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Abstract

A linear kinetic equation for heat transfer is solved by means of the
method of moments. The moment equations are solved with Maxwell-
type boundary conditions for steady state energy transport. The results
exhibit marked Knudsen boundary layers. The accuracy of the descrip-
tion is examined, and it is shown that already a relatively small number of
moments can give satisfactory resolution of Knudsen layers for Knudsen
numbers ε ≤ 1. The implications for moment equations for more compli-
cated kinetic equations (such as the Boltzmann equation) are discussed.

1 Introduction

The ongoing miniaturization of technical devices requires accurate theories for
simulations of flows on the microscale [1]. Microscale gas flows are described by
kinetic theory, where linear effects are dominant [2]. This paper focusses on a
particularly important feature of such flows, the modelling of Knudsen layers.

Kinetic theory describes transport processes in gases resulting from the inter-
play of free flight and interaction of the gas particles among themselves and/or
with other objects. Mathematically the gas is described by a particle distrib-
ution function which follows as the solution of a kinetic equation. Well-known
kinetic equations are the Boltzmann equation for classical gases [3][4], its vari-
ants for electrons [5] and phonons [6], and the radiative transfer equation [7].

The solution of any kinetic equation is usually cumbersome, and numerically
expensive, and thus one branch of kinetic theory derives reduced systems, so-
called macroscopic models, from the kinetic equations by various means. The
classical method to this end is the Chapman-Enskog method which expands the
distribution function into a series in a smallness parameter, typically the ratio
between the mean free path an the desired resolution, the Knudsen number
[3][8]. In many cases the Chapman-Enskog expansions to higher order lead to
unstable equations [9][10] or unphysical results [11].
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An alternative that avoids instabilities is provided by Grad’s method of mo-
ments [12][13] in which the kinetic equation is replaced by a finite set of equa-
tions for the moments of the distribution function. The equations are obtained
by taking weighted averages of the kinetic equation over the microscopic vari-
able. The phase density is expressed through the moments by means of a series
expansion into orthogonal functions, and a truncation of the series yields the
required closure conditions. The moment method and its variants were applied
to ideal gases [12]—[23], electrons in semiconductors [24][25], radiative transfer
[7][26], and phonon transport in crystals [6].

Despite the long history, and success, of the moment method, there are
still unresolved issues and open questions. The most important problems are
to design boundary conditions for the moment equations, and to find useful
criteria for the number of moment equations that should be taken into account
for particular problems.

The question of boundary conditions was tackled recently in [22] and [23],
where it was shown that the boundary conditions for the kinetic equation can
be used to derive meaningful boundary conditions for moment equations. In the
case of non-linear equations additional boundary conditions are obtained from
the bulk equations [23].

Combination of the Chapman-Enskog and Grad methods [18][19][20] leads
to the regularized 13 moment equations which are of third order in the Knudsen
number (super-Burnett order) in the Chapman-Enskog sense. The Chapman-
Enskog method, and the methods employed in [18][19][20], are based solely on
the transport equations in the bulk, and do not consider boundary effects or
boundary conditions. Thus, the Chapman-Enskog order of accuracy is only
valid in the bulk, but not necessarily adjacent to walls or interfaces, where
Knudsen boundary layers appear [4][27].

Knudsen layers are essentially linear contributions, and thus can be com-
puted from the linearized equations. In strongly non-linear flows, non-linear
bulk effects [21][8] are more important than Knudsen layers, even close to the
walls. While the magnitude of the non-linear bulk contributions is related to
the Knudsen number through the Chapman-Enskog method, the discussion of
the Knudsen layers must include the boundary conditions, which, after all, de-
termine their amplitudes.

The main aim of this paper is to better understand the behavior of Knudsen
layers within the realm of moment equations. It was shown earlier that in Grad-
type moment equations the moments contain superpositions of a multitude of
Knudsen layers of different widths [17]; the amplitudes of the Knudsen layers,
however, were not discussed. Thus, the aim of the present paper is to discuss
the amplitudes, and relevance, of the Knudsen layers.

To simplify the discussion, we consider a linear kinetic model for one-dimen-
sional energy transfer, which allows analytical computations for arbitrary num-
ber of moments. The number of Knudsen layers grows with the number of
moments considered. The results indicate that a relatively low number of mo-
ments suffices to give results of reasonable accuracy as long as Knudsen layers
with a variety of widths are present.

The remainder of the paper is organized as follows: Section 2 introduces
the simple kinetic model for heat transfer which is similar to the linearized
phonon-Boltzmann equation, and the corresponding Maxwell-type boundary
conditions. The moments, their equations and boundary conditions are derived
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from the kinetic model in Section 3. Section 4 discusses asymptotic methods and
approximations for the bulk. The steady state heat transfer problem is solved in
Section 5 and it is shown that all moments are superpositions of Knudsen layers
of various widths. Asymptotics for the Knudsen layers based on smallness of
the Knudsen number shows that Knudsen layers can be ignored in a first order
theory, but not when higher order in the Knudsen number is desired. Jump
boundary conditions for energy arise from the asymptotics quite naturally, and
the Knudsen layer correction of the jump condition is discussed. Results for a
variety of Knudsen numbers and moment numbers are compared in Section 6.
The paper closes with some conjectures on the behavior of moment equations
for more complicated, and more realistic, moment equations.

