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Abstract. The regularized 13 moment (R13) equations and their boundary conditions are considered for plane channel flows.
Chapman-Enskog scaling based on the Knudsen number is used to reduce the equations. The reduced equations yield second
order slip conditions, and allow to describe the characteristic dip in the temperature profile observed in force driven Poiseuille
flow.
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INTRODUCTION

A classical question in rarefied gas dynamics is whether macroscopic transport equations can serve to describe rarefied
gas flows. The derivation of the Navier-Stokes and Fourier laws by means of the first order Chapman-Enskog expansion
was one of the carly successes of kinetic theory. However, the extension to higher orders, which leads to the Burnett
and super-Burnett equations did result in unstable equations (Bobylev’s instability). Morcover, the Chapman-Enskog
scaling is not appropriate for Knudsen layers, and thus the Burnett-type equations do not properly describe these. For
amore detailed discussion, and for references on efforts to stabilize the Burnett equations, see [1].

Grad’s moment method [2] leads to stable equations at higher orders and can describe Knudsen layers, but due to
the hyperbolic character of the equations, shock structure calculations show spurious sub-shocks.

The biggest obstacle of the aforementioned approaches is the lack of suitable boundary conditions for the various
sets of equations, which therefore cannot be applied to boundary value problems.

The regularized 13 moment (R13) equations are a macroscopic set of transport equations of super-Burnett order
(i.e., of third order in the Knudsen number Kn) in the Chapman-Enskog sense that combine the benefits of Grad-type
moment equations and Burnett-type equations, while omitting their problems.

Space does not permit to go into a deeper discussion of the equations, but we state their main features [3, 1].

The R13 equations

(a) are derived in a rational manner from the Boltzmann equation,

(b) are of third order in the Knudsen number,

(¢) are linearly stable for initial and boundary value problems,

(d) contain the classical Burnett and super-Burnett equations asymptotically,

(e) predict phase speeds and damping of ultrasound waves in excellent agreement to experiments,

(f) give smooth shock structures for all Mach numbers, with good agreement to DSMC simulations for Ma<3,

(g) exhibit Knudsen boundary layers in good agreement to DSMC.

(h) are now furnished with a complete theory of boundary conditions [4], and

(j) obey an H-theorem for the linear case, including the boundary conditions [5].

With this, the R13 equations are the only extended hydrodynamic model at Burnett or super-Burnett order that
is accessible to analytical and numerical solutions of boundary value problems. So far, the solutions show excellent
agreement with DSMC simulations for Knudsen numbers below unity [4, 6]. In particular, the R13 equations exhibit
typical rarefaction phenomena like temperature and velocity slip at boundaries, heat flux not driven by temperature
gradient, anisotropic normal stresses, and Knudsen layers. Further simulations and comparison to solutions of the
Boltzmann equation are in preparation.

In the present paper, we shall consider a reduced form of the R13 equations that does not include Knudsen layers.
It will be seen that terms of super-Burnett order give rise to (a) second order jump conditions with numerical factors
close to those found in the literature [7, 8, 9], and (b) to the characteristic dip in the temperature profile that is observed
in force driven Poiseuille flow [10, 11, 12, 13].
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R13 EQUATIONS FOR CHANNELS

We consider plane channel flow between two infinite, parallel, resting plates in distance L, at steady state. The flow is
driven by the specific body force G; which acts in the direction of the walls. All quantitics in the equations below
are made dimensionless with equilibrium pressure py = pp6yp, equilibrium temperature (in energy units) 6y, and
channel distance L. This leads to the occurrence of the the Knudsen number Kn = HOT@ where [Lg is the viscosity
at equilibrium conditions. In equilibrium the dimensionless moments assume the values p =p=06 =1, u =1,
v=0jj =qi=A=Rjj = m = 0.

Under the prescribed geometry, the R13 equations for monatomic ideal gases reduce to the following set of balance
equations for dimensionless mass density p, velocity v, temperature 0, stress components G12,011, G2 and heat flux
components qi, ¢ga:
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The above equations contain the additional quantities A, R;;, m; i, that vanish in Grad’s classical 13 moment equations
[2], while in the R13 theory they obey the constitutive laws [1]
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By Chapman-Enskog expansion it can be shown that Grad’s 13 moment equations lead to the Burnett equations, while
the R13 equations lead to the super-Burnett equations [1]. Therefore, the above equations for A, R;j, m;j describe
super-Burnett effects.

