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Abstract. A set of local Knudsen numbers are defined, which are demonstrated to be more appropriate than conventional
ones for the purposes of identitying gas flow non-equilibrium. The problematic area of choosing an appropriate switching
criteria is addressed by adopting a local Knudsen number definition based on higher-order constitutive relations; the R13
equations are chosen. A procedure is then described that allows the estimation of the R13 local Knudsen number within a
Navier-Stokes solver, and the efficacy of this as a switching criterion is tested within an illustrative hybrid BGK/Navier-
Stokes procedure. For the test case investigated, the results from the hybrid procedure compare very well with the full
BGK solution, and are obtained at a fraction (depending on the global Kn) of the computational cost.
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INTRODUCTION

The Knudsen number is a dimensionless parameter that represents the degree of rarefaction in a gas flow, more
specifically, the extent to which the gas flow departs from local thermodynamic equilibrium. It is commonly
accepted that the Knudsen number can be used to characterise different rarefied regimes and therefore indicate
which modelling methods are appropriate to use, e.g. continuum-fluid, molecular dynamics, etc. The Knudsen
number, in global form, depends on a somewhat arbitrary choice of the macroscopic length scale. In a 2D channel
flow, for example, it is not clear whether this length should be half the channel, or the full channel height — the
choice would affect the Knudsen number by a factor of two. Because of this ambiguity a local Knudsen number is
often adopted which replaces the macroscopic length scale with a formulation based on the spatial gradients of
hydrodynamic variables, e.g.:

Kn, :i’% : (n)
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where A is the molecular mean free path, and ¢ is some significant flow quantity, typically density, temperature
or pressure. Since this number is intended to represent the degree of departure from equilibrium at a particular point
in a flow field, it has been used as a switching criterion (sometimes known as a breakdown parameter [1]) for use in
hybrid continuum-molecular solvers; i.e., an indicator as to where within the same domain continuum models, rather
than costly molecular methods, can be accurately applied. However, since there are a variety of ways in which to
define the local Knudsen number, and each can give significantly different values, the choice of what to use as a
switching criterion has proven a problem in itself [2]. This is especially apparent when considering micro flows. For
example, a low-speed micro gas flow will have a uniformly negligible local Knudsen number, based on definition
given in equation 1), since the gradients of the flow variables are negligibly small. However, evidently, non-
equilibrium effects are far from negligible in these cases. At the opposite extreme, for hypersonic flows, it has also
been suggested [3] that eq (1) should be multiplied by local Mach number for a more appropriate breakdown
parameter — a definition such as this is clearly not compatible with low-speed gas flows, either. These issues prompt
the question: is there a local Knudsen number definition, and hence switching criterion, that is appropriate for both
hypersonic and micro gas flows?
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LOCAL KNUDSEN NUMBER

A local Knudsen number should reflect the degree of departure from equilibrium at a given point in the flow
field. More precisely, if it is to be used to establish when the Navier-Stokes equations can or cannot be employed, it
should indicate the degree of departure from near local equilibrium (the thermodynamic state that must exist for the
Navier-Stokes equations to be valid). Furthermore, it is not departure from near equilibrium in an absolute sense that
we are interested — magnitude does not affect the rarefied characteristics of low-speed flows — it is departure
relative to near equilibrium, i.e. relative to the Navier-Stokes non-equilibrium. With these considerations in mind, an
expression for a local Knudsen number that expresses the fractional departure from Navier-Stokes non-equilibirum
at a point in a gas flow is given:
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where ¢ are the set of molecular velocities, f the distribution function, f, the equilibrium distribution, fis the
distribution corresponding to the Navier-Stokes assumption, and the moment variable ¢ is chosen to generate
expressions for Kn;, in terms of different hydrodynamic variables. Disregarding trivial moments, hydrodynamic local
Knudsen number definitions can be generated from equation (2) as follows:
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where oy is the stress tensor, g; is the heat-flux vector, and the subscript NS denotes values obtained using
Navier-Stokes constitutive relations. Note, nine unique Knudsen numbers are defined for use in a three-dimensional
non-isothermal flow field. An overall Knusden number could be taken as the maximum of these values, 1.e.:

Kn, = max(Kn% .Kn, ) )

SWITCHING CRITERIA

The local Knudsen number, in the form (5), will not always be an appropriate guide for switching between
molecular and continuum modeling approaches. A truly useful switching criterion, for a particular point in flow,
must also take into account the range of non-equilibrium in the simulation being considered (i.e., the range in stress
or heat flux). For example, in the same simulation there might be regions of high local Knudsen number at relatively
low stress, and other regions with much greater stress, but negligible local Knudsen number. In this case, you would
not want a simulation to switch to a molecular model to calculate stress in the regions of high local Knudsen number
because values for the stress, although highly non-equilibrial, would be negligible in magnitude compared to other
regions of the flowfield. For this reason, for a switching criterion, we propose the following modification to the local
Knudsen numbers given in (3) and (4):
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where the subscript max denotes a global(/spatial) maximum.

