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Modeling Micro Mass and Heat
Transfer for Gases Using
Extended Continuum Equations
This paper presents recent contributions to the development of macroscopic continuum
transport equations for micro gas flows and heat transfers. Within the kinetic theory of
gases, a combination of the Chapman–Enskog expansion and the Grad moment method
yields the regularized 13-moment equations (R13 equations), which are of high approxi-
mation order. In addition, a complete set of boundary conditions can be derived from the
boundary conditions of the Boltzmann equation. The R13 equations are linearly stable,
and their results for moderate Knudsen numbers stand in excellent agreement with direct
simulation Monte Carlo (DSMC) method simulations. We give analytical expressions for
heat and mass transfer in microchannels. These expressions help to understand the com-
plex interaction of fluid variables in microscale systems. Additionally, we compare inter-
esting analogies such as a mass flux and energy Knudsen paradox. In particular, the R13
model is capable of predicting and explaining the detailed features of Poiseuille
microflows. �DOI: 10.1115/1.3056598�
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Introduction

Processes in microscale flows of gases or, equivalently, in rar-
faction situations are well described by the Boltzmann equation
1�, which describes the evolution of the particle distribution func-
ion in phase space, i.e., on the microscopic level.

The relevant scaling parameter to characterize processes in mi-
roflow gases is the Knudsen number Kn, defined as the ratio
etween the mean free path of a particle and a relevant length
cale. If the Knudsen number is small, the Boltzmann equation
an be reduced to simpler models, which allow faster solutions.
ndeed, if the Knudsen number is small �Kn�0.01�, the hydrody-
amic equations, the laws of Navier–Stokes and Fourier �NSF�,
an be derived from the Boltzmann equation, e.g., by the
hapman-Enskog method �2�. The NSF equations are macro-

copic equations for mass density �, velocity vi, and temperature
and thus pose a mathematically less complex problem than the
oltzmann equation.
Macroscopic equations for rarefied gas flows at Knudsen num-

ers above 0.01 promise to replace the Boltzmann equation with
impler equations that still capture the relevant physics. The
hapman–Enskog expansion is the classical method to achieve

his goal, but the resulting Burnett and super-Burnett equations are
nstable �3�. To fix these problems in the framework of the
hapman–Enskog expansion is cumbersome �4,5�. Nevertheless,

n some cases Burnett equations could be used for simulations of
onequilibrium gases �6–8�.

A classical alternative is Grad’s moment method �9�, which
xtends the set of variables by adding deviatoric pressure tensor

ijªp�ij� �stress�, heat flux qi, and possibly higher moments of the
elocity distribution function �phase density� of the particles. The
esulting equations are stable but lead to spurious discontinuities
n shocks �10�. Nevertheless, some successes have been obtained
ith moment methods, and popularity is rising �see Refs.
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�11–15��. However, for a given value of the Knudsen number, it is
not clear what set of moments one would have to consider �2�.

Struchtrup and Torrilhon �16,17� combined both approaches by
performing a Chapman–Enskog expansion around a nonequilib-
rium phase density of Grad type, which resulted in the “regular-
ized 13-moment equations” �R13 equations�, which form a stable
set of equations for the 13 variables �� ,vi ,T ,�ij ,qi� of super-
Burnett order, i.e., of third order in the Knudsen number when
asymptotically expanded. Section 2 gives a review of this original
derivation. An alternative approach to the problem was presented
by Struchtrup in Refs. �18,19�, partly based on an earlier work by
Müller et al. �20�. This order-of-magnitude method is based on a
rigorous asymptotic analysis of the infinite hierarchy of the mo-
ment equations. A brief outline is also given in Sec. 2.

One of the biggest problems for all models beyond NSF is to
prescribe suitable boundary conditions for the extended equations,
which should follow from the boundary conditions for the Boltz-
mann equation. This task was recently tackled in Ref. �21�, and
the general solution to the problem �22� will be discussed after the
derivation of the equations when we present boundary conditions
for the R13 equations.

The second part of this paper will survey the properties of the
R13 equations, which are linearly stable, obey an H-theorem for
the linear case, contain the Burnett and super-Burnett equations
asymptotically, predict phase speeds and damping of ultrasound
waves in excellent agreement with experiments, yield smooth and
accurate shock structures for all Mach numbers, and exhibit
Knudsen boundary layers and the Knudsen minimum of channel
flow in excellent agreement with direct simulation Monte Carlo
�DSMC� method simulations. This paper reviews detailed infor-
mation about the performance of R13 for Poiseuille flow in mi-
crochannels and discusses how microvariables enter and influence
the classical fluid dynamical relations. The interested reader is
referred to the cited literature, including the monograph �2�.

