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THE MATHEMATICAL PROCEDURE OF COARSE GRAINING:
FROM GRAD’S TEN-MOMENT EQUATIONS TO

HYDRODYNAMICS∗

HANS CHRISTIAN ÖTTINGER† AND HENNING STRUCHTRUP‡

Abstract. We employ systematic coarse graining techniques to derive hydrodynamic equations
from Grad’s ten-moment equations. The coarse graining procedure is designed such that it manifestly
preserves the thermodynamic structure of the equations. The relevant thermodynamic structure
and the coarse graining recipes suggested by statistical mechanics are described in detail and are
illustrated by the example of hydrodynamics. A number of mathematical challenges associated
with structure-preserving coarse graining of evolution equations for thermodynamic systems as a
generalization of Hamiltonian dynamic systems are presented. Coarse graining is a key step that
should always be considered before attempting to solve an equation.
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1. Introduction. Physicists and engineers want to solve problems, and they
hence try to solve equations. The purpose of this paper is to emphasize and to illus-
trate that an essential first step to solve a problem may be to coarse grain a given
set of equations before studying the solutions. We here consider problems that can
be investigated on different levels of description associated with different length and
time scales, and we specify a set of rules for systematic coarse graining. From a math-
ematical perspective, it is important to specify the structure which should be left
invariant in the coarse graining procedure. The relevant structure, which is known
as GENERIC (“general equation for the nonequilibrium reversible-irreversible cou-
pling”) or “metriplectic,” is a generalization of Hamiltonian structures to dissipative
systems and is of thermodynamic origin. The design of structure-preserving coarse
graining procedures and approximation schemes is presented as a general mathemat-
ical challenge. It is important to note that coarse graining is fundamentally differ-
ent from reduction based on the idea of invariant manifolds because the transition
from reversible to irreversible equations, or even increasing degrees of irreversibility,
is allowed. The fundamental distinction between reduction (or solving) and coarse
graining has been elaborated in detail in [27].

We first describe the GENERIC structure. The coarse graining recipes of statis-
tical mechanics are then presented and explained in the context of rarefied gas flow.
In particular, we shall illustrate the statistical mechanical coarse graining procedure
by reducing Grad’s ten-moment equations to hydrodynamics. It is well known that
this can be done by various methods [16]. Our emphasis therefore lies on the method
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which was designed to preserve the GENERIC structure in the coarse graining pro-
cedure, and not on the relation between Grad’s equations and hydrodynamics. Some
specific mathematical challenges are further elaborated in section 5.

2. Thermodynamic structure. To employ a systematic coarse graining pro-
cedure for dynamic systems, it is necessary to write evolution equations in a properly
structured form. For reversible systems, symplectic structures provide a natural set-
ting to formulate time evolution generated by Hamiltonians, and Poisson and Dirac
structures offer useful generalizations [5, 17]. For irreversible systems, thermodynam-
ically consistent evolution equations consist of contributions constructed from two
generators by means of Poisson and dissipative brackets [11, 14, 19]. We here sum-
marize the GENERIC formulation of this idea for closed systems [12, 28]. In [20], an
almost identical formulation of the original idea of [11, 14, 19] has been referred to as
the metriplectic structure.

Once we have specified the list of independent variables x, for example the ten
moments in Grad’s approximate solution of Boltzmann’s kinetic equation, thermo-
dynamically admissible equations can be expressed in the form [12, 28]

dx

dt
= L · δE

δx
+ M · δS

δx
,(2.1)

where the generators E and S are the total energy and entropy expressed in terms of
the variables x, and L and M are certain linear operators, or matrices, which can also
depend on x. We refer to L as a Poisson operator and to M as a friction operator.
The two contributions to the time evolution of x generated by the total energy E
and the entropy S in (2.1) are the reversible and irreversible contributions, respec-
tively. Because x contains position-dependent fields, the state variables are labeled
by a continuous position label in addition to the discrete one running from one to
ten in the following. A matrix multiplication, which can alternatively be considered
as the application of a linear operator, hence implies not only a summation over the
discrete index but also integration over space, and δ/δx typically implies functional
rather than partial derivatives (for a definition of functional derivatives, see, for ex-
ample, Appendix C of [24]). Equation (2.1) is supplemented by the complementary
degeneracy requirements

L · δS
δx

= 0(2.2)

and

M · δE
δx

= 0.(2.3)

The requirement that the entropy gradient δS/δx is in the null-space of L in (2.2)
expresses the reversible nature of the L-contribution to the dynamics: the functional
form of the entropy is such that it cannot be affected by the operator generating the
reversible dynamics. The requirement that the energy gradient δE/δx is in the null-
space of M in (2.3) expresses the conservation of the total energy in a closed system
by the M -contribution to the dynamics (for a discussion of open systems, see [26]).
For Grad’s ten-moment equations, for example, (2.2) determines the functional form
of the entropy once the Poisson bracket is known (see Exercise 181 of [24]), and (2.3)
allows an unrestricted relaxation of the traceless second-moment tensor (because the
energy depends only on the trace of the second-moment tensor).