2 The kinetic model and its properties

2.1 Kinetic model

We consider a simple transport equation for one-dimensional heat transfer in
dimensionless form. The energy transfer is effected by particles that travel
with unit velocity in three dimensional space, and carry energy. Thus, on the
microscopic level the particles are described through their location in space-
time (x, t), and their direction which is expressed through the direction cosine
cosϑ = µ ∈ [−1, 1], where ϑ is the angle between the particle direction and the
x-axis. The particle distribution function f (x, t, µ) is defined such that fdxdµ
gives the energy of particles in the interval (x, x+ dx) with direction cosines in
(µ, µ+ dµ) at time t. Thus, the energy density is

λ0 (x, t) =

∫ 1

−1

f (x, t, µ) dµ . (1)

It is assumed that the particles undergo collisions (among each other, or with
a background medium) which only conserve energy; the dimensionless mean free
path, i.e. the Knudsen number, is denoted by ε.

The kinetic equation for this simple transport model reads

∂f

∂t
+ µ

∂f

∂x
= −

1

ε
(f − fE) (2)

where fE = fE (x, t) is the isotropic equilibrium distribution function. The right
hand side of the above equation is a BGK-type collision term that describes
isotropic scattering [7].

Integration of (2) over all directions gives the balance of energy as

∂λ0
∂t

+
∂λ1
∂x

= 0 , (3)

where the energy flux is defined as

λ1 =

∫ 1

−1

µf (x, t, µ) dµ .

Conservation of energy requires that the integral of the collision term vanishes,
so that ∫ 1

−1

f (x, t, µ) dµ =

∫ 1

−1

fE (x, t) dµ .
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From this relation we can identify the equilibrium distribution as

fE (x, t) =
1

2
λ0 (x, t) . (4)

2.2 Boundary conditions

The kinetic equation must be furnished with boundary conditions in order to
formulate meaningful problems. We adopt a variant of Maxwell’s accommoda-
tion model [28], which states that a fraction χ of the particles impinging on a
wall are thermalized, and leave in an equilibrium function defined by the prop-
erties of the wall, while the remaining fraction (1− χ) of particles is specularly
reflected. The 1-dimensional normal γ is defined such γ = 1 at the left wall
(x = −1/2) and γ = −1 at the right wall (x = 1/2), and the distribution
function at the walls reads

f̄ =






χfW + (1− χ) f (−γµ) , γµ > 0

f (γµ) , γµ < 0
. (5)

Here, fW = 1
2λW denotes the equilibrium distribution at wall conditions.

2.3 Similarity to Phonon model

In the above we abstained from assigning a concrete physical picture to the
model. Altogether one might think of a, simplified, model for heat transfer in a
pure crystal, described through phonon transport [6]. In our simplified model
phonon frequency is ignored, which can be done under the assumption that
the collision frequency is independent of phonon frequency, since this allows
integration over frequency. Typically phonons undergo interactions with them-
selves and impurities in the lattice, and the simplified model only considers what
is known as R-processes, where energy is conserved, and ignores the so-called
N-processes, which describe phonon-phonon interactions where energy and mo-
mentum are conserved. The “walls” of the boundary conditions are interfaces
between a pure material (with relatively large ε), and a less pure material (with
small ε). Moreover, we refrain from defining temperature, and will use solely
energy densities λ0 and λW , which are, however, measures for temperature. In
particular thermal equilibrium implies λ0 = λW , which corresponds to the ze-
roth law of thermodynamics. Similar transport equations appear in radiative
transfer [7] and neutron transport [29].

3 Moments, their equations and boundary con-

ditions

3.1 Moment equations

The moment method provides a means to solve the kinetic equation approx-
imately. The quality of the approximate solution is the main concern of this
paper. For the simple problem at hand, moments based on Legendre polyno-
mials are the obvious choice [7][29]. Legendre polynomials form an orthogonal
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set by means of the relation
∫ 1
−1
PnPmdµ =

2
2n+1δnm, moreover they obey the

recurrence relation µPn (µ) = n
2n+1Pn−1 (µ) +

n+1
2n+1Pn+1 (µ). We define the

Pn-moments of f as

λn =

∫ 1

−1

Pn (µ) fdµ .

For the desired degree of approximation, we consider a finite number of mo-
ments, λn (n = 0, 1, . . . , N). The first two moments are energy density and
energy flux.

Due to the orthogonality of the Legendre polynomials, the distribution func-
tion can be expressed through its moments as

f (N) =
N∑

n=0

(
n+

1

2

)
Pn (µ)λn . (6)

Plugging this into the kinetic equation (2) and use of the recurrence relation
yields

N−1∑

n=0

(
n+

1

2

)
Pn (µ)

[
∂λn
∂t

+
n

2n+ 1

∂λn−1
∂x

+
n+ 1

2n+ 1

∂λn+1
∂x

+
1

ε
(λn − λ0δn0)

]

+
2N + 1

2
PN (µ)

[
∂λN
∂t

+
N

2N + 1

∂λN−1
∂x

+
1

ε
(λN − λ0δN0)

]

+ PN+1 (µ)
N + 1

2

∂λN
∂x

= 0 . (7)

Taking the Pn-moments of this expression for n = 0, 1, . . . , N yields a closed set
of moment equations for the λn (n = 0, 1, . . . , N),

∂λ0
∂t

+
∂λ1
∂x

= 0 ,

∂λn
∂t

+
n

2n+ 1

∂λn−1
∂x

+
n+ 1

2n+ 1

∂λn+1
∂x

= −
1

ε
λn , (8)

∂λN
∂t

+
N

2N + 1

∂λN−1
∂x

= −
1

ε
λN .

