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An H theorem for the linearized Grad 13 moment equations leads to regularizing constitutive equations
for higher fluxes and to a complete set of boundary conditions. Solutions for Couette and Poiseuille flows
show good agreement with direct simulation Monte Carlo calculations. The Knudsen minimum for the
relative mass flow rate is reproduced.
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Over the past few years we have developed a set of
regularized 13 moment equations (R13 equations) for the
description of rarefied gas flows in the transition regime
(Knudsen numbers Kn< 1) based on Knudsen number
expansions of the Boltzmann equation and its system of
moment equations [1–5]. The R13 equations form a regu-
larization of the well-known 13 moment equations of Grad
[6], obtained by adding terms of Super-Burnett order to the
balances of pressure deviator and heat flux vector. When
expanded in a series in Kn, the system contains the Euler,
Navier-Stokes-Fourier, Burnett, and Super-Burnett equa-
tions. However, other than the Burnett and Super-Burnett
equations [7,8], the R13 equations are linearly stable.
Dispersion and damping for R13 agree better with experi-
mental data than those for Navier-Stokes equations, or the
original 13 moments system [1]. They allow the descrip-
tion of Knudsen boundary layers and yield smooth shock
structures for large Mach numbers in good agreement with
experiments [2]. The textbook [9] provides a comprehen-
sive discussion and derivation of macroscopic models for
rarefied gas flows, including the R13 equations.

Despite their welcome features, the R13 equations have
so far defied our attempts to show the existence of an H
theorem (entropy inequality). Moreover, the question of
how to design boundary conditions for the higher moments
is recognized as a major obstacle for any extended contin-
uum model. Gu and Emerson, following ideas outlined in
[9], developed a set of boundary conditions for the R13

equations [10], but their results show spurious boundary
layers, which are probably due to the fact that they pre-
scribe more boundary conditions in their numerical scheme
than mathematically required.

In the present Letter we shall tackle both problems for
the linearized 13 moment equations. A simple quadratic
entropy, similar to the one provided in [11] for the hyper-
bolic Burnett equations, leads to a proper entropy inequal-
ity. The evaluation of the entropy generation rate leads to
phenomenological equations [12], which give the regula-
rizing terms. The entropy generation rate due to collisions
with a solid wall is computed from the entropy flux and
leads to boundary conditions. We consider Couette and
Poiseuille flows with heat transfer to show that we obtain
just as many boundary conditions as mathematically re-
quired, and that they lead to meaningful results. Compu-
tation of the mass flow rate in Poiseuille flow reproduces
the well-known Knudsen minimum [13].

For greater generality, we base our considerations on the
generalized 13 moment equations, which are the proper
form of Grad’s 13 moment equations for non-Maxwellian
molecules [4,9]. The variables are mass density �, velocity
vi, temperature �, deviatoric stress tensor�ij, and heat flux
qi. The 13 moment equations consist of the conservation
laws for mass, momentum, and energy and balance laws
for �ij, qi. We linearize Eqs. (9.1, 9.17, 9.18) in [9] around
a homogeneous and constant equilibrium ground state �0,
�0, v0
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p
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is the Knudsen number (� is viscosity, L is
reference length), Pr’ 2

3 is the Prandtl number, and $�, ��
denote Burnett coefficients [9,14]; for Maxwell molecules
$2 � 2, $3 � �4 � 3, �2 � 45=8 and for hard sphere
molecules $2 � 2:028, $3 � �4 � 2:418, �2 � 5:822.
Indices in angular brackets denote the symmetric and

trace-free part of a tensor. The additional quantities mijk �
mhijki and Rij � Rji denote higher order fluxes which were
not present in the original derivation in [4]. DDt �

@
@t� Vk

@
@xk

denotes the convective time derivative which for an ob-
server resting in the equilibrium ground state reduces to the
partial derivative @

@t .
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We define the convex dimensionless entropy density
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take its time derivative, and replace the time derivatives of
the variables by means of the balance laws (1) to obtain the
balance law for entropy—the 2nd law—as
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and the bulk entropy generation rate
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The generation rate ought to be non-negative, � � 0, for
all values of the variables �, vi, �,�ij, qi. This requirement
can be fulfilled easily by choosing constitutive equations
according to the linear phenomenological laws
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with positive coefficients �� (� 2 fR;�; mg). For the case
of Maxwell molecules the coefficients were derived from
kinetic theory in [1,3] as �R �

24
5 Kn, �� � 12Kn, �m �

2Kn. The regularization of the 13 moment equations (2)
arises here quite naturally. The usual Grad closure sets
�� � 0 and ignores some dissipative contributions.