MATHEMATICAL PROCEDURE OF COARSE GRAINING 55

Further general properties of L and M are discussed most conveniently in terms
of the Poisson and dissipative brackets

{A,B} =
δA

δx
· L · δB

δx
,(2.4)

[A,B] =
δA

δx
·M · δB

δx
,(2.5)

where A, B are sufficiently regular real-valued functions on the space of independent
variables. In terms of these brackets, (2.1) and the chain rule lead to the follow-
ing time-evolution equation of an arbitrary function A in terms of the two separate
generators E and S:

dA

dt
= {A,E} + [A,S].(2.6)

The further conditions for L can now be stated as the antisymmetry property

{A,B} = −{B,A}(2.7)

and the Jacobi identity

{A, {B,C}} + {B, {C,A}} + {C, {A,B}} = 0,(2.8)

where C is another arbitrary sufficiently regular real-valued function on the state
space. These properties are well known from the Poisson brackets of classical me-
chanics. In an abstract approach to Poisson brackets, one may use the product or
Leibniz rule

{AB,C} = A{B,C} + B{A,C},(2.9)

instead of the explicit representation in (2.4), to capture the essence of reversible
dynamics.

Further properties of M can be formulated in terms of the symmetry condition

[A,B] = [B,A](2.10)

and the nonnegativeness condition

[A,A] ≥ 0.(2.11)

This nonnegativeness condition, together with the degeneracy requirement (2.2), guar-
antees that the entropy is a nondecreasing function of time,

dS

dt
=

δS

δx
·M · δS

δx
= [S, S] ≥ 0.(2.12)

The existence of a Lyapunov function S provides a powerful tool for stability analysis
and, in particular, implies the consistency of the time-evolution equations (2.1) with
equilibrium thermodynamics. The properties (2.10) and (2.11) imply the symmetry
and the positive-semidefiniteness of M (for a more sophisticated discussion of the
Onsager–Casimir symmetry properties of M , see sections 3.2.1 and 7.2.4 of [24]). The
Jacobi identity (2.8), which is a highly restrictive condition for formulating proper
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reversible dynamics, expresses the invariance of Poisson brackets in the course of time
(time-structure invariance).

In thermodynamic modeling, we focus on the thermodynamic building blocks E,
S, L, and M rather than on the time-evolution equations. One of the advantages of
this approach is that we can coarse grain the basic building blocks by systematic pro-
cedures so that the coarse grained equations are guaranteed to be thermodynamically
admissible.

3. Grad’s ten-moment equations. As a first step, we need to define a ther-
modynamic system by specifying the list of independent variables. In addition to the
usual five hydrodynamic fields, the mass density ρ, the velocity v, and the tempera-
ture T , we use a traceless second-moment tensor σ in velocity space. Note that we
consider a traceless tensor because the trace of the second-moment tensor is repre-
sented by the temperature T . Further note that the tensor σ is symmetric so that it
has five independent components in addition to the five hydrodynamic fields and we
arrive at a total of ten moment variables. If we add the trace part,

π = p1 + σ,(3.1)

the tensor π is positive definite, where p is the local thermodynamic pressure and 1
is the unit tensor. Equation (3.1) also implies the normalization of the independent
variable σ.

The ten-moment equations for the independent variables x = (ρ,v, T,σ) are
derived from Boltzmann’s kinetic equation, and we hence expect them to be restricted
to rarefied gases. The detailed derivation of the functional form of the building blocks
E, S, L, and M of the thermodynamic structure can be found in section 7.4.3 of [24].
The energy is given in terms of the five hydrodynamic variables alone,

E =

∫ (
1

2
ρv2 +

3

2

ρ

m
kBT

)
d3r,(3.2)

in which the kinetic energy and the internal energy of a monatomic ideal gas of
particles with mass m can be recognized. The entropy, which can be obtained by
evaluating Boltzmann’s entropy with a Gaussian velocity distribution, is composed
of the local equilibrium contribution for an ideal gas determined by ρ and T , and a
configurational contribution depending on σ,

S =
kB

2

∫
ρ

m

[
ln

(
c
T 3

ρ2

)
+ ln det

(
1 +

σ

p

)]
d3r,(3.3)

where p = p(ρ, T ) = ρkBT/m is the ideal gas pressure and c is a constant. The
occurrence of the logarithm and determinant in the configurational entropy reflects
the Gaussian nature of the velocity distribution [16]. For the gradients of the energy
and entropy functionals, we then find

δE

δx
=

⎛
⎜⎜⎝

1
2v

2 + 3
2
kBT
m

ρv
3
2

ρ
mkB

0

⎞
⎟⎟⎠(3.4)

and

δS

δx
=

kB

2m

⎛
⎜⎜⎝

ln(ρ−5 detπ) + p tr(π−1)
0

ρ2 kB

m tr(π−1)
ρπ−1

⎞
⎟⎟⎠ .(3.5)
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In calculating the functional derivatives in (3.4) and (3.5), we have neglected contri-
butions resulting from constraints, such as the conserved total mass or the traceless
nature of σ, because they lead to constant contributions that are irrelevant in the
subsequent calculations.

