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Abstract The order of magnitude method offers an alternative to the Chapman-Enskog and Grad methods to
derive macroscopic transport equations for rarefied gas flows. This method yields the regularized 13 moment
equations (R13) and a generalization of Grad’s 13 moment equations for non-Maxwellian molecules. Both sets
of equations are presented and discussed. Solutions of these systems of equations are considered for steady
state Couette flow. The order of magnitude method is used to further reduce the generalized Grad equations
to the non-linear bulk equations, which are of second order in the Knudsen number. Knudsen layers result
from the linearized R13 equations, which are of the third order. Superpositions of bulk solutions and Knudsen
layers show good agreement with DSMC calculations for Knudsen numbers up to 0.5.
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1 Introduction

Processes in rarefied gases are well described by the Boltzmann equation [3,4,8,18], a non-linear integro-
differential equation that describes the evolution of the particle distribution function f in phase space, i.e., on
the microscopic level.

The most important scaling parameter to characterize processes in rarefied gases is the Knudsen num-
ber Kn, defined as the ratio between the mean free path of a particle and a relevant reference length scale
(e.g., channel width, wavelength). If the Knudsen number is small, the Boltzmann equation can be reduced to
simpler models, which allow faster solutions. Indeed, if Kn < 0.01 (say), the equations of ordinary hydrody-
namics—the laws of Navier–Stokes and Fourier (NSF)—can be derived from the Boltzmann equation, e.g., by
the Chapman–Enskog method [3,4,8,18]. The NSF equations are macroscopic equations for mass density ρ,
velocity vi and temperature T , and thus pose a mathematically less complex problem than the Boltzmann
equation.

Macroscopic equations for rarefied gas flows at Knudsen numbers above 0.01 are highly desirable, since
they promise to replace the Boltzmann equation with simpler equations that still capture the relevant physics.
The Chapman–Enskog expansion is the classical method to achieve this goal, but the resulting Burnett and
super-Burnett equations are unstable [1,13]. Thus, one either has to find ways to stabilize the Burnett and
super-Burnett equations [2,5,23], or to find alternatives to the Chapman–Enskog expansion.

A classical alternative is Grad’s moment method [6], which extends the set of variables beyond the hydro-
dynamic ones (ρ, vi , T ) by adding deviatoric stress tensor σi j , heat flux qi , and possibly higher moments of
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the phase density. The resulting equations are stable, but lead to spurious discontinuities in shocks, and for
given value of the Knudsen number it is not clear what set of moments one would have to consider [18].

Combinations of the Grad and Chapman–Enskog methods were first presented by Reinecke and Kremer
who re-derived the Burnett equations [12]. Struchtrup and Torrilhon performed a Chapman–Enskog expansion
around a non-equilibrium phase density of Grad type [15,18,22], see also [6,7] for earlier attempts. This
approach led to the “regularized 13 moment equations” (R13 equations) which form a stable set of equations
for the 13 variables ρ, vi , T , σi j , qi at super-Burnett order.

A weak point in the Grad method is that no statement is made to connect the Knudsen number and relevant
moments. As a consequence the original derivation of the R13 equations in [15,22] required the assumption
of different time scales for the basic 13 moments, and higher moments. While this assumption leads to a set
of equations with desired behavior, it is difficult to justify since the characteristic times of all moments are, in
fact, of the same order.

An alternative approach to the problem was presented by Struchtrup in Refs. [16–18], partly based on
earlier work by Müller et al. [11]. The Order of Magnitude Method derives approximations to the Boltzmann
equation from its infinite set of corresponding moment equations [16–18]. This method first determines the
order of magnitude of all moments by means of a Chapman–Enskog expansion, forms linear combinations of
moments in order to have the minimum number of moments at a given order, and then uses the information on
the order of the moments to properly rescale the moment equations. Finally, the rescaled moment equations
are systematically reduced by cancelling terms of higher order.