A full set of boundary conditions for the R13 equations, derived from the boundary conditions for the Boltzmann
equation, is given in [4]. In the present context, where we will ignore Knudsen layers, we shall need only jump and
slip boundary conditions, that will be discussed further below.
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CHAPMAN-ENSKOG SCALING

We shall now reduce the above equations based on the Chapman-Enskog order of magnitude of the moments, in
the same manner as presented in the last RGD meeting for Grad’s moment equations [14]. We emphasize that this
procedure will eliminate all Knudsen layer contributions from the equations. Detailed studies of the full R13 equations
including the Knudsen layers are available in [1, 3, 4, 6].

The scales for the non-equilibrium quantitics ¢ = {Gi 7, A, Rij,m; jk} are obtained from a Chapman-Enskog expan-
sion of the above equations. To this end we set ¢ = ¢p -+ Knoy +Kn’dr + Kn’ps + - -, where ¢, are the expansion
coefficients. We are not interested in the details of the expansion coefficients, but only in the leading order of the mo-
ments. A quantity ¢ is said to be of n-th order in Kn if the expansion coefficients at all orders below n vanish, ¢ =0
for o < n. A n-th order quantity is then rescaled as ¢ — Kn"¢ where the rescaled value ¢ is of order unity. This will
make all scales in the equations explicit.

To simplify the procedure, we assume that G scales like the Knudsen number,

G = KnGl .

The equilibrium quantities temperature, density, and pressure are not expanded. Only shear stress and heat flux normal
to the wall turn out to be first order quantities,

c12 =Kn612» , g»o =Kng, . )]
Normal stresses, normal heat flux, and some of the higher moments are of second order,
o1 =Kn’61, 6 =Kn’6xn, ¢ =Kn’G, A=Kn’A, Ry =Kn’Ry , min =K’ 2
while the remaining non-equilibrium quantities are of third order,
Ry =K0’Ryy , myp =KnPiinyy , mypp =K'y . (3

When the rescaled variables are introduced into the R13 equations, it is straightforward to reduce these so that only
terms up to second order are retained. As an example we consider the equation for heat flux g» which in the rescaled
variables assumes the form

5 86 7 ae 8622 2~ av 18R22 18& - av 612 8612 2p~

2528 KN | L6y 49202 2y 0V 202 208 v_twefonl  _cPs 4
2Pay+ n 26228y+9 3y +5q18y+2 3y +68y imzzay ST 3M6]2 @)

Since g» is of first order in Kn, the expression Kn?[-- -] in the above equation for g, describes a third order correction
to g» and can be ignored, so that the equation reduces to Fourier’s law, §, = —%ug—g to second order accuracy. We
shall later also consider the third order terms in (4) which are responsible for the dip in the temperature profile.

To second order, our equations reduce to the conservation laws (P is a constant of integration)

8612 ~ 2~ aqz av
—==pG K =Py, === —Gpp—
3y 1, p+Kn"6n ="F, 3y G12 3 5
the laws of Navier-Stokes and Fourier for shear stress and normal heat flux,
N av 15 06
012*—M®7 qu—zua—y7 ©)

and the equations for second order quantities (2), which we can rewrite, using (6) as

6y - S0wSw 5 60wSw . 3h096n  T6nd
11 5 p , 022 5 p » 41 2 p ay 2 p
. 094 56 §»qg 61,6 - 16 u8 dg 128 -4 2006
A = _phbea 200pn 00012012 7 Ry — WO 18Ma | D s s 7 %)
p dy 5 p p 5 pdy 75 p 21 p

_ 16 u6 061y | 326105
m»n = ——Z———=_—t+t= .
15 p dy 45 p
Equations for the third order quantities (3) will not be required further, and are not shown.
We repeat that the R13 equations describe Knudsen layers [4, 5, 6], which do not obey Chapman-Enskog scaling.
The above reduction removes the Knudsen layer solutions. Thus, the above equations are valid in the bulk, or when
Knudsen layers can be ignored, in particular in strongly non-lin¢ar flow regimes.
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2ND ORDER JUMP AND SLIP

In the previous section it was shown that even to second order the R13 equations reduce to the conservation laws for
momentum and energy with the Navier-Stokes and Fourier laws. As we shall see now, super-Burnett effects come into
play through the boundary conditions. For the reduced equations (5, 6) we require boundary conditions for velocity
slip and temperature jump, which were derived in [4] from Maxwell’s boundary conditions for the Boltzmann equation
in terms of the moments as
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Here, vw and Bw are the velocity and temperature of the wall, y; and %, are accommodation coefficients for shear

stress and heat flux, and &2 = p0 + %622 — 1308 — 7% Re ; o is the wall normal, pointing into the gas.
To approximate the boundary conditions up to second order in Kn, we introduce the rescaled quantities ¢ into the
boundary conditions. For consistent scaling, velocity slip and temperature jump must be rescaled as

v—yw=Kn? , 0 —6y =KnJ .