When transformed into the current set of variables x, the Poisson operator for
the ten-moment equations derived in [24] becomes

L =

⎛
⎜⎜⎝

0 − ∂
∂r 0 0

− ∂
∂r

1
ρω

1
ρ
∂T
∂r − 1

ρ
∂
∂r · π 2m

3ρkB
L24

0 − 1
ρ
∂T
∂r − 2m

3ρkB
π · ∂

∂r
1
ρ 0 L34

0 L42 L43 L44

⎞
⎟⎟⎠ ,(3.6)

where ω is the vorticity tensor

ω = κT − κ,(3.7)

expressed in terms of the transposed velocity gradient tensor κ with components

κjk =
∂vj
∂rk

,(3.8)

and the beyond-hydrodynamic entries in this Poisson operator are

(L24)ikl = −1

ρ
σkl

∂

∂ri
− 1

ρ

[
∂

∂rk
πil +

∂

∂rl
πki −

2

3
δkl

(
∂

∂r
· π

)
i

]
,(3.9)

(L42)ijk = − ∂

∂rk

1

ρ
σij −

[
πkj

∂

∂ri
+ πik

∂

∂rj
− 2

3
δij

(
π · ∂

∂r

)
k

]
1

ρ
,(3.10)

L34 = −L43 =
2m

3ρkB
(σ · ω − ω · σ),(3.11)

and

(L44)ijkl =
2

3
(σ · ω − ω · σ)ijδkl −

2

3
δij(σ · ω − ω · σ)kl(3.12)

+πikωjl + ωikπjl + πilωjk + ωilπjk.

The Jacobi identity for this Poisson operator follows from the fact that it can be
obtained by a rigorous reduction procedure from the Poisson bracket for Boltzmann’s
kinetic equation [24]. In principle, the Poisson and friction matrices should depend
on two position arguments r and r′, and a matrix multiplication should involve an
integration over space. For local field theories, however, L and M contain Dirac δ-
functions of r− r′ (and their derivatives) so that we can, as in (3.6), use an operator
notation without integrations over space (for more details, see sections 2.2.2 and 2.2.3
of [24]). One should note the following careful distinction made in our notation. When
we write ∂f

∂r for any function f , the derivative applies to f only, whereas writing ∂
∂rf

would imply the derivation of all functions to the right of ∂
∂r , including the functions

resulting from a vector multiplied from the right.
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We assume that the friction operator is composed of two contributions describing
momentum relaxation and spatial diffusion, respectively:

M =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 M relax

⎞
⎟⎟⎠ + Cdiff

M

Dm

ρkB
(Cdiff

M )T .(3.13)

The first contribution has been derived from Boltzmann’s kinetic equation [24]. It
reflects the idea that only the nonconserved second moments are affected by dissipative
relaxation processes. To obtain a convenient expression for the components of the
fourth-rank tensor M relax, we evaluate the integral expression (7.175) of [24] for the
special interaction potential of Maxwell molecules,

M relax
ijkl =

m

ρkB

1

τ

[
p

2
(πikδjl + δikπjl + πilδjk + δilπjk) −

2

3
πijπkl(3.14)

+
1

3
(σ2

ikδjl − 2σikσjl + δikσ
2
jl + σ2

ilδjk − 2σilσjk + δilσ
2
jk)

]
.

Note that the terms with the prefactor 1/3 in the second line of this equation do not
contribute to the double contraction

∑
kl M

relax
ijkl Akl, where the tensor A can be an

arbitrary function of σ or π. The tensor M relax describes the standard dissipative
mechanism of Grad’s ten-moment equations. The inclusion of an additional diffu-
sion mechanism with diffusion coefficient D into hydrodynamics, which is achieved
through the second contribution to the friction operator in (3.13), has been forcefully
postulated and convincingly substantiated by Brenner in recent years [1, 2, 3]. The
corresponding friction operator for Grad’s moment expansion with an arbitrary set
of moments was derived by coarse graining Boltzmann’s kinetic equation [25]. When
transformed into the present set of moment variables, the results for the related vec-
tors Cdiff

M and (Cdiff
M )T are

Cdiff
M =

⎛
⎜⎜⎜⎜⎜⎝

− ∂
∂rρ

−∂v
∂r

−∂T
∂r

− ∂
∂rσ

⎞
⎟⎟⎟⎟⎟⎠ , (Cdiff

M )T =
(
ρ ∂
∂r −∂v

∂r −∂T
∂r σ ∂

∂r

)
.(3.15)

The spatial derivative operators in the two factors Cdiff
M and (Cdiff

M )T in (3.13) are to
be contracted with each other. For this choice of (Cdiff

M )T , we have the identities

(Cdiff
M )T · δE

δx
= 0(3.16)

and

(Cdiff
M )T · δS

δx
= − ∂

∂r

p

T
.(3.17)