The order of magnitude method gives the Euler and NSF equations at zeroth and first order, and thus agrees
with the Chapman–Enskog method in the lower orders [16]. The second-order equations turn out to be Grad’s
13 moment equations [6] for Maxwell molecules, and a generalization of these for molecules that interact with
power potentials [18]. At the third order, the method was only performed for Maxwell molecules, where it
yields the R13 equations [16].

In the remainder of this paper an approximate solution of the R13 equations for plane Couette flow is
constructed. The geometry of the problem allows one to further reduce the transport equations. The order of
magnitude method is used to derive a non-linear system of equations of second order in Knudsen number from
the generalized Grad equations. These bulk equations describe the flow outside the Knudsen layer. Knudsen
layer contributions are computed from the linearized R13 equations. The presented solutions are superpo-
sitions of the numerical solution of the bulk equations and the Knudsen layers. This approach is similar to
that presented in [9]. For moderate Knudsen numbers, the results stand in excellent agreement to DSMC
simulations.

2 Order of magnitude method

The order of magnitude method considers not the Boltzmann equation itself, but its infinite system of moment
equations. The method of finding the proper equations with order of accuracy λ0 in the Knudsen number
consists of the following three steps:

1. Determination of the order of magnitude λ of the moments.
2. Construction of a moment set with minimum number of moments at any order λ.
3. Deletion of all terms in all equations that would lead only to contributions of orders λ > λ0 in the

conservation laws for energy and momentum.

Step 1 is based on a Chapman–Enskog expansion where a moment φ is expanded according to

φ = φ0 + Knφ1 + Kn2φ2 + Kn3φ3 + · · · , (1)

and the leading order of φ is determined by inserting this ansatz into the complete set of moment equations.
A moment is said to be of leading order λ if φβ = 0 for all β < λ. This first step agrees with the ideas of
Ref. [11]. Alternatively, the order of magnitude of the moments can be found from the principle that a single
term in an equation cannot be larger in size by one or several orders of magnitude than all other terms [20].

In Step 2 new variables are introduced by linear combination of the moments originally chosen. The new
variables are constructed such that the number of moments at a given order λ is minimal. This step does not
only simplify the later discussion, but gives an unambiguous set of moments at order λ. This ensures that the
final result will be independent of the initial choice of moments.
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Step 3 follows from the definition of the order of accuracy λ0: A set of equations is said to be accurate
of order λ0, when stress σi j and heat flux qi are known within the order O (

Knλ0
)
. The evaluation of this

condition is based on the fact that all moment equations are coupled. This implies that each term in any of the
moment equations has some influence on all other equations, in particular on the conservation laws. A theory
of order λ0 will consider only those terms in all equations whose leading order of influence in the conservation
laws is λ ≤ λ0. Luckily, in order to evaluate this condition, it suffices to start with the conservation laws, and
step by step, order by order, add the relevant terms that are required

The order of magnitude method was applied to the special cases of Maxwell molecules and the BGK model
in Refs. [16,18], and it was shown that it yields the Euler equations at zeroth order, the NSF equations at first
order, and Grad’s 13 moment equations (with omission of the non-linear term

σi j
ρ

∂σ jk
∂xk

) at the second order.
The regularized 13 moment equations (R13) are obtained as the third-order approximation. They consist of
the conservation laws for mass, momentum and energy (with θ = RT , and the ideal gas law p = ρθ ; R is the
gas constant),

∂ρ

∂t
+ ∂ρvk

∂xk
= 0 ,

ρ
∂vi

∂t
+ ρvk

∂vi

∂xk
+ ∂p

∂xi
+ ∂σik

∂xk
= 0 , (2)
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ρvk

∂θ

∂xk
+ ∂qk

∂xk
= − (

pδi j + σi j
) ∂vi

∂x j
,

and the balance laws for deviatoric stress σi j (with σi j = σ j i and σkk = 0) and heat flux qk , which read

∂σi j
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qi . (4)

Here, the additional quantities mi jk , Ri j and 	 are moments of higher order [15]. For second-order accuracy,
these equations are closed by setting

	 = Ri j = mi jk = 0 . (5)

The resulting equations are Grad’s original 13 moment equations. However, from the order of magnitude

argument the term
(

σi j
ρ

∂σ jk
∂xk

)
turns to be of the third order, this term can be neglected in a second-order theory.