2 Derivation of R13
The derivation of the regularized 13-moment equations has

been done in two ways. Both ways give specific insight into the
structure and properties of the theory.
2.1 Based on Pseudo-Time-Scales. The original derivation
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16� develops an enhanced constitutive theory for Grad’s moment
quations. The closure procedure of Grad is too rigid and needs to
e relaxed. The new theory can be summarized in three steps:

1. Identify the set of variables U and higher moments V that
need a constitutive relation in Grad’s theory.

2. Formulate evolution equations for the difference R=V
−V�Grad��U� of the constitutive moments and their Grad re-
lation.

3. Perform an asymptotic expansion of R alone while fixing all
variables U of Grad’s theory.

This procedure can, in principle, be performed on any system
btained by Grad’s moment method; i.e., any number of moments
an be considered as a basic set of variables. For the derivation of
13 the first 13-moment density, velocity, temperature, stress de-
iator, and heat flux have been considered in accordance with the
lassical 13-moment case of Grad.

In the classical Grad approach, the difference R is considered to
e zero: All constitutive moments follow from lower moments by
eans of Grad’s distribution V=V�Grad��U�. This rigidity causes

yperbolicity as well as artifacts such as subshocks and poor ac-
uracy. However, the evolution equation for R is, in general, not
n identity. Instead it describes possible deviations of Grad’s clo-
ure. The constitutive theory of R13 takes these deviations into
ccount.

The evolution equation for R cannot be solved exactly because
t is influenced by even higher moments. Hence, an approximation
s found by asymptotic expansion. In doing this, step 3 requires a

odeling assumption about a scaling cascade of the higher order
oments. In the asymptotic expansion of R, we fix lower mo-
ents, that is, density, velocity, and temperature, as well as non-

quilibrium quantities such as stress and heat flux. The assump-
ion is a pseudo-time-scale such that the higher moments R follow

faster relaxation. The expansion can also be considered as an
xpansion around a nonequilibrium �pseudo-equilibrium�. A simi-
ar idea has been formulated in Ref. �23� based solely on distri-
ution functions.

The result for R after one expansion step is a relation that
ouples R to gradients of the variables U; in R13 these are gradi-
nts of stress and heat flux. The gradient terms enter the diver-
ences in the equations for stress and heat flux and produce dis-
ipative second order derivatives. The final system is a
egularization of Grad’s 13-moment equations. The procedure re-
embles the derivation of the NSF system. Indeed the NSF equa-
ions can be considered as a regularization of Euler equations �i.e.,
rad’s five-moment system�.

2.2 Based on Order of Magnitude. The order-of-magnitude
ethod �18,19� considers the infinite system of moment equations

esulting from Boltzmann’s equation. It does not depend on
rad’s closure relations and does not directly utilize the result of

symptotic expansions. The method finds the proper equations
ith the order of accuracy �0 in the Knudsen number by the

ollowing three steps:

1. determination of the order of magnitude � of the moments
2. construction of moment set with a minimum number of mo-

ments at order �
3. deletion of all terms in all equations that would lead only to

contributions of orders ���0 in the conservation laws for
energy and momentum

Step 1 is based on a Chapman–Enskog expansion where a mo-
ent � is expanded according to �=�0+Kn�1+Kn2�2+¯, and

he leading order of � is determined by inserting this ansatz into
he complete set of moment equations. A moment is said to be of
eading order � if ��=0 for all ���. This first step agrees with

he ideas of Ref. �20�. Alternatively, the order of magnitude of the
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moments can be found from the principle that a single term in an
equation cannot be larger in size by one or several orders of mag-
nitude than all other terms �24�.

In step 2, new variables are introduced by a linear combination
of the moments originally chosen. The new variables are con-
structed such that the number of moments at a given order � is
minimal. This step gives an unambiguous set of moments at order
�.

Step 3 follows from the definition of the order of accuracy �0:
A set of equations is said to be accurate of order �0 when stress
and heat flux are known within the order O�Kn�0�.

The order-of-magnitude method gives the Euler and NSF equa-
tions at zeroth and first orders and thus agrees with the Chapman–
Enskog method in the lower orders �18�. The second order equa-
tions turn out to be Grad’s 13-moment equations for Maxwell
molecules �18� and a generalization of these for molecules that
interact with power potentials �2,19�. At third order, the method
was only performed for Maxwell molecules, where it yields the
R13 equations �18�. It follows that R13 satisfies some optimality
when processes are to be described with third order accuracy.