By inserting the above building blocks E, S, L, and M into the fundamental
equation (2.1), we obtain the following set of time-evolution equations:

∂ρ

∂t
= − ∂

∂r
· [(v + vdiff)ρ],(3.18)
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∂v

∂t
= −(v + vdiff) · ∂

∂r
v − 1

ρ

∂

∂r
· π,(3.19)

∂T

∂t
= −(v + vdiff) · ∂T

∂r
− 2m

3ρkB
π : κ,(3.20)

∂σ

∂t
= − ∂

∂r
· [(v + vdiff)σ] − κ · π − π · κT +

2

3
1(π : κ) − 1

τ
σ,(3.21)

where the diffusive contribution to the convection velocity is given by

vdiff = −Dm

ρkB

∂

∂r

p

T
= −D

ρ

∂ρ

∂r
.(3.22)

For D = 0, we have vdiff = 0 and we recover the standard set of Grad’s ten-moment
equations [10, 30].

4. Coarse graining to hydrodynamics. As a next step, we want to reduce
the list of variables from the ten-moment variables x = (ρ,v, T,σ) to the five hydro-
dynamic fields y = (ρ,v, T ). The usual assumption is that the relaxation time τ is
small so that σ relaxes rapidly to a value of order τ . If σ in (3.21) is expanded in
terms of τ , the lowest-order term is given by the explicit expression

σ = −η

(
κ + κT − 2

3
1trκ

)
(4.1)

with the viscosity η = τp. The actual dimensionless expansion parameter is τ divided
by the characteristic time scale of the flow, which is the inverse flow rate. In the
context of kinetic theory, this small expansion parameter can be interpreted as a local
Knudsen number. The Newtonian expression (4.1) for the pressure tensor is to be
used together with (3.1) in the hydrodynamic equations (3.18)–(3.20). As a result of
this singular perturbation procedure, the differential equation for σ is changed into
an explicit constitutive expression.

Whereas the singular perturbation approach is very simple, it has the severe
drawback that it is not intrinsically clear whether or not the resulting equations for the
hydrodynamic variables y possess the GENERIC structure expressing thermodynamic
admissibility. Not only is the nature of the equation for σ changed but also the role
of σ or π in the hydrodynamic equations. Whereas in the ten-moment equations
the occurrence of π in the equations for ρ, v, and T results from the reversible
contribution, the occurrence of η in (4.1) signals that reversible contributions are
turned into irreversible terms. Such a conversion from reversible to irreversible is a
characteristic of coarse graining.

Although the above procedure does not tell us anything about the GENERIC
structure of the equations for the variables y, hydrodynamics is well known to be
thermodynamically consistent. It would hence be desirable to have an equivalent
coarse graining procedure that guarantees the GENERIC structure on the coarse
grained level automatically.

Coarse graining of time-evolution equations can be regarded as the topic of
nonequilibrium statistical mechanics. A general and systematic procedure is based
on the idea that there exists a separation of time scales and that the fast variables
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can be eliminated from the equations for the slow variables by means of a projection-
operator technique. The thermodynamic structure can be preserved in coarse graining
by focusing on the building blocks E, S, L, and M . The two key ingredients required
for the general procedure are (i) a mapping of the variables, Π : x �→ y, and (ii) a
probability measure ρy(x) on the space of independent variables x so that averages
can be performed (for given y). The generalized microcanonical and canonical en-
sembles of statistical mechanics, or combinations of those, provide natural choices for
such probability measures [24].

4.1. Ensemble. For our example of coarse graining from Grad’s equations to
hydrodynamics, the mapping Π merely selects five of the ten moment variables. We
choose the probability measure ρy(x) to be of the generalized microcanonical type,

ρy(x) =
1

N (y)
exp

{
S(x)

kB

}
δ(Π(x) − y).(4.2)

This measure is based on the idea that all microstates have equal weight. To count the
microstates consistent with y, we make use of the fact that the microstates associated
with x have already been counted to obtain S(x). For a given y, this measure is
concentrated on the manifold that is obtained as the inverse image of y. The weight
of the states within the inverse image of y is governed by the entropy S(x). For the
normalization factor N (y) we have

N (y) =

∫
exp

{
S(x)

kB

}
δ(Π(x) − y)Dx,(4.3)

where we have used the symbol D to emphasize the occurrence of functional integra-
tions. For our example with entropy (3.3), the normalization factor is given by the
following functional:

N (ρ, T ) =

∫
exp

{
S(ρ, T,σ)

kB

}
Dσ = exp

{∫
ρ

2m
ln

(
c
T 3

ρ2

)
d3r

}
Ω(ρ, T ),(4.4)

with

Ω(ρ, T ) =

∫
exp

{∫
ρ

2m
ln det

(
1 +

σ

p

)
d3r

}
Dσ.(4.5)

Note that the proper definition of functional integrals requires great care, in particular,
with normalization factors (see, for example, Chapter 9 of [13]). While ratios of
functional integrals can be defined unambiguously, in the following, we use physical
arguments for handling the normalization factors properly.