To test the performance of these local Knudsen number definitions as switching criteria, switching directions in
both directions must be considered: molecular to continuum and continuum to molecular. In some respects
determining appropriate switching from a molecular to a continuum solution is academic, since the more accurate
solution (the molecular one) has already been obtained. However, this may not be so clear cut in time-dependent
simulations.

Molecular-to-Continuum Switching

To test the ability of the local Knudsen number to inform molecular-continuum switching, we consider low-
speed Poiseuille flow with a global Kn=0.1 (=4/H); where H is the channel width and the mean free path is defined
as:

A= L ®)
2pp

where u is the viscosity, p is the density, and p is the pressure. In figure 1, A Navier-Stokes solution (with
second-order slip boundary conditions [4]) is plotted alongside a solution to the BGK Boltzmann equation obtained
using a Discrete Velocity Method (similar to that used by Valougeorgis [5,0]); in both simulations, 500 grid points
are used. The new local Knudsen number, from equation (6), is also plotted (calculated from the BGK data); for this
case given as follows:

L
™
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where 7 1is the shear stress, and x is in a direction perpendicular to the flow velocity u#. The local Knudsen
number is identifying non-equilibrium in the Knudsen layers clearly and distinctly from the near-equilibrium bulk
flow, where switching to a continuum solution could occur without significant error. Conventional local Knudsen
number definitions, based on equation (1), could not provide this information since their values are negligibly small
throughout the channel.

UBGK

U, Kn,

x/H

FIGURE 1. Normalised velocity profiles for Poiseuille flow (global K»n=0.1); BGK solution (—);
Navier-Stokes with slip (— —). Local Knudsen number (— - —), equation (6), calculated from BGK data.
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Continuum-to-Molecular Switching

In contrast to molecular-to-continuum switching, equations (6)-(7) are little use as criteria to decide switching
from a Navier-Stokes solution to a molecular-based simulation, since 0;=0s; and g=gus; For example, for
Poiseuille flow, the Navier-Stokes constitutive relations are simply 7= —u du/dx, which substituted into equation (9)
reduces to Kn;=0. If, though, high-order constitutive relations can be used to estimate the non-equilibrium values of
oy and ¢,, a means for continuum-to-molecular switching exists.

There are many competing high-order equation sets in the literature (space precludes a detailed discussion here,
instead, see [7,8]). Of the most famous, perhaps, are the Burnett equations, variants of which have shown to
accurately reproduce the viscous structure of one-dimensional shock waves. For normal shock waves, the dominant
nonlinear term featuring in these high-order constitutive relations for normal stress, is as follows:

2 2
S aaN (10)
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where v is the velocity in the direction of shock structure variation, x, and 4 is a constant for the particular gas. If
this term is used to predict the non-equilibrium stress oy, the following local Knudsen number can be obtained from

(0):
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At the point of maximum normal stress, for steady one-dimensional shock waves, eq (11) can be reposed as follows
(using continuity):
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where M is the local Mach number. The form given in (12) is exactly the same as the local ‘breakdown parameter’
identified by Bird for high-speed expanding flows [9], and closely related to Tsein’s parameter [10], also identified
by Macrossan [3] as a better indicator for high-speed flows than the local Knudsen number (1) alone.

The approach, then, is partially validated, for high-speed flows at least. What is left to decide is which of the
competing higher-order constitutive relations to adopt; if a consistent Knudsen number is to be found, this should be
based on their performance in both low-speed and high-speed problems. In low-speed isothermal flows their main
shortcomings have been related to predicting Knudsen-layer phenomena [7] due in part to the lack of additional
boundary conditions required for their solution. For switching, though, no estimation of near-wall phenomena is
required, since it is already clear that within one or two mean free paths of the wall a molecular treatment (or
perhaps accommodation with slip conditions) is needed. On the other hand, non-equilibrium resulting away from the
walls can be predicted with less complication using high-order equations. Lockerby and Reese [8] recently tested a
number of different high-order continuum-type equations against a simple low-speed benchmark case with no
bounding surfaces. It was concluded that the R13 equations, proposed by Torrilhon and Struchtrup [11] as a
development of Grad’s original 13 moment technique, provided the best model among the several tested.
Importantly, the R13 equations also demonstrate good predictive capabilities in high-speed flows [12]. Based on
their apparent versatility, we propose the following local Knudsen number definitions for use away from solid
bounding surfaces:
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If the R13 equations are being solved fully, then these Knudsen numbers are straightforward to calculate.
However, they can also be estimated (more cheaply) within a Navier-Stokes solver:
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where O'g;35 15 calculated using R13 constitutive relations, but with values for hydrodynamic variables obtained
using a Navier-Stokes solution. The error this introduces is acceptable for switching purposes because it is only the
accurate calculation of low local Kn that is important.