For third-order accuracy, the equations are closed by the expressions [16]

	 = −σi jσi j
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]
.

The equations (2–4, 6) form the R13 equations.
In the above equations the indices between angular brackets refer to the symmetric and trace-free parts of

tensors. µ denotes the viscosity with µ = µ0 (θ/θ0)
ω; for Maxwell molecules ω = 1.

For general, i.e., non-Maxwellian, molecule types the order of magnitude method was performed to second
order in Refs. [17,18]; the derivation of the third-order equations would be far more involved than for Maxwell
molecules. Again the equations at zeroth and first order are the Euler and NSF equations with exact viscosity,
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Table 1 Burnett coefficients for power potentials (γ = 5 for Maxwell molecules, γ = ∞ for hard sphere molecules) [12]

γ ω �1 �2 �3 �4 �5 �6 θ1 θ2 θ3 θ4 θ5

5 1 10/3 2 3 0 3 8 75/8 45/8 −3 3 39/4
7 0.833 3.561 2.003 2.793 0.217 1.942 7.781 10.038 5.647 −3.010 2.793 9.113
7.66 0.8 3.600 2.004 2.761 0.254 1.784 7.748 10.160 5.656 −3.014 2.761 9.019
9 0.75 3.679 2.007 2.695 0.328 1.466 7.681 10.402 5.674 −3.023 2.695 8.829
17 0.625 3.863 2.016 2.553 0.500 0.814 7.543 10.995 5.736 −3.053 2.553 8.442
∞ 0.5 4.056 2.028 2.418 0.681 0.219 7.424 11.644 5.822 −3.09 2.418 8.286

heat conductivity and Prandtl number. The second-order equations are a generalization of Grad’s 13 moment
equations,
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Here, �α , θα denote the Burnett coefficients as given in Table 1, Pr � 2
3 is the Prandtl number, and ω is the

viscosity exponent.
The order of magnitude method reproduces the established results of the Chapman–Enskog expansion at

the zeroth (Euler) and first (NSF) order. Moreover it provides a new link between the Knudsen number and
Grad’s 13 moment equations which turn out to be of second order in the Knudsen number, together with a
generalization of these for non-Maxwellian molecules. Finally, the method provides a rational derivation of
the R13 equations.

The R13 equations contain the Burnett and super-Burnett equations when expanded in a series in the
Knudsen number [15,22]. However, other than the Burnett and super-Burnett equations, the R13 equations
are linearly stable for all wavelengths and frequencies [15]. Dispersion relation and damping for the R13
equations agree better with experimental data than those for the Navier–Stokes–Fourier equations, or the
original 13 moments system [15]. They also allow the approximate description of Knudsen boundary layers
[15,19]. Note that the accurate description of Knudsen layers requires the solution of the linearized Boltzmann
equation [8].

3 Bulk equations for Couette geometry

The scaling processes of Chapman–Enskog expansion and of the order of magnitude method are applied to
the complete set of equations without further consideration of geometry, boundary conditions, etc. Thus the
basic scaling argument gives the maximum size (or minimum order of magnitude) of the moments involved.
However, due to the particular geometry of a problem, the individual vector and tensor components of σi j or
qi can have different orders of magnitude. This allows one to further reduce the equations.

In this section the generalized 13 moment equations will be further reduced for steady-state Couette
flow: Two infinite parallel plates at constant distance L move with the constant velocities v0

W , vL
W relative to

each other in their respective planes, and are kept at constant temperatures θ0
W , θ L

W . The coordinate frame is
chosen such that the planes move into the direction x = x1, and y = x2 is the direction perpendicular to the
plates.