Because ensemble averaging is the key step in coarse graining, we discuss the
functional integration over σ in some detail. To discretize the integral, we assume
that the volume occupied by the gas can be partitioned into cells of volume Vi on
which the variables x may be considered to be independent of position. We then have

Ω(ρ, T ) =
∏
i

∫
exp

{
Ni tr ln

(
1 +

σi

pi

)}
dσi,(4.6)

where 2Ni = Viρ/m is the number of particles in the volume Vi. If we expand the
logarithm, the linear contribution vanishes because σi is traceless and we find the
Gaussian integrals

Ω(ρ, T ) =
∏
i

∫
exp

{
−1

2

Ni

p2
i

σi : σi

}
dσi.(4.7)
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Because Ni is a large number, the Gaussian factors are sharply peaked and higher-
order terms in the expansion of the logarithm can be neglected safely. We have
thus reduced the problem to independent Gaussian integrations. In view of the
symmetry of σi, (4.7) describes a Gaussian distribution in the six components
(σ11, σ22, σ33, σ12, σ13, σ23) of σi with inverse covariance matrix

C−1
σ =

Ni

p2
i

⎛
⎜⎜⎜⎜⎜⎜⎝

1 + α α α 0 0 0
α 1 + α α 0 0 0
α α 1 + α 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎠

.(4.8)

The parameter α has been included to incorporate the constraint that σi should be
traceless; in the limit α → ∞, we have introduced a Gaussian that converges to a
Dirac δ-function of trσi. The determinant of C−1

σ is given by

detC−1
σ = 8(3α + 1)

(
Ni

p2
i

)6

.(4.9)

By inverting C−1
σ and performing the limit α → ∞, we obtain the covariance matrix

for the Gaussian components (σ11, σ22, σ33, σ12, σ13, σ23) of σi:

Cσ =
p2
i

6Ni

⎛
⎜⎜⎜⎜⎜⎜⎝

4 −2 −2 0 0 0
−2 4 −2 0 0 0
−2 −2 4 0 0 0

0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 3

⎞
⎟⎟⎟⎟⎟⎟⎠

.(4.10)

Our final result for the normalization factor then becomes

Ω(ρ, T ) =
∏
i

[
2

(
πp2

i

Ni

)5/2
]
,(4.11)

where we have left out the factor associated with the regularization needed to fulfill
the trace condition. As mentioned before, such factors are somewhat ambiguous, but
this ambiguity does not affect the physical results (as discussed below).

4.2. Energy. The energy on the coarse grained level is obtained by averaging
the energy of the more detailed level,

E′(y) =

∫
E(x)ρy(x)Dx.(4.12)

In view of the occurrence of the normalization factor (4.3) in ρy(x), all averages
performed with ρy(x) are ratios of functional integrals so that any ambiguous nor-
malization factors are cancelled. For our example, the energy does not depend on the
fast variables σ, so that we have a trivial representation of the type E(x) = E′(Π(x)).
Note that Π merely picks out the hydrodynamic fields, so that we get the same energy
expression as in (3.2),

E′(ρ,v, T ) =

∫ (
1

2
ρv2 +

3

2

ρ

m
kBT

)
d3r.(4.13)
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4.3. Entropy. The formula for the normalization factor in (4.3) expresses an
iterated counting of microstates. The factor exp{S(x)/kB} represents the number of
microstates compatible with the intermediate state x, and the integral sums up all the
numbers of microstates for all the states x consistent with the more coarse grained
state y. This interpretation suggests the definition of the entropy S′(y) by

N (y) = exp

{
S′(y)

kB

}
.(4.14)

In general, there might be a problem with this definition of entropy because
it is not invariant under nonlinear one-to-one transformations of the coarse grained
variables y. This and related problems with the definition of entropy have been
discussed and resolved in the context of the theory of fluctuations on p. 228 of [24].

In our example, indeed, the situation is unproblematic. According to (4.11),
the contribution of each cell to ln Ω is of the order of lnNi and hence negligible
compared to the extensive entropy contribution of the other factor in (4.4), which is
proportional to Ni. For the same reason, also constant factors associated with each
cell are physically irrelevant. We hence find

S′(ρ, T ) =
kB

2

∫
ρ

m
ln

(
c
T 3

ρ2

)
d3r.(4.15)

The factor c is the same as in (3.3), so that the entropy S′ is actually obtained by
setting σ = 0 in the entropy S. This observation justifies or explains the occurrence
of the equilibrium entropy in (3.3), which is reduced by deviations of σ from its
equilibrium value.