Note that the derivation based on pseudo-time-scales above re-
quires an unphysical assumption, namely, strongly different relax-
ation times for different moments. Such a cascading does not exist
since all moments relax on roughly the same time scale propor-
tional to Kn. The order-of-magnitude approach does not rely on
such an assumption. Instead of different relaxation times, this
method induces a structure on the set of nonequilibrium moments
based on size, that is, order of magnitude, and justifies different
closed systems of moment equations.

2.3 Result. Here, we display the original R13 equations from
Ref. �16�, which are build from the general conservation laws for
a monatomic gas with mass density �, velocity vi, and temperature
� in energy units,

��

�t
+

��vk

�xk
= 0 �1�

�
�vi

�t
+ �vk

�vi

�xk
+

�p

�xi
+

��ik

�xk
= 0 �2�

3

2
�

��

�t
+

3

2
�vk

��

�xk
+

�qk

�xk
+ �p	ij + �ij�

�vi

�xj
= 0 �3�

where 	ij is the Kronecker symbol or identity matrix. For the
pressure p we assume the ideal gas law p=��. We use Cartesian
index notation with i , j ,k , l� �1,2 ,3� and summation convention.
The additional evolution equations that close the system are given
by

��ij

�t
+

��ijvk

�xk
+

4

5

�q�i

�xj�
+ 2p

�v�i

�xj�
+ 2�k�i

�v j�

�xk
+

�mijk

�xk
= −

p



�ij

�4�

for the stress deviator �ij and

�qi

�t
+

�qivk

�xk
+ p

���ik/��
�xk

+
5

2
�p	ik + �ik�

��

�xk
−

�ij

�

�� jk

�xk

+ 	mijk +
6

5
q�i	 jk� + qk	ij
 �v j

�xk
+

1

2

�R̂ik

�xk
= −

2p

3

qi �5�

for the heat flux qi with 
 the viscosity of the gas. Round brackets
give the symmetric part of a tensor, while angular brackets around
indices denote the symmetric deviatoric part, e.g., A�ij�=A�ij�

− 1
3Akk	ij =

1
2 �Aij +Aji�− 1

3Akk	ij, and analogously for three indices,
see Ref. �2�.

Note that these equations include the classical laws of Navier–

Stokes and Fourier for stress deviator and heat flux. They can be
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ormally recovered by setting �ij, qi, mijk, and R̂ij to zero on the
eft hand side only. The additional terms in the equations beyond
he classical laws allow for inertial effects and nongradient trans-
ort. That is, stress and heat flux are no longer slaved to the
hermodynamic fluxes, velocity gradient, and temperature
radient.

The remaining quantities mijk and R̂ij represent higher mo-
ents, and as such they form fluxes of stress and heat flux. These

re zero in the Grad case, but the R13 theory provides the gradient
xpressions

mijk = − 2

����ij/��

�xk�
+

8

10p
q�i� jk�

�NSF� �6�

Rij = −
24

5



��q�j/��

�xj�
+

32

25p
q�iqj�

�NSF� +
24

7�
�k�i� j�k

�NSF� �7�

R = − 12

��qk/��

�xk
+

8

p
qkqk

�NSF� +
6

�
�ij�ij

�NSF� �8�

ith R̂ij =Rij +
1
3R	ij and the abbreviations

�ij
�NSF� = − 2


�v�i

�xj�
, qi

�NSF� = −
15

4



��

�xi
�9�

n total the R13 system is given by nonlinear parabolic-hyperbolic
artial differential equations with relaxation. In that sense it re-
embles the mathematical structure of the NSF equations.

Boundary Conditions for R13
The computation of boundary conditions for the R13 equations

s based on Maxwell’s model for boundary conditions for the
oltzmann equation �1,2,25�, which states that a fraction � of the
articles hitting the wall are thermalized, while the remaining 1
� particles are specularly reflected. Boundary conditions for mo-
ents follow by taking moments of the boundary conditions of

he Boltzmann equation. To produce meaningful boundary condi-
ions, one needs to obey the following rules:

1. Continuity: In order to have meaningful boundary conditions
for all accommodation coefficients �� �0,1�, only boundary
conditions for tensors with an odd number of normal com-
ponents should be considered �21�.

2. Consistency: Only boundary conditions for fluxes that actu-
ally appear in the equations should be considered �22�.

3. Coherence: The same number of boundary conditions should
be prescribed for the linearized and the nonlinear equations
�22�.