The first equation (8)1 is just the energy equation (3). For N →∞ the (in-
finite) set of moment equations is equivalent to the kinetic equation for the full
distribution function f = f (∞). For finite N , however, the truncated distribu-
tion function f (N) (6) and the finite moment system (8) are not fully equivalent
to the kinetic equation since the last term in (7), PN+1 (µ) N+12

∂λN
∂x

, does not
vanish. This term is the sole remainder of the moment equation for λN+1 and
occurs as a result of truncation, which implies ignoring all higher moments λN+α
(α ≥ 1). Thus, truncation at finite N yields an error, and N must be chosen
large enough in order to make the error small.

3.2 Boundary conditions

The boundary conditions for the λn follow by evaluating the moments with the
phase density at the boundary (5), which gives (overbars indicate values at the
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boundaries)

λ̄n = χ

∫ 1

γµ=0

Pn (µ) [fW − f (−γµ)] dµ+ [1 + (−1)n]

∫ 1

γµ=0

Pn (µ) f (−γµ) dµ .

(9)
where we used that Legendre polynomials Pn (µ) with even (odd) coefficients
are even (odd) functions of µ.

Equation (9) provides one boundary condition for every moment at each wall,
which gives more boundary conditions than mathematically required. Grad
showed that only boundary conditions for odd moments should be considered
[12]. His argument is based on a special case with a specularly reflecting wall,
where χ = 0, and where the distribution function is even, f (µ) = f (−µ). For
(9) applied to even moments this implies mere identities, λ̄n = λ̄n, which are
meaningless as boundary conditions, and thus, in order to have continuity in χ,
(9) must be considered only for odd moments.

For the computation of the boundary conditions for odd moments we split the
distribution function into an even and an odd part, so that f (µ) = fe (µ)+fo (µ)
and f (−γµ) = fe (µ) − γfo (µ). Since odd moments are determined solely by
fo, evaluation of (9) gives

λ̄n = γ
2χ

2− χ

∫ 1

µ=0

Pn (µ) [fW − fe (µ)] dµ (n odd) .

Since only even Legendre polynomials contribute to fe (µ), we obtain the bound-
ary conditions from (6) as

λ̄n = −γ
2χ

2− χ

(

Ψn0
[
λ̄0 − λW

]
+

N∑

m=2, m even

Ψnmλ̄m

)

(n odd) , (10)

where the coefficients are half-space integrals of Legendre polynomials,

Ψnm =

(
m+

1

2

)∫ 1

0

Pn (µ)Pm (µ) dµ . (11)

Numerical evaluation shows that, while all entries Ψnm are different from zero,
the largest entries are close to the diagonal, so that the boundary condition for
the odd moment λ̄n is mainly given through the values of the neighbouring even
moments λ̄n−1 and λ̄n+1.

4 Asymptotics and Approximations

4.1 Chapman-Enskog expansion

In the next two sub-sections we examine the reduction of the moment system (8)
by asymptotic methods based on the Knudsen number ε as smallness parameter.

First we consider the Chapman-Enskog (CE) expansion [3][4] of the moment
equations [8], which we apply to those moments that are not conserved (i.e. all
but the energy λ0). For the CE expansion, the moments are written as a power
series in ε

λn =
∑

α=0

εαλ(α)n (n ≥ 1) . (12)
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The expansion is inserted into the moment equations, and contributions at the
various powers of ε are equated.

Since the production terms on the right hand side are the only contributions
with power ε−1, the zeroth order contributions must vanish,

λ(0)n = 0 (n ≥ 1) . (13)

Evaluation of the equation for the energy flux λ1 to leading order gives
Fourier’s law,

λ
(1)
1 = −

1

3

∂λ0
∂x

. (14)

The last two equations (13, 14) imply that the energy flux is of first order

in ε, since its first order contribution λ(1)1 does not vanish. Thus, in the energy
equation (8)1 the second term is of order ε, and, since the equation has only
two terms, the first term must be of order ε as well. Since the energy density
λ0, which is an equilibrium quantity, remains unscaled, we have to conclude
that the time derivative ∂/∂t must be rescaled to ε∂/∂t̃, that is, within the CE
expansion, we have to apply diffusion scaling.

With the diffusion scaling we obtain with the ansatz (12) the expansion
coefficents at zeroth order (13). The first order coefficents are

λ
(1)
1 = −

1

3

∂λ0
∂x

, λ(1)n = 0 (n ≥ 2) .

Thus, only the first moment, λ1, has a first order contribution, while all other
moments are at least of second order.