4.4. Poisson operator. The general expression for the coarse grained Poisson
operator is given by the average of the Poisson bracket formed for all pairs of coarse
grained variables,

L′(y) =

∫
{Π,Π}ρy(x)Dx.(4.16)

The coarse graining procedure for the Poisson bracket can also be expressed in a
different way. For any two functionals A′(y) and B′(y), one defines A(x) = A′(Π(x)),
B(x) = B′(Π(x)) and evaluates the Poisson bracket {A,B}, which is a function of x.
By averaging {A,B} with ρy(x), one obtains {A′, B′}′ as a function of y.

For our example of coarse graining the ten-moment equations to hydrodynamic
equations, we need only average the 3× 3 block in (3.6) associated with the hydrody-
namic fields. The average of σ vanishes, so that (3.1) implies

L′(ρ,v, T ) =

⎛
⎜⎜⎜⎝

0 − ∂
∂r 0

− ∂
∂r

1
ρω

1
ρ
∂T
∂r − 1

ρ
∂
∂r

2
3T

0 − 1
ρ
∂T
∂r − 2

3T
∂
∂r

1
ρ 0

⎞
⎟⎟⎟⎠ .(4.17)

4.5. Friction operator. So far, no dynamic material properties are involved
in the coarse graining procedure or in the building blocks E′, S′, and L′. Dynamic
properties occur exclusively in the friction operator M ′.
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There are two contributions to the coarse grained friction operator, M ′ = M̄ ′+ ¯̄M
′
.

A direct contribution is obtained by averaging the dissipative bracket for all pairs of
coarse grained variables in exactly the same way as for the Poisson operator in (4.16),

M̄ ′(y) =

∫
[Π,Π]ρy(x)Dx.(4.18)

A second contribution results from the fast variables in the list x that are considered
as fluctuations on the coarser level of y, and they hence cause a new contribution to
the friction operator,

¯̄M
′
(y) =

1

kB

∫ τs

0

[∫
KfΠ(x(t))KfΠ(x) ρy(x)Dx

]
dt,(4.19)

where τs separates the fast and slow variables. On the time scale τs, the slow variables
do not change appreciably, whereas the fast variables relax completely so that the
integral converges. In practice, there are no general rules for separating fast and slow
variables; identifying the relevant slow variables is an art that is closely related to
understanding the essential physics of a problem. The operator Kf describing the
rapid contribution to the time derivative of an observable is defined by the following
equations:

KfΠ(x) = K0Π(x) −
∫

K0Π(x′) ρy(x
′)Dx′,(4.20)

with

K0 = K+ =

(
L · δE

δx
+ M · δS

δx

)
· δ

δx
+ kB

δ

δx
·M · δ

δx
.(4.21)

The symbol K+ is used because this operator occurs in Kolmogorov’s backward equa-
tion in the theory of Markovian solutions of stochastic differential equations; it is the
adjoint of the Fokker–Planck operator occurring in the equation for the transition
probabilities. Finally, x(t) in (4.19) is obtained from x(0) = x by solving the fast
part of the time-evolution equations. Expressions for dissipative material properties
in terms of time correlations of fluctuations as in (4.19) are known as Green–Kubo
formulas (see, for example, [9, 15, 24]).

The choice of K0 = K+ in the definition (4.20) of Kf is controversial. In [6, 23],
operators K− occurred, and a simple coarse graining procedure summarized in the
appendix suggests still another choice. All suggestions consist of

K0 =

(
L · δE

δx
+ M · δS

δx

)
· δ

δx
,(4.22)

plus fluctuation-related terms proportional to kB. We here recommend that the sim-
pler first-order differential operator (4.22) should be chosen in the definition of Kf

because the fluctuation terms are expected to be small, and these subtle terms ac-
tually depend on the particular coarse graining procedure. The friction operator has
contributions from fluctuations on all time scales shorter than that of the fastest rel-
evant variable, but interactions between fluctuations on different time scales are not
taken into account. This is a standard assumption in calculating dynamic fluctua-

tions. With (4.19), (4.20), and (4.22), the contribution ¯̄M
′
is defined and the coarse

graining procedure is complete.
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Because we often deal with position-dependent fields as variables, the meaning
of differential operators such as the one in (4.21) is rather symbolic. Following the
theory of stochastic partial differential equations [4], we define

K+Π =

〈(
L · δE

δx
+ M · δS

δx

)
,
δΠ

δx

〉
+

1

kB

∞∑
j=1

〈
ej ,

δ

δx

〈
ej ,M · δΠ

δx

〉〉
,(4.23)

where {ej} is a complete orthonormal system in the Hilbert space of independent
variables x, 〈·, ·〉 is the scalar product in that space, and δ/δx denotes the functional
derivative associated with the scalar product of the Hilbert space. Kolmogorov’s
backward equation in section 9.3 of [4] is developed for infinite-dimensional Itô equa-
tions; the rigor and usefulness of infinite-dimensional stochastic equations in which
M occurs between the derivatives remains to be explored.