The application of rules 1 and 2 is straightforward and yields
he following set of kinetic boundary conditions �t and n denote
angential and normal tensor components, respectively� for mo-

ents:

�tn = − ��PVt + 1
2mtnn + 1

5qt�

qn = − ��2P�� + 5
28Rnn + 1

15R + 1
2��nn − 1

2 PVt
2�

Rtn = ��P�Vt − 1
2�mtnn − 11

5 �qt − PVt
3 + 6P��Vt�

mnnn = �� 2
5 P�� − 1

14Rnn + 1
75R − 7

5��nn − 3
5 PVt

2�

mttn = −
mnnn

2
− �	 1

14
	Rtt +

Rnn

2

 + �	�tt +

�nn

2

 − PVt

2

�10�

W
here ��=�−�W, Vt=vt−vt , and
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P ª �� +
�nn

2
−

Rnn

28�
−

R

120�
�11�

The properties of the wall are given by its temperature �W and
velocity vt

W and the modified accommodation coefficient

� = �/�2 − ���2/�
�� �12�

In extrapolation of the theory of accommodation, these coeffi-
cients that occur in every equation of Eq. �10� could be chosen
differently. So far, most results have been obtained with only one
accommodation coefficient in accordance with the Maxwell
model. Clearly, the Maxwell model is a strong reduction of the
wall properties, and in many realistic cases more parameters are
required to model wall interactions. Different accommodation co-
efficients of the single moment fluxes, e.g., shear or heat flux,
could be used to model detailed wall properties. However, more
investigations and comparisons are required for such an approach.

The first condition above is the slip condition for the velocity,
while the second equation is the jump condition for the tempera-
ture. They come in a generalized form, with the essential part
given by �tn�Vt and qn���. In a manner of speaking, the other
conditions can be described as jump conditions for higher mo-
ments, which again relate fluxes and respective variables. In per-
fect analogy to the usual slip and jump conditions, the essential
part is given by Rtn�qt and mnnn��nn. The additional terms in
Eq. �10� are off-diagonal terms coupling all even �in index n�
moments in the boundary conditions.

When the R13 equations are considered for channel flows in
their original form, it turns out that a different number of bound-
ary conditions is required to solve the fully nonlinear and the
linearized equations. Since this would not allow a smooth transi-
tion between linear and nonlinear situations, we formulated the
third rule as given above.

Asymptotic analysis shows that some terms can be changed
without changing the overall asymptotic accuracy of the R13
equations. This leads to the algebraization of several nonlinear
terms in the partial differential equations, which, after some alge-
bra, leads to algebraic relations, termed as bulk equations, be-
tween the moments that serve as additional boundary conditions
for the nonlinear equations �22�,

mtnn =
32

45p
�tnqn �13�

R̂nn =
136

25p
qn

2 −
72

35�
�tn

2 �14�

These equations have a special interpretation. The possibility to
prescribe kinetic boundary conditions as in Eq. �10� for moments
is related to the ability of the moments to produce a so-called
Knudsen layer. The Knudsen layer is a boundary layer that occurs
close to the wall in high Knudsen number flows, for example, in
microchannels. The kinetic boundary condition specifies the am-
plitude of the boundary layer. In the R13 system some variables,
for instance, parallel heat flux, and normal stresses, are able to

produce a Knudsen layer, while the higher moments R̂nn and mtnn
cannot. This is due to the finite number of moments considered. In
the infinite moment hierarchy, all moments exhibit Knudsen lay-
ers �see Ref. �26��.

Due to the lack of a Knudsen layer, kinetic boundary conditions

may not be used for the moments R̂nn and mtnn. Instead, we as-
sume that the boundary layer is relaxed infinitely fast to an inte-
rior solution—the bulk relation given in Eq. �13�. The analysis
shows that relation �13� is valid not only at the boundary but also
at some distance from it where the flow has shear flow character.
In that sense the bulk relations are consistency requirements and
not only boundary conditions. They are algebraic relations re-

quired by the R13 equations, and the values for R̂nn and mtnn at the

wall need to be consistent. Correspondingly, Eq. �13� should be
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Downloa
rescribed at the wall. Hence, the bulk solution turns out to be the
atural boundary conditions for Knudsen-layer-less variables. De-
ails of this interpretation can be found in Ref. �22�.

Achievements With R13
We summarize the most important features of the R13 equa-

ions, which result from analytical considerations and from ana-
ytical and numerical solutions. The results of R13 have been
ompared with experimental data as well as to direct simulation
esults obtained by DSMC �27�.