TEST CASE

To test the ability to inform continuum-to-molecular switching of the local Knudsen number given in equation
(13), we here investigate the steady-state channel flow response to the following body force (non-dimensionalised
with respect to R7/H, where R is the gas constant and 7 the gas temperature):

F, :alléafcexp(—azfcz), (16)

where y is in the flow direction (and perpendicular to x), a; =10°, @, =10%, X =x/H, and Kn is the global Knudsen
number (based on channel width, /7). The variation of normalized body force through the channel is shown in Figure
2a) for global Kn=0.05. The forcing function has been chosen because it generates a shear flow, shown in Figure
2b), exhibiting both near-equilibrium and strong non-equilibrium behavior in the bulk flow (away from the walls),
and is reminiscent in some respects of the velocity variation through a stationary monopole vortex (velocity non-
dimensionalisation is with respect toy2RT .)

R13 Local Knudsen Number

The linearised R13 constitutive expression for shear stress, for this steady low-speed one-dimensional example,
is as follows:

2 3 4
T:_#ﬂ+10412d§+§ 2ﬂdl;l_l92214dz'_ (17)
dc 15z dv* 57 de” 257 dx
The implicit expression for stress requires iterative solution, with an accordant computational penalty. As an
economical alternative, the shear stress can be approximated from within a Navier-Stokes solution by calculating
higher-derivatives of stress using Navier-Stokes constitutive relations, i.e. 7= —gu du/dx:
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FIGURE 2. a) Normalised body forcing through channel (global K»=0.05); and b), resulting non-dimensional velocity response;
BGK solution (—); Navier-Stokes with slip (——).

This approximate non-equilibrium stress, 7 ’g;3, 1s used to find the local Knudsen number defined in Equation (15),
as follows:

10 ,du 192 _, d’u
R T o ey
3 dx 25r dx (19)
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To test the performance of equation (19) as a switching parameter, we have constructed a simple hybrid solution
procedure. Firstly, the Navier-Stokes equations are solved (shown by the dotted line in figures 3a,b) for global
Kn=0.025, 0.1, respectively.) The local Knudsen number is then calculated as given above, and based on a local
Knudsen number threshold of 0.01, some central portion of the domain is handled by the BGK solver (at the same
spatial resolution) with the Navier-Stokes velocity gradient, duw/dxys given at the switching points. In the BGK
solver, the velocity gradient (and near-equilibrium) is enforced at the switching-point boundaries using:

uodu

il forv,>0 , 20)
" PRT dx|,

JO)=f(=v,)=-2vy

where f{v,) and f{-v,) are the distributions of molecules entering and exiting the domain, respectively, and v, and v,
are components of molecular velocity. The velocity profile, u, calculated by the BGK solver is then uniformly scaled
(by a few percent) so that the velocities at the switching-point boundaries match the velocities of the Navier-Stokes
solution at the same points. The solutions are then combined.

Figure 3a,b) show solutions from this illustrative hybrid method compared to pure Navier-Stokes and BGK
solutions, for global Kn=0.025 and 0.1. The simulation at Kn=0.025 is of comparable accuracy to the complete BGK
solution, but has been obtained with a BGK domain size that is five times smaller. The relative portions of the
deconstructed domain are 20/80% (BGK/Navier-Stokes) for Kn=0.025; 34/66% for Kn=0.05; and 57/43% for
Kn=0.1.

Note, had the R13 equations been solved fully, a lesser BGK domain would have been required (a higher local
Kn threshold would be permissible), offsetting, partially at least, the additional computational expense of their
solution.
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FIGURE 3. Non-dimensional velocity response to body forcing within channel, global Kn 2)=0.025 and b)=0.1; Hybrid
BGK/Navier-Stokes solution (—); BGK solution (— —); and Navier-Stokes with slip () The BGK portion of the hybrid
solution occurs between x=0.4 and 0.6 for global Kn=0.025; and x=0.214 and 0.786, for global Kn=0.1.

SUMMARY

A set of local Knudsen numbers have been defined and have been demonstrated to be more appropriate than
conventional ones for the purposes of identifying micro gas flow non-equilibrium. The problematic area of choosing
an appropriate switching criteria has been addressed by adopting a local Knudsen number definition based on
higher-order constitutive relations; here the R13 equations are chosen. A procedure has been described that allows
the estimation of the R13 local Knudsen number within a Navier-Stokes solver, and the efficacy of this as a
switching criterion has been tested within an illustrative hybrid BGK/Navier-Stokes procedure. For the test case
investigated, the results from the hybrid procedure compare very well with the full BGK solution, and are obtained
at a fraction (depending on the global Kn) of the computational cost.
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