We are interested only in the second-order equations, and thus it is sufficient to base the argument on the
generalized Grad equations (which are of the second order); a similar treatment of the R13 equations would
lead to the same result (for Maxwell molecules).
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3.1 Generalized 13 moment equations for Couette flow

Due to the symmetry of the problem, all variables will depend only on the coordinate y. Since the walls are
impermeable, the velocity of the gas must point into the x-direction, that is

vi = {v (y) , 0, 0}i and thus
∂vk

∂xk
= 0, vk

∂

∂xk
= 0 . (9)

Furthermore, since the setup is independent of the third space coordinate, z = x3, neither stress nor heat flux
should be associated with that direction, so that σ13 = σ23 = q3 = 0, and

σi j =
⎡

⎣
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The conservation laws (2) reduce to
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The first and fourth equation are trivial, and two of the remaining three can be integrated so that

σ12 = σ 0
12 = const., ρθ + σ22 = P0 = const.,
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The Eqs. (7, 8) for the relevant components of stress and heat flux can then be cast to read
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Moreover, one finds

σ11 = −µ

p

�6

8
σ12

dv

dy
− 1

2
σ22 ; (17)

this was used to simplify the other equations.

3.2 Orders of magnitude

In a Couette flow the gradients of velocity and temperature are prescribed, while stress and heat flux result
from the response of the gas to the given boundary conditions for temperature and velocity. To find the order
of magnitude of the components of stress and heat flux for given values of the gradients and given Knudsen
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number, the scales of the quantities are made explicit by replacing

µ → εµ, σ12 → ε12σ12, σ22 → ε22σ22, q1 → ε1q1, q2 → ε2q2. (18)

Here, ε is the Knudsen number, and ε12, ε22, ε1, ε2 are unknown scaling factors that are to be determined
from the equations. The idea is that the scaling factors carry the information about the size of the variables,
which appear to be dimensionless. At the end of the treatment, the scaling factors are set to unity, which restores
the dimension of the variables.

From the original derivation, or from the Chapman–Enskog expansion, we know that these scaling factors
are at best of the order of the Knudsen number, but they might be smaller. Thus, they are of order O (εa) with
a ≥ 1. The hydrodynamic variables and their gradients are not scaled.

The rescaled equation for σ12 reads
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The only term at order O (
ε0

)
is the term without a scaling parameter, P0

∂v
∂y , on the left hand side. Since all

unknown scaling parameters are at least of order O (ε), by the fact that a single term in an equation cannot
be larger in size by one or several orders of magnitude than all other terms [20], this term must be matched
in order of magnitude by the term on the right, i.e.,
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After scaling, the equation for q2 reads
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Again, only the last term on the l.h.s. is O (
ε0

)
, the term on the right must be of the same order, that is
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With the previous results for ε12 and ε2, the scaled equations for σ22 and q1 read
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All terms on the left hand sides are at least of order O (ε); hence, it follows

ε22 = ε2 and ε1 = ε2. (25)
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3.3 Properly scaled equations

The above arguments revealed the proper order of magnitude of all terms in the equations in powers of the
Knudsen number ε; the properly scaled equations are
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3.4 Bulk equations

The first-order equations are obtained by removing all terms that carry a factor εa (a ≥ 1). As one would
expect, this gives the NSF equations for Couette flow,
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The second-order equations are obtained by adding terms that carry the factor ε1 and ignoring those with
higher powers in ε. This gives again the NSF laws for σ12 and q2 and the leading contributions for σ22 and q1,
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For Maxwell molecules this gives the set of equations first presented in [21], see also [18],

σ12 = −µ
∂v

∂y
, q2 = −5

2

µ

Pr

∂θ

∂y
, σ22 = −6

5

σ12σ12

P0
, q1 = 7

2

q2σ12

P0
. (32)

For hard spheres we obtain

σ22 = −1.1596
σ12σ12

P0
− 0.046139

q2q2

θ P0
, q1 = 3.126

q2σ12

P0
. (33)

Higher order approximations can be obtained in the same manner, but these will not be considered here.
The equations (31) will be termed as “bulk equations”. Indeed, Grad’s 13 moment equations, and their

generalization (7,8), cannot describe Knudsen layers [18,19], and thus the equations are valid only outside the
Knudsen layer.
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Normal stress, σ22, and the heat flux parallel to the wall, q1, both vanish in the NSF theory, and thus their
non-zero values as given by (31) describe pure rarefaction effects. In particular it must be noted that there is
no temperature gradient in the x-direction: q1 is a heat flux that is not driven by a temperature gradient.