The R13 equations

• are derived in a rational manner by means of the order-of-
magnitude method �18,19� or from a Chapman–Enskog ex-
pansion around nonequilibrium �16,17�, as described above

• are of third order in the Knudsen number �2,16–19� when
expanded in an asymptotic expansion and compared with
the full expansion of Boltzmann’s equation

• are linearly stable for initial and boundary value problems
�16,17� �that is, amplitudes of linear sound and heat waves
are not amplified�

• contain Burnett and super-Burnett asymptotically in the lin-
ear �16� and nonlinear �17� cases �however, higher order
contributions stabilize the R13 system�

• predict phase speeds and damping of sound waves with high
frequencies and short wavelengths in excellent agreement
with experiments �16�

• give smooth shock structures without subshocks for all
Mach numbers, with quantitatively very good agreement
with DSMC simulations for Ma�3 �17�

• are accompanied by a complete set of boundary conditions
�22� based on the most commonly used accommodation
model in kinetic theory

• obey an entropy and H-theorem for the linear case, includ-
ing the boundaries �28�, which can also be used to derive the
equations as such

• exhibit the Knudsen paradox, i.e., the minimum of the mass
flow rate for channel flows �see Sec. 5� �22,28�

• exhibit Knudsen boundary layers for temperature and veloc-
ity profiles as well as other moments in good agreement
with DSMC �29,30�

• are easily accessible to numerical simulations in multiple
space dimensions based on finite volume methods �31� or
pressure-correction schemes �21�

• predict dynamic form factors �32� in accordance with ex-
periments of light scattering spectra measuring small scale
density fluctuations

e proceed with presenting the details of microchannel flows.

Microchannel Flows
To approach microchannel flows, we study a special class of

teady shear flows that include steady Couette or Poiseuille flows.
or the R13 system, shear flow is a multidimensional phenom-
non in the sense that it produces a fully multidimensional reac-
ion for the stress tensor and heat flux. Introducing xi=̂�x ,y ,z�, we
onsider shear flow, which is homogeneous in the z-direction, and
efine the remaining nonvanishing parts of stress tensor and heat
ux as

� = 
�xx �xy 0

�yx �yy 0

0 0 �zz
�, q = �qx,qy,0� �15�

here �xy =�yx and �zz=−��xx+�yy� since � must be trace free.

or the velocity we assume vy =vz=0 and

33103-4 / Vol. 131, MARCH 2009
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v�x,y,z� = �vx�y�,0,0� �16�

The force acts only in the x-direction, f= �F ,0 ,0� and enters the
momentum balance �2� but no other equation. This setting is valid
for channel flows, as displayed in Fig. 1. The gas is confined
between two infinite plates at distance L and moves solely in the
x-direction. The walls are moving with x-velocities vW

�0,1� and may
be heated with different temperatures �W

�0,1�. The Knudsen number
Kn=� /L with mean free path �=
 / ����� is based on the width
of the channel.

In this setting we have eight independent variables in the R13
equations, namely, �� ,vx , p ,�xx ,�yy ,�xy ,qx ,qy�. Optionally, the
pressure p can be replaced by the temperature �. The five remain-

ing relevant constitutive quantities are �mxxy ,mxyy ,myyy , R̂xy , R̂yy�.
Systems �1�–�9� reduces to 13 first order nonlinear ordinary dif-
ferential equations in the space variable y. The equations uncover
a striking simplicity by decomposing into three linearly decoupled
blocks. The coupling is displayed by writing the vector of vari-
ables in the form

U = �vx,�xy,qx,mxyy,Rxy��,qy,�yy,R̂yy,myyy��,�xx,mxxy� �17�

The first block describes the velocity part with the balances of vx,

�xy, and qx and higher moments mxyy and R̂xy; the second block
describes the temperature part with the balances of �, qy, and �yy

and higher moments R̂yy and myyy. Both parts are governed domi-
nantly by two classical variables, �vx ,�xy� and �� ,qy�, respec-
tively, which behave essentially in an intuitive way. In NSF the
second variable is related to the gradient of the first. The third
variable in both parts, qx and �yy, respectively, is given by a
seemingly classical variable, which, however, plays a nonintuitive
role. It represents a heat flux produced by a velocity shear in the
first block and a normal stress due to temperature difference in the
second. Both are typical rarefaction effects in microflows of gases.
Through these variables the classical variables velocity and tem-
perature are coupled to the high order internal quantities, mxyy and

R̂xy, and R̂yy and myyy, respectively. From tensorial considerations,
the first block can be identified with mixed normal/tangential vari-
ables �shear�, while the second block couples the purely normal
variables �temperature�. The last block combines the density and
purely tangential tensorial variables and exhibits only a minor
influence.

5.1 Linear Equations and Knudsen Layers. One of the
most important advantages of continuum models is the possibility
to gain understanding in micro gas dynamics through analytical
expressions. The mathematical structure of the equations provides
a general insight into new physics and may teach intuition about
complex processes.

Here, we demonstrate the rise of Knudsen layers and micro-
scale variables, i.e., nongradient heat fluxes and normal stresses.
Similar calculations can be found in Refs. �29,30�.