For the second order we find

λ
(2)
1 = 0 , λ

(2)
2 =

2

15

∂2λ0
∂x2

, λ(2)n = 0 (n ≥ 3) ,

and for higher orders

λ
(α+1)
1 = −

∂λ
(α−1)
1

∂t̃
−
2

3

∂λ
(α)
2

∂x
,

λ(α+1)n = −
∂λ

(α−1)
n

∂t̃
−

n

2n+ 1

∂λ
(α)
n−1

∂x
−
n+ 1

2n+ 1

∂λ
(α)
n+1

∂x
(n ≥ 2) .

It is rather straightforward to conclude that

λ(α−1)n = 0 for α ≤ n . (15)

In other words, for the moment λn the first non-vanishing coefficient is λ
(n)
n and

we can say that the n-th moment is of order O (εn). Space restrictions forbid to
further discuss higher order results from the Chapman-Enskog method, which
can be unstable, or lead to unphysical behavior [9][10][8].

4.2 Order of Magnitude Method

An alternative expansion is offered by the order of magnitude method, which
uses the results from the Chapman-Enskog expansion as a measure for the ex-
pected magnitude of the moments, but is not interested in the actual expansion
(12). The method proceeds in three steps as outlined below [20][8].
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The first step is the determination of the order of magnitude of the moments
by means of the CE expansion as in the previous section. We can make the
result (15) more explicit by writing

λn = ε
nλ̃n (16)

where the rescaled moments λ̃n are of order unity, while the magnitude is given
by the powers of ε.

The second step consists of combining the variables such that at any order
in ε there is a minimum number of variables [20][8]. Since, by (15), we have
only the moment λn with order of magnitude O (εn), no further reduction is
possible, and this step is not required anymore.

The third step consists in reducing the infinite set of moment equations by
considering the order of magnitude one wishes to achieve in the conservation
law for energy. We perform the first few steps, for the case of diffusion scaling:
The first three moment equations in the rescaled variables read

ε
∂λ0

∂t̃
+ ε

∂λ̃1
∂x

= 0 ,

ε2
∂λ̃1

∂t̃
+
1

3

∂λ0
∂x

+ ε2
2

3

∂λ̃2
∂x

= −λ̃1 ,

ε3
∂λ̃2

∂t̃
+ ε

2

5

∂λ̃1
∂x

+ ε3
3

5

∂λ̃3
∂x

= −ελ̃2 .

The equations to first order in ε are obtained by considering the energy
balance and only the leading term of the balance of the energy flux, λ̃1, which
is, again, Fourier’s law 1

3
∂λ0
∂x

= −λ̃1.
The second order equations result by adding the contribution of order ε1 in

the balance for λ̃1, which is absent. Thus, the second order agrees with the first
order.

The third order equations are obtained by adding the next higher contribu-
tion in ε which is the full equation for λ̃1. In this equation λ̃2 appears, and is
required to its leading order from the equation for λ̃2 which gives (after division
by ε)

2

5

∂λ̃1
∂x

= −λ̃2 .

Since the next contribution to λ̃2 is two orders higher than the leading order,
the fourth order agrees with the third order equations. For the fifth order, the
full balance for λ̃2 must be considered together with the leading contribution of
the equation for λ̃3. This is also the sixth order. And so on.

Thus, the following picture emerges: When diffusion scaling is employed in
the order of magnitude method for the moment equations (8), the equations
of order O

(
ε2N

)
(which agree with those of order O

(
ε2N−1

)
) are given by the

truncated set

∂λ0
∂t

+
∂λ1
∂x

= 0 ,

∂λn
∂t

+
n

2n+ 1

∂λn−1
∂x

+
n+ 1

2n+ 1

∂λn+1
∂x

= −
1

ε
λn (n = 1, . . . ,N − 1) , (17)

N

2N + 1

∂λN−1
∂x

= −
1

ε
λN .
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The only difference to the set (8) is the absence of the time derivative ∂λN
∂t

in the last equation, which is a consequence of the diffusion scaling. Without
diffusion scaling we find by the same set of arguments that the equations (17)
are of order O

(
ε2N−1

)
, while the set (8) turns out to be of order O

(
ε2N

)
.

5 Knudsen layers in steady state energy transfer

5.1 Knudsen layer solutions

Due to the strong anisotropy of the distribution function at the boundary which
is inflicted by the boundary condition (5) there appear transition layers near an
interface, the so called Knudsen layers. In this section we shall compute and
discuss the Knudsen layers for the moment system (8) in steady state processes,
where the equations read

dλ1
dx

= 0 ,

1

3

dλ0
dx

+
2

3

dλ2
dx

= −
1

ε
λ1 ,

n

2n+ 1

dλn−1
dx

+
n+ 1

2n+ 1

dλn+1
dx

= −
1

ε
λn , (18)

N

2N + 1

dλN−1
dx

= −
1

ε
λN .

The corresponding boundary conditions are given by (10) at the left and right
walls where

left: x = −1/2, γ = 1, λWL = −1 , right: x = 1/2, γ = −1, λWR = 1. (19)

Since the moment equations are linear, the values of λWL,R affect the amplitudes
of all moments linearly, and thus it suffices to study the results for only one
value. Non-symmetric values of λWL,R would shift the energy curve up or down.