For a solid wall the dimensionless first law reads
cv

D�W
Dt �

@qk
@xk
� 0, where �W denotes the temperature of

the wall and cv is its specific heat. A linear second law
with entropy �W � �0

W �
cv
2 �

2
W gives its entropy flux in

the wall rest frame as �W
k � ��Wqk. The entropy genera-

tion due to interaction between gas and wall must be
positive, which requires that the entropy flux out of the
gas-wall interface is larger than the entropy flux into the
interface. When the normal vector nk points from the gas to
the wall, this condition reads

 �W � ��
W
k ��k�nk � 0:

For the further evaluation, it is useful to split the variables
into their normal and tangential parts as

 qk � qnnk � �qk;
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3
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with 0 � �vk � v
W
k �nk � �qknk � ��nknk � ��ijni � ��kk.

The wall moves with the velocity vWi with respect to the
ground state, and the gas flow normal to the wall must
vanish, so that we find the wall entropy generation as
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where � and 
 are arbitrary numbers and all quantities
have to be evaluated at the wall. Positive entropy genera-
tion can, again, be achieved by phenomenological equa-
tions with positive coefficients �� which are, indeed,
boundary conditions for the variables,
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Here we have directly linked the unknown boundary values
for the moments to their driving forces (the expressions in
square brackets); that is, we have ignored the possibility of
cross terms (off-diagonal Onsager coefficients [12] ). The
coefficients � and 
 reflect some freedom in shifting terms
between the driving forces. Equation (3) is the (phenome-
nological) Maxwell-Smoluchowski jump and slip bound-
ary conditions [9,10].

The coefficients �, 
, �� must be determined from
experiments, or first principles, e.g., from the boundary
conditions for the Boltzmann equation with accommoda-
tion coefficient � [9,10]. Comparison of (3) with the slip
condition of [10] (Maxwell molecules) allows to identify
�1 �

�
2��

���������
2=

p
, � � 1

5 . Moreover, instead of the factor
$2

2 ’ 1 in (3) kinetic theory predicts the factor 1
2 ; this value

gives better results, and we used it for the Poiseuille flow
simulations below. Note that in a higher theory withminn as
variable, part of the expression ��ni

$2

2 minn would add to
the boundary condition for minn. Similar statements can be
made on the other coefficients in (3). A detailed account of
kinetic theory based boundary conditions for the fully
nonlinear R13 equations, and their numerical solutions,
will be presented elsewhere.

In plane Couette flow, two infinite parallel plates at y �
� 1

2 move with constant velocities �vW relative to the
center into the direction x � x1, and are kept at constant
temperatures ��W . Because of the symmetry of the prob-
lem, all variables depend only on the coordinate ywhich is
zero in the middle between the walls. Since the walls are
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impermeable, the velocity of the gas must point into the x
direction, that is vi � fv�y�; 0; 0gi and thus @vk

@xk
� D=Dt �

0. The setup is independent of the coordinate z � x3, so
that neither stress nor heat flux is associated with that
direction, and �13 � �23 � q3 � 0, �33 � ��11�y� �
�22�y�; all other components depend solely on y.

The equations (1) with the regularization (2) split into
three independent subsets, each with its own wall entropy
generation rate. For Maxwell molecules we obtain
(a) velocity problem
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(4)

(b) temperature problem
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(c) the rest
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Moreover, we have an equation for the mass density, ��
�� �22 � P0. In the expressions for wall entropy genera-
tion the upper sign is for the right wall; the lower sign for
the left wall. The general solution includes 11 constants of
integration, �0

12, q0
2, A1, A2, A3, B1, B2, B3, P0, C1, C2;

these must be determined from the boundary conditions.
The constant P0 follows from the requirement that mass

is conserved in the process,
R1=2
�1=2 �dy �

R1=2
�1=2 �0dy � 1.

The entropy generation rate ��
W (6) can only be non-

negative at y � � 1
2 if C1 � C2 � 0. Since velocity and

temperature are prescribed symmetric to the center, their

curves must be point symmetric to the center, so that A1 �
A3 � B1 � B3 � 0. All remaining constants can be deter-
mined from boundary conditions at the right wall.