5.1.1 Velocity Part. As mentioned above, the equations split

Fig. 1 General setting for shear flow between two infinite
plates. The plates are moving and may be heated.
into a velocity and a temperature part in the linear case. The
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elocity part is governed by the momentum balance and an equa-
ion for shear stress, which are given by Eq. �2� with force term
nd the xy-component of Eq. �4� and read

�y�xy = �F �18�

�xy = − 
�yvx −
2

5




p
�yqx �19�

ith constant density, pressure, and viscosity 
. Obviously, shear
tress is given by the velocity gradient and by a microscale con-
ribution from the heat flux qx parallel to the walls. This heat flux
atisfies Eq. �5�,




�
�y�xy +

1

2




p
�yRxy = −

2

3
qx �20�

Rxy = −
12

5




p
�yqx �21�

ith higher order flux Rxy given by Eq. �7�. In particular, the
arallel heat flux is independent of a temperature gradient. It is
riggered from the shear stress and boundary conditions. Elimina-
ion of Rxy leads to a second order ordinary differential equation
or qx with solution �assuming symmetry�,

qx�y� = −
3

2

F + C1 sinh	�5

3

1

Kn

y

L/2

 �22�

sing the Knudsen number1

Kn =

��

pL
�23�

he hyperbolic sine function has the shape of a boundary layer, as
an be seen in Fig. 2. This boundary layer is superimposed on a

1This definition is most suitable for dimensionless moment equations. Other defi-

itions differ only by factors, e.g., Kn˜ in Ref. �3� or �6�, which is Kn˜

�4 /5���8 /
��
�� / p��1.277 Kn, or k used in Ref. �21�, which is k
� �

ig. 2 R13 predicts exponential Knudsen layers for, e.g., par-
llel heat flux. The upper plot shows a schematic picture for
=0, Kn=0.01, 0.1, and 0.5. These functions lead to typical
-shaped profiles for, e.g., temperature; see the schematic

ower plot with Kn=0.01, 0.1, and 0.2.
�4 /5� 2�
 � / p��1.13 Kn.
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bulk solution �
F in qx. Finally, the parallel heat flux enters the
velocity solution �assuming symmetry�

vx�y� = C2 +
�F

2

		L

2

2

− y2
 −
2

5p
qx�y� �24�

inheriting the Knudsen layer. Hence, the velocity consists of a
bulk solution given by the classical parabolic profile and a layer
contribution from the parallel heat flux.

Note that the boundary layers grow quickly with the Knudsen
number and fill out the channel already at Kn=0.5 �see Fig. 2�. At
these Knudsen numbers, the bulk and layer in Eq. �24� cannot be
distinguished anymore, and the solution will show a quality in its
own right with no resemblance to classical solutions.

5.1.2 Temperature Part. Remarkably, the temperature part of
the linear R13 equations shows identical mathematical structures.
The two basic equations are now given by the energy balance �Eq.
�3�� and the equation for normal heat flux qy �Eq. �5��, which
together read

�yqy = 0 �25�

qy = − ��y� −
2

5

�

�
�y�yy �26�

with constant density, pressure, and heat conductivity �= 15
4 


�temperature in energy units�. Again, the first term on the right
hand side describes Fourier’s law, but the second shows the influ-
ence of normal stress �yy as a microscale variable. This normal
stress is determined by Eq. �4�,

�

p
�yqy +

2

9

�

p
�ymyyy = −

5

6
�yy �27�

myyy = −
8

25

�

p
�y�yy �28�

with higher order flux myyy given by relation �7�. Note the perfect
analogy to the equations of the velocity part above. Consequently,
the normal stress is given by a hyperbolic sine function �assuming
antisymmetry�,

�yy�y� = C3 sinh	�5

6

1

Kn

y

L/2

 �29�

exhibiting boundary layer character again with the Knudsen num-
ber as the scaling parameter. This boundary layer enters the profile
of the temperature,

��y� = C4 +
C5

�

y

L/2
−

2

5p
�yy�y� �30�

and leads to a typical s-shape, as seen in Fig. 2. The bulk solution
of �yy is zero, while the bulk solution of the temperature is the
classical linear function.

The integration constants Ci have to be fixed by boundary con-
ditions, as given in Eq. �10�. Similar to the equations, the bound-
ary conditions also decouple into a velocity and a temperature part
when linearized.

5.2 Mass Flux Knudsen Paradox. Gas flow through a chan-
nel is known to exhibit a paradoxical behavior known as the
Knudsen paradox �33�. When reducing the Knudsen number in the
experiment, the normalized mass flow rate

J =�
−1/2

1/2

v�y�dy �31�

through the channel reaches a minimum and afterward starts to
increase for larger Knudsen numbers.