Then, it is straightforward to remove higher order terms and obtain the second order jump and slip conditions as
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The second order boundary conditions require contributions from the higher moments 712>, A, Ry» which contribute
terms of super-Burnett order to the transport equations, but terms of Burnett order to the boundary conditions.

Now we can insert our constitutive equations for higher moments (7), and also use the energy balance (5)3
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Second order slip and jump conditions are widely available in the literature. For comparison we focus on the slip
condition (9), in which we introduce the Navier-Stokes and Fourier laws, so that

2—y1 O W av 5. ,u’8 9% 2M 5dlny >u?] 06 v
Kny/ 222, Pgpt Y K Ladll R
X1 W pay 27t P oyr 6dIn® t p*| dy dy

For slow flows, one might ignore the non-linear term, so that
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witho = % andf = %. The following table shows values for the second order slip coefficient B taken from different
authors for the case of full accommodation (); = 1),

R13 [5] Deissler [7] Hadjiconstantinou [8] Lockerby et al. [9]
2-0833  E=1767 0.606% = 0.952 %5 =023

V—yy =

We see that the value for B from the R13 equations is quite close to the value by Hadjiconstantinou. Deisslers value
seems a bit high. Lockerby et al. only used the Burnett equation for g; in (8), and thus missed the super-Burnett
contribution of my2>. For the case of full accommodation (%; = 1), all cited authors report a value o = 1, only
Hadjiconstantinou reports a corrected slip coefficient oy = 1.1466.
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FIGURE 1. Relative mass flow rate J/G; over Ohwada’s Knudsen number k = %ﬁKn, for Boltzmann equation (dashed) [15],
full R13 equations [5], the reduced R13 equations of the present paper, and Navier-Stokes with second order slip conditions from
Deissler [7], Hadjiconstantinou [8], Lockerby et al. [9]

APPROXIMATE SOLUTION

In order to study the 2nd order slip effects in a simple manner, we ignore variations of density and viscosity which are
assumed to have their equilibrium values (i.e., unity), so that the stress and velocity follow from

d ~
612 — Gy, 6= _ﬂ
9y

with the boundary condition (11) (ww = 0, resting walls at y = i%), as, with Gy = G4 /Kn,
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Figure 1 compares the reduced mass flow J/G; computed from higher order theories to the numerical solution of the
Boltzmann equation by Ohwada et al. [15]. Clearly, the solution of the full R13 equations—which includes Knudsen
layers—in [5] gives the best match, while the reduced R13 equations give numerical values for the second order slip
coefficient that lead to the best match with the full Boltzmann solution.

Linearized in 8, p, and U the first law reduces to
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where the integration constant is zero due to symmetry. Within the same approximation, and considering only terms
up to order G in the driving force, we find for the higher moments (7)

~ 600 . 3. Txy 236 ~p 0« %0 16~ 32 .54
- ~2G—— Ry~ -2 A=-2 = -
O 5G1y , q1 2G1 6G1y 22 105G1y s Gly , M2 15G1 135G

Now, we consider the equation for heat flux (4) where we include the rhird order contributions (the factor on Kn?), to
find, again, up to terms in G3,
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FIGURE 2. Temperature profile for force driven channel flow, DSMC result [13] and reduced R13 result, Eq. (12).

Integration, and use of the jump boundary conditions (10) gives, with G; = %
Gl [ [m1 T 157 GI[1 /1 ,\ 488_,/1
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Here, the first term describes the temperature jump at the wall, while the second contribution describes the temperature

profile. The competition between the positive hydrodynamic term, 4—15 (% —y4), and the negative R13 correction,

— %an (% — yz), leads to the characteristic dip of the temperature profile that was reported in [12]. Figure 2 compares

the temperature curve of Eq. (12) to DSMC data from Ref. [13] for Kn = 0.072, G; = 0.2355. The main difference
between the two curves are the more pronounced shoulders at the walls in the DSMC simulation, which are due to
Knudsen layers that were ignored in the present simplified analysis. Our analytic computation of the temperature
profile stands in agreement with the results of Ref. [10, 11, 13], who showed that the characteristic dip is a super-
Burnett effect. An analytical solution that includes the Knudsen layers is presented in [6].
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