The velocity and temperature problems have the same
structure, and we consider only the velocity problem, for
which we need to find �0

12 and A2. The wall entropy
generation suggests phenomenological equations for the
boundary conditions as (at y � 1

2 )
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withm122 � 0. Insertion of (4) leads to an algebraic system
for �0

12 and A2 with the solution
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Figure 1 shows the R13 profiles for velocity and heat flux
parallel to the wall compared to DSMC simulations in
argon at Kn � 0:05, 0.1, 0.5 with plate velocities �100 m

s
at 273 K so that vW � 0:419 543. The DSMC simulations
were performed for Maxwell molecules with fully diffu-
sive boundary conditions (� � 1). We use the kinetic
theory values �1 �

���������
2=

p
,� � 1

5 while �2 � 3 was chosen
to obtain reasonable results. The agreement between
DSMC and R13 is fairly good. The DSMC simulations
are slightly affected by nonlinear effects which can be
described by the nonlinear bulk solution [9].

FIG. 1 (color online). Dimensionless velocity and heat flux
parallel to the wall for Couette flow computed from the R13
equations (red) and DSMC (black).
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Similar agreement was obtained in [15] from an analyti-
cal solution of a Lattice Boltzmann model, which gives the
same final equation for velocity with only small differences
in the numerical factors.

Finally we consider the velocity problem for force-
driven Poiseuille flow where the dimensionless pressure
gradient @���@x is replaced by the constant force (�F). The
solution of the relevant moment equations must be axi-
symmetric to the center,
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with the entropy generation at the right wall
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We use the same coefficients as before and compute the
total mass flow rate J �
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�1=2 vdy as
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It is well known that the relative mass flow rate J=F as
function of the Knudsen number exhibits the Knudsen
minimum around Kn � 1 [13,16] and our result indeed
has a distinct minimum at Kn � 0:5. Figure 2 compares
values for J=�

���
2
p
F� as function of k � 4

��
2
p

5 Kn obtained
from numerical solutions of the Boltzmann equation [13]
to the predictions of the R13 equations, and the Navier-
Stokes equations (with slip). The R13 equations match the
data very well. The deviation of the R13 results from
kinetic theory for large Knudsen numbers shows that
Knudsen numbers above unity are outside the range of
application of R13.

While the Navier-Stokes equations can describe the
Knudsen minimum when second order boundary condi-
tions are employed [17], they cannot describe rarefaction

effects like parallel heat flux q1, or the temperature dip in
the center of the channel [18]. In future papers we shall
show that the nonlinear R13 equations can describe these
effects in good agreement to DSMC simulations.

We have given an H theorem for the regularized 13
moment equations in the linear case. The non-negativity
of the entropy generation rate in the bulk is guaranteed by
the constitutive equations for the higher fluxes, which just
lead to the regularization. The requirement of non-negative
wall entropy generation leads to boundary conditions.
Computations for Couette and Poiseuille flows show
good agreement with solutions of the Boltzmann equation
including the Knudsen minimum. Our findings add to the
positive properties of the R13 equations shown earlier
[1,2,9]. Further fine-tuning of the coefficients in the bound-
ary conditions will render the R13 equations into a suc-
cessful mathematical model for microscopic gas flows of
third order accuracy in the Knudsen number.
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at ETH Zürich for their kind hospitality. M. T.: Support
through the EURYI grant of the European Science
Foundation (ESF) is gratefully acknowledged.

*On leave from: Mechanical Engineering, University of
Victoria, Victoria BC, Canada.
struchtr@uvic.ca

†matorril@math.ethz.ch
[1] H. Struchtrup and M. Torrilhon, Phys. Fluids 15, 2668

(2003).
[2] M. Torrilhon and H. Struchtrup, J. Fluid Mech. 513, 171

(2004).
[3] H. Struchtrup, Phys. Fluids 16, 3921 (2004).
[4] H. Struchtrup, Multiscale Model. Simul. 3, 211 (2004).
[5] M. Torrilhon, Multiscale Model. Simul. 5, 695 (2006).
[6] H. Grad, in Principles of the Kinetic Theory of Gases,
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FIG. 2 (color online). Relative mass flow rate for Poiseuille
flow as function of k � 4
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2
p

5 Kn from Boltzmann equation (sym-
bols) [13] in comparison with R13 equations and Navier-Stokes.
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