From the first two equations (18) we obtain

λ0 = K −
3

ε
λ1x− 2λ2 , λ1 = const. (20)

where K and λ1 (the energy flux) are constants of integration. The energy λ0
has a linear contribution, K − 3

ε
λ1x, as is known from Fourier’s law, plus an

additional contribution, −2λ2, which describes the influence of higher moments.
The equations for the variables {λ2, λ3, . . . , λN} can be written in matrix

form as

Bαβ
∂λβ
∂x

= −
1

ε
λα with Bαβ =

α+ 1

2α+ 3
δα,β−1 +

α+ 2

2α+ 3
δα,β+1 , α, β = 2, . . . , N

(21)
This system can be easily solved by diagonalization of the matrix Bαβ. We
denote the eigenvalues by b(α), the matrix of eigenvectors by Φαβ and the diag-
onalized variables as Γα so that

λα =
N∑

β=2

ΦαβΓβ . (22)
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Then, the system (21) assumes the form

b(α)
dΓα
dx

= −
1

ε
Γα

with the solution
Γα = Γ

0
α exp

[
−

x

εb(α)

]
. (23)

These are Knudsen layer solutions with amplitudes Γ0α, and εb
(α) is (a measure

for) the width of the layers. From (22) we note that the moments {λ2, λ3, . . . , λN}
are superpositions of Knudsen layers of different widths. For all N the eigen-
values assume values in [−1, 1].

The solution of the boundary value problem follows from combining (20,
22, 23) with the boundary conditions (10, 19) and solving for the constants of
integration K, λ1, Γ0α (α = 1, . . . , N − 1). This linear problem was solved by
means of Mathematica R©.

The classical description of heat transfer is the case N = 1, which has only
energy as variable and the energy flux is given by Fourier’s law (14). For N = 2
the equations are the same as for N = 1. Systems with even value of N always
have one zero eigenvalue, and N − 2 non-zero eigenvalues, while systems with
odd values have N − 1 non-zero eigenvalues. All non-zero eigenvalues appear
as pairs ±b. The results show only little difference between a system with odd
N , and the next higher system N + 1, which has the same number of non-zero
eigenvalues; therefore we shall present only curves for odd N .

A smaller accommodation factor only increases the energy jump, and lowers
the amplitudes of the boundary layers, but does not affect the overall behavior
of the solutions. Thus in all computations the accommodation factor is χ = 1.

5.2 Scaling

Equation (23) indicates that the proper space variable for resolving Knudsen
layers is the stretched variable X = x/ε. When the stretched variable X is used
in the moment system, the parameter ε vanishes from the equations. It follows
that the asymptotic methods of Sec. 4 cannot be used to reduce the number of
equations as soon as Knudsen layer effects become important [4].

Indeed, the expansions in Sec. 4 are relevant only for regions outside the
Knudsen layers, i.e., in the bulk, since they are based solely on the transport
equations. The influence of the Knudsen layers on the results, however, is due
to the amplitudes Γ0α, which are determined by the boundary conditions (10) in
interplay with the moment equations.

The moments split into two groups: energy and energy flux (20), which
have bulk and possibly Knudsen layer contributions, and the higher moments
{λ2, λ3, . . . , λN}, which consist only of Knudsen layer contributions (23).

We study the asymptotic behavior for steady state heat transfer for small ε.
All moments are excited by non-zero values of

(
λWR − λWL

)
, and we ask for their

magnitude at the boundary in terms of ε. For this, we consider the following
list of arguments:

1. The only quantity controlled from the outside is the average energy gra-
dient between the two walls (at distance ∆x = 1),

〈
dλ0
dx

〉
= λWR − λWL .
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2. Due to the CE expansion in the bulk the energy flux λ1 is of first order in
ε. Since it is constant, it is of first order in ε in the Knudsen layer as well,

λ1 = O (ε) .

3. When written in the Knudsen layer variable X = x/ε, the equations (21)
for the Knudsen layer moments λn (n ≥ 2) do not contain the Knudsen
number. It follows that the amplitudes of all λn (n ≥ 2) are of the same
order in ε.

4. The boundary conditions (10) for n ≥ 3 relate the amplitudes of the
Knudsen layer moments to the energy jump, so that

λn = O
(
λ̄0 − λW

)
for n ≥ 2.

5. The boundary condition (10) for energy flux reads

λ̄1 = −γ
2χ

2− χ

[
1

2

(
λ̄0 − λW

)
+

∑

m=2,m even

Ψ1mλ̄m

]

.

With Point 2 the left hand side is O (ε), and with Point 4 the right hand
side is O

(
λ̄0 − λW

)
; both must be equal. Thus, the energy jump can be

estimated as
λ̄0 − λW = O (ε) .

6. With Points 4 and 5, the amplitudes of the Knudsen layer moments are
of first order in ε,

λn = O (ε) for n ≥ 2.

We emphasize that the CE expansion estimates λ2 as a second order quantity,
see (16), which is true in the bulk only. The present estimate for λ2 as a first
order quantity results from the evaluation of boundary conditions and the bulk
equations.