If the rapid decay of KfΠ(x(t)) can be modeled by

KfΠ(x(t)) = e−t/τKfΠ(x),(4.24)

where τ � τs is an intrinsic time scale for the rapid motion, then we obtain the
approximate formula

¯̄M
′
app(y) =

τ

kB

∫
KfΠ(x)KfΠ(x) ρy(x)Dx.(4.25)

This expression in terms of static correlations is strongly reminiscent of the results of
an alternative coarse graining procedure inspired by the work of Ehrenfest (see the
appendix).

For our example, the first contribution is obtained by averaging the relevant 3×3
subblock of (3.13), which is actually independent of the eliminated rapid variable σ.
In the operator notation without integration over positions, we have

M̄ ′(ρ,v, T ) =

⎛
⎜⎜⎝

− ∂
∂rρ

−∂v
∂r

−∂T
∂r

⎞
⎟⎟⎠ Dm

ρkB

(
ρ ∂
∂r −∂v

∂r −∂T
∂r

)
.(4.26)

Note that, on the one hand, the nonconventional diffusive contribution to the hy-
drodynamic equations is already present on the level of the ten-moment equations.
The viscous stress, on the other hand, results from the coarse graining procedure.
To evaluate the coarse graining contribution to the friction matrix, we note that
K0ρ, K0v, and K0T are given by the right-hand sides of the hydrodynamic equations
(3.18)–(3.20). We then find

Kfρ = 0,(4.27)

Kfv = −1

ρ

∂

∂r
· σ,(4.28)

and

KfT = − 2m

3ρkB
σ : κ.(4.29)
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If all convection and codeformational effects are negligible on the rapid time scale,
(3.21) suggests the simple exponential decay

σ(t) = e−t/τσ,(4.30)

so that the evaluation of (4.19), or of the equivalent Ehrenfest expression (4.25),
requires only the static correlation function

C(r, r′) =
1

N (ρ, T )

∫
σ(r)σ(r′) exp

{
S(ρ, T,σ)

kB

}
Dσ.(4.31)

With (4.4) and the discretization procedure for functional integrals introduced previ-
ously to evaluate the normalization integral we have

C(r, r′) = Ci =

∫
σiσi [det (1 + σi/pi)]

Ni dσi∫
[det (1 + σi/pi)]

Ni dσi

,(4.32)

if r and r′ belong to the same cell i, and C(r, r′) = 0 otherwise. In the continuum
limit, these two cases can be summarized by

C(r, r′) = Viδ(r − r′)Ci = 2
m

ρ
NiCiδ(r − r′).(4.33)

The fourth-rank tensor Ci is determined by the covariance matrix (4.10), and we thus
find

Cij,kl(r, r
′) =

m

ρ
p2δ(r − r′)

(
δikδjl + δilδjk − 2

3
δijδkl

)
.(4.34)

If we switch from the notation with two arguments r and r′, for which a matrix
multiplication implies an integration over r′, to the operator notation without inte-
gration, then we obtain the coarse graining contribution to the friction operator for
conventional hydrodynamics in the form

¯̄M
′
=

⎛
⎝ 0 0 0

0 M22 M23

0 M32 M33

⎞
⎠ ,(4.35)

where the matrix elements are differential operators,

M22 = −1

ρ

[(
∂

∂r
ηT

∂

∂r
+ 1

∂

∂r
· ηT ∂

∂r

)T

− 2

3

∂

∂r
ηT

∂

∂r

]
1

ρ
,(4.36)

M23 =
1

ρ

∂

∂r
· ηT

(
γ̇ − 1

3
1trγ̇

)
2m

3ρkB
,(4.37)

M32 = − 2m

3ρkB
ηT

(
γ̇ − 1

3
1trγ̇

)
· ∂

∂r

1

ρ
,(4.38)

and

M33 =
ηT

2

[
γ̇ : γ̇ − 1

3
(trγ̇)2

](
2m

3ρkB

)2

,(4.39)
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with the deformation rate tensor γ̇ = κ + κT and the viscosity η = τp. In summary,
the systematic coarse graining procedure for hydrodynamics with diffusion resulted
in the known energy (4.13), entropy (4.15), Poisson operator (4.17), and friction
operator with contributions (4.26) and (4.35). We thus obtain the expected set of
hydrodynamic equations (3.18)–(3.20) with

π = p1 − η

(
γ̇ − 1

3
1trγ̇

)
.(4.40)

5. Conclusions and perspectives. The derivation of hydrodynamics from
Grad’s moment equations can be achieved by a systematic coarse graining procedure
rooted in statistical mechanics. This procedure manifestly preserves the thermody-
namic structure of the evolution equations, known as GENERIC, and it gives the
same results as the usual asymptotic perturbation approach.

For general problems, the statistically founded coarse graining procedure guar-
antees the preservation of all properties of the GENERIC structure, except for the
Jacobi identity for the coarse grained bracket. It is hence useful to establish this
identity by Lie–Poisson reduction [17, 24]. If the space of independent variables is the
dual of the Lie algebra of a Lie group, then a Poisson structure is generally obtained
by reduction of the canonical symplectic structure on the cotangent bundle of the Lie
group. For example, in describing fluids, the basic Lie group is the group of space
transformations and the Lie algebra consists of velocity fields, with momentum den-
sity fields as the natural duals. Further independent variables are included through
semidirect products if it is known how the group of space transformations acts on the
vector space of further thermodynamic or structural variables. The coarse grained
Poisson bracket, which automatically satisfies the Jacobi identity, can be obtained by
finding the inherited transformation behavior of the coarse grained variables under
space transformations.