To model this, we consider Poiseuille flow given by

acceleration-driven channel flow with walls at rest and identical
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emperatures. The channel is considered to be infinitely long such
hat a steady velocity profile has developed from the viscous
oundary layers. The given acceleration can be interpreted as a
omogeneous pressure gradient.

Given the analytical result for the channel flow of the linear
13 system above, it is easy to determine an explicit function for

he mass flow rate. After integration we find

J =
�1

Kn
+ �2Kn + �3

here �1,2,3 depend on the coefficients in the equations and
oundary conditions, essentially, viscosity and accommodation
actor. The functional dependence on the Knudsen number is valu-
ble information. In general, the coefficients could also be cali-
rated to measurements.

Figure 3 shows the dimensionless mass flow rate obtained from
13 as a function of Kn. The curve clearly shows a minimum and

hus correctly predicts a Knudsen paradox. The figure also shows
he mass flow rate obtained with NSF and standard slip boundary
onditions, which clearly fails to produce a Knudsen minimum. In
ef. �34� the mass flow rate has been calculated based on the

inearized Boltzmann equation, and those results are given in Fig.
as symbols. The mass flow for R13 follows the Boltzmann result

airly accurately until Kn�1.0 and then lifts off too quickly. At
hese high Knudsen numbers, the assumptions of the theory are
ot valid anymore.

The Knudsen paradox is essentially a boundary effect, as ex-
lained below. Hence, it is possible to tweak the NSF system to
xhibit a Knudsen minimum as well when using second order slip
see, e.g., Ref. �35��. However, when comparing different models
or second order slip with the R13 result, it turns out that the R13
urve gives a better fit to the Boltzmann result �see Ref. �36��.
dditionally, the fields of flow variables temperature and heat flux

n microchannel flows show a very interesting behavior correctly
eproduced only by extended models beyond NSF �see Sec. 5.4�.

Intuitively one would expect a decreasing mass flow for a
maller channel. The explanation for the minimum is the follow-
ng: For very small Knudsen numbers, viscosity is almost vanish-
ng, and a fully developed flow would exhibit a huge velocity
rofile, hence a very large mass flow rate. When viscosity is in-
reased, this profile shrinks; however in the other extreme of large
nudsen numbers a different effect takes over. The interaction
etween the particles and the wall becomes so small due to lack of
ollisions that the particles merely accelerate and fall through the
hannel. Again, a fully developed flow of “accelerated freely fall-
ng” particles leads to an infinite mass flux. Between these two
xtrema, there must be a minimum. In summary, at a certain mi-
roscale the friction inside the gas becomes small and the growing

ig. 3 Averaged mass flow rate in acceleration-driven channel
ow. The R13 equations predict the Knudsen paradox.
lip velocity at the wall dominates the mass flow rate.
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5.3 Energy Knudsen Paradox. We have seen above that the
channel flow separates the R13 equations into two different sys-
tems of equations: one part for the velocity and shear and another
part for the temperature and normal heat flux. The two parts ex-
hibit mathematical identical structures in the linearized setting and
allow us to transfer the specific behavior of shear flows to the
analogous behavior of heat transfer.

This leads us to the prediction of an energy Knudsen paradox
for heat transfer in the following sense. Let a resting monatomic
gas between the two plates in Fig. 1 be heated by a constant
volume source, e.g., radiation r. That is, the steady energy balance
has the form �yq=r. The total energy content between the plates is
essentially the integral of the temperature �

E =
3

2�
−1/2

1/2

��y�dy �32�

when written in dimensionless form. When normalized with the
energy input r, the energy content depends on the Knudsen num-
ber and the R13 theory predicts a paradoxical behavior when
changing the width of the channel. When increasing the Knudsen
number and decreasing the channel width, the energy content de-
creases, but only up to a certain Knudsen number. For a very
small width, the total energy increases with Kn, which is
nonintuitive.

Figure 4 shows the respective plot that compares the normal-

ized total energy content Ê, as predicted by R13 and NSF with
first order jump conditions. As before, the standard NSF model
without second order jump conditions does not show a minimum.
R13 predicts an energy minimum, which is at smaller Knudsen
numbers than the Knudsen minimum for the mass flux in Fig. 3.

To our knowledge there are no experimental or DSMC data to
verify this prediction. However, it is very likely that such data
would unveil an approximation quality of R13 similar to that of
Fig. 3.