5.3 Asymptotic reduction

Now we ask for the results to first order in ε. The result for energy (20) reads

λ0 = K −
3

ε
λ1x− 2λ2

where K and λ1 are constants of integration, and λ2 is the Knudsen layer
contribution. The above estimates showed that λ1 and λ2 are both of first order
in ε. However, since the energy flux λ1 carries the factor 3/ε, it contributes the
leading term, while the influence of the Knudsen layer contribution, −2λ2, is one
order of magnitude smaller. It follows that the Knudsen layer contribution can
be ignored within a first order theory. Accordingly, the expression for energy in
the limit of small ε reduces to the well-known linear law

λ0 = K −
3

ε
λ1x . (24)
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Boundary conditions (10) for λ1 are required at both boundaries, they read

λ̄0 − λW = −

[

γ
2− χ

χ
λ̄1 + 2

∑

m=2,m even

Ψ1mλ̄m

]

. (25)

The term in brackets is of first order in ε. For very small ε it is sufficient to
consider only the leading term. Then, the jump correction can be ignored, and
energy becomes–approximately–continuous at the boundary,

λ̄0 = λW (ε≪ 1) . (26)

This is the classical no-jump boundary condition, which is justified here by an
argument based on the smallness of the Knudsen number.

The first order jump (25) contains contributions from higher moments (which
can make up for more than 10% of the jump). On the other hand, the first order
equation for energy (24) does not require Knudsen layer contributions for the
bulk. Thus, in the first order theory the Knudsen layers appear to be so small
that they only contribute directly at the wall, i.e., to the jump.

The usual method to treat Knudsen layer contributions to the jump is to
assume that they are proportional to the jump [30]. This gives the jump condi-
tions as

λ̄0 − λW = −ζγ
2− χ

χ
λ1 , (27)

with the Knudsen layer correction factor

ζ =

[

1 +
2
∑
m=2,m even Ψ1mλ̄m(
λ̄0 − λW

)

]−1
. (28)

6 Results

6.1 ε = 0.1

First we consider the case of a small Knudsen number, ε = 0.1. Figure 1 shows
the energy curves for N = 1, 3, 21, the differences between the curves are hardly
visible in the plot. Only close to the boundary the end of the curve for N = 1
(light grey) appears from under the curve for N = 3 (black) which covers the
curve for N = 21 (dark grey) almost completely.
ε = 0.1 is small enough to expect validity of the first order theory discussed

above. Indeed, the energy curve is essentially linear (24), and there is a jump at
the boundary (27). The Knudsen layer contributions are invisible, due to their
small amplitudes. Note that the results for N = 1 do not include the Knudsen
layer correction; results with the correction are discussed in Section 6.5.

For smaller N the jump at the wall is slightly overestimated, the values
are λ̄0 = {0.882, 0.894, 0.898} for N = {1, 3, 21} which corresponds to an error
of 1.8% for N = 1 and 0.5% for N = 3. The heat flux assumes the values
λ1 = {−0.0588,−0.0584,−0.0584}, i.e., the error in heat flux is even smaller.
Already at this moderately small Knudsen number, the classical theory with
N = 1 is fairly good.

The eigenvalues and their amplitudes for N = 3, 5, 21 are shown in Fig. 2
(left). Only larger eigenvalues, corresponding to wider layers, have relevant
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Figure 1: ε = 0.1: Energy density λ0 computed with N = 1 (light grey), N = 3
(black), N = 21 (dark grey, hidden behind black curve). The prescribed boundary
value at x = 0.5 is λW = 1. The insert shows a blow-up of the region close to the
boundary.

Figure 2: ε = 0.1: LEFT: Eigenvalues b(α) and their amplitudes Γ0α for N = 3
(crosses), N = 5 (diamonds), and N = 21 (circles). RIGHT: Absolute values of the
moments at the boundary, |λn (0.5)| for N = 3 (crosses) and N = 21 (circles).

amplitudes. For N = 3 there is only one eigenvalue (±0.5071), which is slightly
smaller than the relevant eigenvalues for N = 21. For N = 5 we have two
eigenvalues, (±0.8162,±0.3122), but only the larger eigenvalue is relevant.

The right part of Fig. 2 shows the fast convergence of the amplitudes of the
moments λn. Only energy λ0 and energy flux λ1 have significant values, while
the Knudsen layer moments λn (n ≥ 2) are almost zero.

6.2 ε = 1

Next we consider the Knudsen number ε = 1, which allows good insight into the
overall solution behavior. We observe good convergence of results as N grows,
and in the figures we use the results for N = 21 as reference case, since further
increase of N shows no visible changes. Figure 3 (left) shows the energy density
for N = 1, 3, 21 in the right half of the domain.

We observe a marked difference between the exact result (dark grey), and
the classical case (N = 1, light grey) which does not contain a Knudsen layer
and overpredicts the energy jump at the boundary (λWR = 1!).

For N = 3 we see a marked improvement: Most of the energy curve is met
quite well, with only small differences close to the boundary. The differences
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Figure 3: ε = 1: LEFT: Energy density λ0 computed with N = 1 (light grey), N = 3
(black), N = 21 (darkgrey). The prescribed boundary value at x = 0.5 is λW = 1.
RIGHT: Second moment λ2 computed with N = 3 (black, right half), N = 7 (black,
left half), N = 21 (darkgrey).