Coarse graining usually changes the nature of the equations and hence the re-
quired set of boundary conditions. It is hence important to include the boundary
conditions into the formulation of the GENERIC structure [26]. In the ideal case,
the thermodynamic building blocks imply a set of boundary conditions that lead to
uniquely solvable equations.

We have emphasized that the GENERIC structure should be preserved by all
coarse graining and approximation procedures. This is crucial to keep a proper sep-
aration of reversible and irreversible terms with all their characteristic features. An
issue of great practical importance is the preservation of the thermodynamic struc-
ture under time discretization, in the spirit of symplectic integrators for Hamiltonian
systems [29]. A perturbative analysis inspired by the classical work of Moser [21]
for Hamiltonian systems suggests that, for time-discrete systems, the Hamiltonian
and the friction operator should be modified by terms of the order of the time step,
whereas the Poisson bracket and the entropy should remain unchanged. However,
there is a clear need to characterize the structure-preserving time-discrete schemes
by a nonperturbative criterion in the spirit of canonical transformations for symplec-
tic structures. In the absence of a variational principle [18] for dissipative dynamic
systems, this is a serious challenge. Clearly, to avoid artificial irreversible effects due
to time discretization, dissipative schemes should become canonical in the limit of
vanishing friction operator.

Appendix. Ehrenfest-type coarse graining. Inspired by the ideas of Paul
and Tatyana Ehrenfest, a microscopic motion with regularly repeated coarse graining
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has been constructed by matching Taylor series [7, 8]. In the present notation, the
coarser variables are of the form y =

∫
Π(x)f(x)Dx, where the evolution of the

probability density is governed by

df

dt
= J(f) = Kf.(A.1)

The notation indicates that the Fokker–Planck operator K is the adjoint of the opera-
tor K+ occurring in Kolmogorov’s backward equation. In the Ehrenfest-type approach
to coarse graining, the irreversible contribution to the time evolution of the variables
is given by [7, 8]

ẏcg = τ

∫
ΠK(1 − P+)Kf∗

yDx,(A.2)

where the period of the coarse graining steps is taken as 2τ . The operator P+ is a
projector to the quasi-equilibrium manifold of probability densities f∗

y (x) obtained
by maximizing the entropy S(f) for given averages y of Π. For arbitrary functionals
A(x) and B(x), the projection operator P+ is defined by

P+A =
δf∗

y

δy
·
∫

ΠADx,(A.3)

which is the adjoint of the operator with the definition

PB = Π ·
∫

B
δf∗

y

δy
Dx.(A.4)

Before we extract a friction operator from (A.2), we need to introduce a number
of related second-order differential operators. So far, we have considered the Fokker–
Planck operator

K = − δ

δx
·
(
L · δE

δx
+ M · δS

δx

)
+ kB

δ

δx
·M · δ

δx
(A.5)

and its adjoint

K+ =

(
L · δE

δx
+ M · δS

δx

)
· δ

δx
+ kB

δ

δx
·M · δ

δx
.(A.6)

Whereas K+ characterizes the mean forward derivative associated with a stochastic
differential equation [22], the mean backward derivative is described by the operator

K− =

(
L · δE

δx
+ M · δS

δx
− 2kBM · δ ln f

δx

)
· δ

δx
− kB

δ

δx
·M · δ

δx
.(A.7)

Without any reference to stochastic differential equations, the definition of the oper-
ator K− can be motivated by the following product or Leibniz rule:∫

ABKf Dx =

∫
fK+(AB)Dx =

∫
f(AK+B + BK−A)Dx.(A.8)

A further second-order differential operator is associated with any factorization of the
solution of the Fokker–Planck equation in the form f = f0e

R. One then has

1

f
Kf =

1

f0
Kf0 − K̃R,(A.9)
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with

K̃ = K− + 2kB
δR

δx
·M · δ

δx
.(A.10)

We now consider the situation where the evolution of f0 can be neglected, that is,
Kf0 = 0, and where the factorization arises from maximization of the entropy under
constraints, that is,

R = − 1

kB
Π · δS

′

δy
+ const.(A.11)

Equation (A.2) can then be rewritten as

ẏcg =
τ

kB

∫
f∗
y [(1 − P)K+Π] [(1 − P)K̃Π]Dx · δS

′

δy
,(A.12)

where we have used the identity (1−P+)f∗
y = f∗

y (1−P). We thus identify a friction
operator which is identical to the approximate expression (4.25), except that one of the
factors KfΠ is formed with K̃ instead of K+. When fluctuation terms are neglected,
as recommended here, then we have K̃ = K+ = K− = K0.
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