be satisfied: �i� Galilean invari-
ance, �ii� possibility of steady rigid fluid rotation, �iii� exis-
tence of a locally conserved angular momentum, �iv� and
consistency with uniform center-of-mass motion.

In addition to the momentum density, also the mass flux
turns out to be a locally conserved quantity. The deeper rea-
son for this conservation of the mass flux lies in the existence
of a locally conserved booster density. In the generalized
formulation, an integrability condition ensures the existence
of the proper conservation laws.

Although it satisfies all the fundamental admissibility cri-
teria, the generalized formulation of hydrodynamics must be
scrutinized in view of the role of the additional velocity field
v. Assuming integrability, we found that v must be curl free
to satisfy conservation of angular momentum �Sec. V�, that it
must vanish in the center of mass of a rotating system to
allow rigid fluid rotation �Sec. VI�, and that it must be con-
stant to guarantee conservation of mass flux �Secs. IV and
V�.

From this list, one might be inclined to assume that v is
independent of position, that is, homogeneous, but possibly
time dependent, and that the center-of-mass velocity is the
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simplest interpretation of v. However, this leads immediately
to the question of how to define the system for the determi-
nation of the center of mass. While for certain systems a
particular choice of boundaries might be self-suggesting, for
example, the walls of a vessel, a local continuum theory
must be valid for any choice of system �provided that the
system is bigger than a meaningful “point” of the con-
tinuum�.

As we look for a local theory of hydrodynamics, any
given system can be divided into smaller subsystems in an
arbitrary manner, and this division should not alter the math-
ematical description of the physics within the system or the
subsystems. Thus, if v is a homogeneous velocity in a system
A, it must be the same velocity in any subsystem of A. Also,
if A is combined with another system B, the combined sys-
tem A+B must still have the same v since else the local
description in A would be altered. As a logical consequence,
it follows that v would have to be a universal constant. This
is inconsistent with Galilean invariance.

Only when the dissipative mass flux vanishes �D�=0� do
we have no contradiction—but this is just the case of classi-
cal hydrodynamics. Thus, we come to the conclusion that a
dissipative mass flux necessarily leads to contradiction to
basic physical principles and must be rejected. It follows that
classical hydrodynamics, where mass flux and momentum
density agree, is the only admissible system of transport
equations in the hydrodynamic regime �i.e., at small Knud-
sen numbers; for finite Knudsen numbers rarefaction effects
must be accounted for, which leads to more complicated
forms of the transport equations, which all reduce to classical
hydrodynamics in the limit of sufficiently small Knudsen
numbers �7��.

A particular example arises by generalizing our example
of steady rigid fluid rotation. If a system consists of two
independent rigidly rotating subsystems in relative motion,
the two individual center-of-mass velocities must be used to
obtain a proper overall solution. The averaging is no longer
global but only over the subsystems. If, in general, the aver-
aging required to obtain the smoothed velocity field cannot
be global, then the question about the proper spatial-
averaging procedure arises. We are then faced with math-
ematical and physical issues, and we here focus on the latter,
in particular: what is the relevant physical length scale for
smoothing?

The fundamental problem associated with a dissipative
contribution to the mass flux is that it represents random
fluctuations in the position of noninertial particles and hence
destroys the uniform center-of-mass motion implied by New-
ton’s equations of motion. Only after some averaging proce-
dure one can expect a smooth center-of-mass motion. This
averaging should at least comprise several collisions, which
define the intrinsic physical scale of hydrodynamic equa-
tions. The collisions also define the characteristic scales
needed to reach local equilibrium. As the velocity v of clas-
sical hydrodynamics should clearly be defined on the local-
equilibrium scale, there is no natural way of introducing a
further smoothed velocity v based on intrinsic length scales.
Only if the hydrodynamic velocity v is assumed to be well
defined on a more local scale �22�, as implicitly done in
fluctuating hydrodynamics �see Chapter IX of Landau and
Lifshitz �23� or Sec. 2.2.4 of �10�� or in fluctuation renormal-
ization �related to eliminating the back-flow effects of hydro-
dynamics leading to long-time tails as described in Chapter
16 of �24��, then there exists a natural smoothing procedure.
However, we then enter the domain of finite Knudsen num-
ber effects and hence leave the scope of the purely hydrody-
namic theory discussed in this paper.

While a dissipative contribution to the mass flux seems to
be irrelevant to continuum hydrodynamics, a deeper under-
standing of the related phenomena may still be useful to
resolve some problems arising in the theory of fluctuations
�14�. As a consequence, Einstein’s theory of local-
equilibrium fluctuations can only be valid on length scales
large compared to the mean free path, even for rarefied
gases. More disturbingly, the use of Onsager’s regression
hypothesis �24,25� to evaluate the two-time correlations, de-
termining the dissipative properties of nonequilibrium sys-
tems according to the Green-Kubo formula �10,24,26�, needs
to be questioned. However, it might also happen that the
problems related to the description of fluctuations in hydro-
dynamics can only be resolved in a more complete consistent
theory at finite Knudsen numbers.

To summarize, we state that all known modifications of
hydrodynamics that lead to a dissipative contribution to mass
flux violate physical principles and must be discarded.
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