Figure 4: ε = 1: LEFT: Eigenvalues b(α) and their amplitudes Γ0α for N = 7 (crosses)
and N = 21 (circles). RIGHT: Absolute values of the moments at the boundary,
|λn (0.5)| for N = 7 and N = 21.

are due to the fact that the proper result is a superposition of Knudsen layers
with a variety of widths while for N = 3 the only eigenvalues are {±0.5071}, so
that there is only one wider Knudsen layer.

For the energy flux we obtain for N = {1, 3, 7, 21}: λ1 = {−0.2857,−0.2779,
0.2770,−0.2767}. Thus, the classical theory (N = 1) gives a deviation of 3.2%
compared to the converged result, while the deviation for the first theory with
Knudsen layers (N = 3) is only 0.4%.

Figure 3 (right) shows the second moment λ2 (which describes the deviation
from the Fourier solution, see (20)) for N = 3, 7, 21, where the left part of the
figure shows the solution for N = 7, and the right part that for N = 3. The case
N = 7 has the eigenvalues {±0.9065,±0.6282,±0.2243} and thus can describe
the structure of the actual Knudsen layer in greater detail.

Figure 4 shows on the left, for N = 7 and N = 21, the eigenvalues and
their respective amplitudes. All eigenvalues contribute to the Knudsen layers
with different amplitudes, with larger amplitudes for eigenvalues around 0.5.
For N = 7 the amplitudes are larger compared to those for N = 21, since fewer
eigenvalues contribute. The superposition of the Knudsen layers leads to the
excellent agreement reported in Fig. 3

The right Fig. 4 shows, again for N = 7 and N = 21, the absolute values of
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Figure 5: ε = 10: Energy density λ0 computed with N = 1 (light grey), N = 11
(black), N = 31 (darkgrey). The prescribed boundary value at x = 0.5 is λW = 1.

Figure 6: ε = 10: LEFT: Eigenvalues b(l) and their amplitudes Γ0α for N = 11
(crosses) and N = 31 (circles). RIGHT: Absolute values of moments at boundary,
|λn (0.5)| for N = 11, 31.

the moments at the right boundary. We observe excellent agreement between
the results for all moments for different N .

In addition, the figure shows that the amplitudes of the higher moments
are considerably smaller than those for the lower moments. This decrease in
amplitude with growing n cannot be attributed to the smallness parameter
(ε = 1 and thus is not small!), but to the geometry and the properties of the
equation system.

6.3 ε = 10

For larger ε the behavior is similar, but convergence is slower. We present some
results for ε = 10, where results are converged for N = 31.

Figure 5 shows the energy density for withN = 1, 11, 31, and exhibits marked
energy jumps at the boundary (recall that the boundary value is λW = 1), and
pronounced differences between the results for different N .

The eigenvalues and their corresponding amplitudes are shown in Fig. 6
(left), for N = 11, 31. All eigenvalues contribute; compared to the case ε = 1
smaller eigenvalues become more important.

The values of the moments λn at the wall are depicted in Fig. 6 (right). As
for ε = 1, we observe a decrease of moment amplitude with moment number,
but now the decrease is slower, reflecting the slower convergence with N .
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Figure 7: Energy λ0 at the boundary (left) and energy flux λ1 (right) over Knudsen
number ε for N = 31.

Figure 8: Knudsen layer correction coefficient ζ (28) over Knudsen number; both axes
are logarithmic.

6.4 0 < ε <∞

We study the behavior of the first two moments with the Knudsen number ε,
for N = 31.

Figure 7 (left) shows the energy at the right wall. For small ε the value
λ0 (0.5) agrees with the prescribed value λW = 1. As ε grows the energy jump
grows as well, and becomes maximal as ε→∞, that is for free molecular flow.
In this case the gas is a mixture of particles moving in free flight between the
two boundaries, which carry the energies λWL,R of the respective wall; the average
energy is 1

2

(
λRW + λLW

)
= 0.

The curve for the energy flux looks very similar, see Fig. 7 (right). As the
Knudsen number grows, more and more heat is transported, up to the maximum
value for free molecular flow, λmax1 = −0.5.

6.5 Knudsen layer correction

Figure 8 shows the correction coefficient (28) for ε ∈ (0.01, 100), χ = 1, N = 31.
For Knudsen numbers ε ≤ 0.3 the correction coefficient assumes the constant
value ζ = 0.869, which should be used in (27). The value of ζ depends on the
accommodation coefficient χ; our computations suggest the linear relationship
ζ = 1− 0.131χ.
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Figure 9: Deviation (in %) of energy λ0 at boundary (left) and energy flux λ1 (right)
from the converged case (N = 31), for N = 3 (continuous), N = 1 (long dashes), and
N = 1 with Knudsen layer correction ζ = 0.869 (short dashes)

For ζ = 0.869, χ = 1, Fig. 9 shows on the left the relative error for the
boundary value of λ0 compared to the converged solution (N = 31). In addition,
the relative error for the the case N = 3 is given, which is the simplest case with
a Knudsen layer. The correction (27) allows to achieve very small deviations for
smaller Knudsen numbers ε. This improvement for the energy jump is, however,
accompanied by an increase in the deviation of the energy flux, as becomes clear
from the right figure. Thus, the Knudsen layer correction improves the accuracy
of the energy curves, but reduces the accuracy of the energy flux.