5.4 Full Solution for Poiseuille Flow. In the linear setting,
the dissipation term in the energy balance is neglected and any
velocity profile does not lead to a temperature rise. To see the
temperature profile, the nonlinear equations have to be solved.
Apart from arithmetic complexity, this is not a problem with the
R13 model.

We solve the full nonlinear R13 system in forms �1�–�9� for a
Poiseuille flow, as described above with kinetic boundary condi-
tion �10�–�14� for various Knudsen numbers. The mass flow rate
is only a rough property of microflows, and the R13 result gives
much more insight when considering the fields of the moments.
Figures 5 and 6 display some fields obtained by R13 for Knudsen

Fig. 4 R13 predicts an energy Knudsen paradox: The normal-
ized total energy content of an externally heated channel
shows a nonintuitive minimum when plotted against the Knud-
sen number. Standard NSF does not show this minimum.
numbers Kn=0.068, 0.15, 0.4, and 1.0. The figures show the con-
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ervation variables velocity vx and temperature �, as well as the
icroscale variables tangential heat flux qx and normal stress �yy.
ote that the channel flow produces a significant parallel heat flux

x even though the temperature is homogeneous along x. Simi-
arly, the temperature field triggers a normal stress even though
yvy =0. This is a microscale effect. Higher Knudsen numbers
how stronger nonequilibrium, as indicated by larger magnitudes
f qx and �yy. Interestingly, the temperature profile starts to invert
or higher Knudsen numbers. Note also that the Knudsen paradox
an be observed in the results of the R13 system in Fig. 5. The
elocity profile becomes flatter, but the slip increases and the ve-
ocity curve for Kn=1.0 lies above the curve of Kn=0.4.

The simulations were obtained with a dimensionless accelera-

ig. 5 Velocity and temperature profiles in acceleration-driven
hannel flow for various Knudsen numbers. The symbols in the
ase Kn=0.068 represent a DSMC result.

ig. 6 Microscale effects, such as parallel heat flux qx and
ormal stresses �yy, in microchannels as predicted by R13 for
arious Knudsen numbers. The symbols in the case Kn

0.068 represent a DSMC result.
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tion force fixed at F=0.23, such that Knudsen number Kn
=0.068 corresponds to the case of Poiseuille flow calculated in
Ref. �37� �see also Ref. �38�� by DSMC. These results are shown
in Figs. 5 and 6 as symbols. R13 gives good agreement with the
DSMC result.

Comparison with NSF. While the Knudsen minimum can be
reproduced with the lower order system of Navier–Stokes and
Fourier using higher order boundary conditions, many details of
the channel flow shown above are out of scope for NSF. The
temperature profile in NSF is a purely convex function with no
dip and no tendency to invert for higher Knudsen numbers. NSF is
also unable to predict the micro effects of parallel heat flux qx and
normal stresses �yy. Both quantities are identically zero in NSF
for all Knudsen numbers because there is no temperature gradient
in the x-direction and no velocity divergence.

Comparison with Ohwada et al. Ohwada et al. �34� computed
Poiseuille flow results based on the linearized Boltzmann equa-
tion. They gave field curves for velocity and parallel heat flux for
Kn=0.088, which are in good agreement with the R13 results and
corresponding DSMC above. Especially, the parallel heat flux
shows positive and negative values at this lower Knudsen number
identical to the curve in 6. Unfortunately, no other fields, for ex-
ample, temperature, are given in Ref. �34�.

6 Conclusions and Challenges
With these properties and features, the R13 equations must be

considered as the most successful continuum model for gas mi-
croflows. In contrast to direct simulations or molecular dynamics,
such a model gives valuable insight into physical effects by iden-
tifying effects inside equations. The application of the R13 equa-
tions to a wider variety of microflow problems is planned for the
future.

In spite of the success, the R13 equations face plenty of open
challenges. From the modeling point of view, extensions to mix-
tures and polyatomic gases are necessary. Some ideas for such
moment systems exist in the literature where internal energy vari-
ables and multiple species distribution functions are added to the
kinetic description. The regularized moment approach can be ap-
plied to these settings. The current R13 equations still exhibit loss
of hyperbolicity of the flux part, which leads to problems when
calculating high speed flows �see Ref. �31��. The development of
a globally hyperbolic flux for higher order moments is a long
standing open problem. Multidimensional simulations require
suitable numerical methods. Existing approaches such as those in
Ref. �31� or �21� need to be refined. For slow flows as in micro-
channels, the hybrid numerical methods that combine classical
incompressible simulation tools with compressible features caused
by rarefaction effects are needed.

Interesting problems to simulate with R13 are thermal creep
phenomena, for instance, in Knudsen pumps. Also, microcavity
flows such as those in Refs. �39,40� are important applications.
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