For N = 1 the error becomes larger than 5% for ε ≃ 0.3 with and without
the Knudsen layer correction. For the uncorrected case, ζ = 1, the deviation of
boundary energy exceeds the error limit, while for the corrected case, ζ = 0.846,
the energy flux exceeds the limit.

For N = 3, however, the error limit of 5% is exceeded only for ε > 1. The
energy curve for this case was shown in Fig. 3, and deviates only in a small
region around the boundary from the exact results.

The results in this section suggest that is more beneficial to use a moment
system that at least has one pair of Knudsen layers, than considering the classical
limit with jump conditions and Knudsen layer correction.

6.6 Moment number and accuracy

In order to discuss the relation between Knudsen number, number of moments,
and accuracy, we study the distribution function. For the collisionless case
(ε → ∞) the distribution is determined only through the boundary conditions
(5), and it is independent of the space variable, and thus discontinuous in µ
everywhere in the domain,

fε→∞ =






1
2(2−χ)

[
λWL + (1− χ)λWR

]
, µ > 0

1
2(2−χ)

[
λWR + (1− χ)λWL

]
, µ < 0

.

A large number N of polynomials is required to have a good approximation
of the discontinuous phase density fε→∞ through Legendre polynomials (6)
everywhere in

(
−1
2 ,

1
2

)
.

When ε is finite, collisions occur that smooth the phase density further away
from the wall, while discontinuities are observed only close to the walls. This
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Figure 10: Distribution function f (x, µ) for ε = 2, with N = 51, χ = 1, λLW =
−λRW = 1.

behavior is depicted in Fig. 10 which shows the distribution function for ε =
2. A smooth function can be approximated reasonably well by few Legendre
polynomials, and thus a low number of moments will allow a good description
of the distribution function at those locations where the distribution is smooth.

Thus, the overall error will be small when the distribution function is smooth
in most of the domain. Discontinuities adjacent to the walls will be poorly
described by a theory with only few moments, but will, as long as the region of
their existence is small compared to the whole domain, contribute only little to
the overall error (think of the space integral of the error). Thus, few moments
suffice when the distribution function is smooth in most of the domain.

7 Conclusions and conjectures

We discussed Knudsen layers for a simple one-dimensional, linear kinetic equa-
tion. From the asymptotics for the Knudsen layers follows that these can be
ignored only in a theory of first order in the Knudsen number, which corresponds
to classical transport theory (Fourier’s law, in our case).

Knudsen layers must be included, however, for theories of second order or
higher (Burnett level, and higher in the language of the CE method). The
Knudsen layers arise from an eigenvalue problem for the moment equations,
and thus involve all moment equations equally. Therefore, there is no a pri-
ori argument to limit the number of moments that must be considered for an
accurate description. The moments are superpositions of Knudsen layer contri-
butions of different widths, the results become more accurate when a greater
variety of widths is available. Fortunately, for a given number N of moments,
the eigenvalues are almost evenly distributed, so that already for relatively small
N good results can be obtained. Indeed, the moment systems appear to be best
approximations [31].

As long as discontinuities of the distribution function–which are inevitably
induced at the boundaries–are present only in a relatively small part of the
space domain, it is sufficient to consider few Knudsen layer contributions. In
the present application, a set of moment equations with few moments (N = 3)
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can give satisfactory results for Knudsen numbers ε ≤ 1.
We close with some conjectures concerning moment equations for the full

Boltzmann equation, which are more complicated, since the gas particles are
described microscopically not only by their direction, but also by the magnitude
of their velocities. Nevertheless, the following statements can be transferred to
the moment system of the Boltzmann equation:

• Knudsen layers are a second order effect, and thus will not appear in
hydromechanical models, but only in extensions to include higher order
effects in the Knudsen number.

• A proper moment set should allow for the description of Knudsen layers
for all variables.

• A larger number of moments allows finer resolution of Knudsen layers.

• Boundary conditions for extended moment sets can be derived from the
boundary conditions for the phase density.

Within the theory of moment equations for the full Boltzmann equation,
the Burnett and super-Burnett equations have only some Knudsen layers, plus
some unphysical (oscillatory) contributions, and Grad’s 13 moment equations
display no Knudsen layers at all [11]. The first moment system with a full set of
Knudsen layers are the R13 equations which can be derived from the 26 moment
case [18][11]. The 26 moment case [32] has additional Knudsen layers for the
higher moments. Thus, for linear problems, where Knudsen layer effects are
particularly important, one will need to consider at least the R13 equations (for
which a theory for boundary conditions is now available [22, 23]).

Strongly non-linear processes are dominated by bulk effects, and for these the
Chapman-Enskog ordering can be applied. Then, Grad’s 13 moment equations
are appropriate to second order in the Knudsen number [21][33], and the R13
equations are appropriate to third order [20].
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