It is worthwhile to note that the bulk equations can be obtained also from the Burnett equations by means
of a similar scaling procedure, see the appendix for details.

The solution of the bulk equations for a Couette flow (2,31) requires jump and slip boundary conditions of
second order that can be computed from Grad’s 13 moment distribution [14,18],

V = vα − vα
W =

− 2−χ
χ

α1

√
π
2

√
θσ12nα − 1

5α2q1

ρθ + 1
2σ22

, θα − θα
W = −

2−χ
2χ

β1

√
π
2

√
θq2nα + 1

4θσ22

ρθ + 1
2σ22

+ V 2

4
,

(34)

with correction factors α1 = 1.114, α2 = 1.34533, β1 = 1.127; V is the slip velocity [3,18]. The pressure
constant P0 follows from the prescribed mass between the plates.

Note that the solution of the full 13 moment equations would require an additional boundary condition
for σ22. Marquez and Kremer present an analytical solution of Grad’s 13 moment equations for a Couette
flow under the assumptions of constant pressure and temperature independent viscosity [10]; for hard sphere
molecules they find q1 = 3.55 q2σ12

P0
.

4 Superpositions of bulk solutions and Knudsen layers

For constructing the final solution, it is assumed that the non-equilibrium quantities can be split into the bulk
(B) and Knudsen layer (L) contributions, φ = φB +φL , where the Knudsen layer contributions vanish in some
distance from the wall. The bulk contributions will be computed from the equations of the previous section.

4.1 Knudsen layers with the R13 equations

The Knudsen layer contribution is computed from linearizing the R13 equations (2–6) in Couette geometry.
Together with the linearized conservation laws, the relevant equations can be reduced to (see Refs. [18,19] for
details)

p0
dv

dy
+ 2

5

dq1

dy
= − p0

µ0
σ12 = const., q1 = 9

5

(
µ0

√
θ0

p0

)2
d2q1

dy2 ,

5

2

dθ

dy
+ θ0

p0

dσ22

dy
= −2

3

q2

µ0
= const., σ22 = 6

5

(
µ0

√
θ0

p0

)2
d2σ22

dy2 . (35)

Integration of Eq. (35) gives for velocity and temperature

v = v0 − σ12

µ0

(
y − L

2

)
− 2

5

q1

p0
with q1 = A sinh

[√
5
9

y
L − 1

2
Kn

]
+ B cosh

[√
5
9

y
L − 1

2
Kn

]
, (36)

θ = θ0 − 4

15

q2

µ0

(
y − L

2

)
− 2

5

θ0σ22

p0
with σ22 = C sinh

[√
5
6

y
L − 1

2
Kn

]
+ D cosh

[√
5
6

y
L − 1

2
Kn

]
. (37)

v0, σ12, A, B and θ0, q1, C , D are constants of integration that must be obtained from boundary conditions.

Kn = µ0
√

θ0
p0 L is the Knudsen number. We can identify

(
− 2

5
q1
p0

)
and

(
− 2

5
θ0σ22

p0

)
as the Knudsen boundary layers

for velocity and temperature, according to the R13 equations.
Figure 1 shows the shape of the hyperbolic sine and cosine functions that make up the Knudsen layers. It

can be seen that for Kn ≤ 0.05 the Knudsen layers vanish in the bulk (that is in some distance away from the
wall). For Kn ≥ 0.1, however, the Knudsen layers contribute through the whole domain.

Grad’s 13 moment equations and the generalized 13 moment equations do not give linear Knudsen layers.
The Burnett equations yield Knudsen layers for density ρ and σ22, but not for v, θ and q1. The super-Burnett

equations give periodic solutions of the form A sin
[
λ

x−1/2
Kn

]
, B cos

[
λ

x−1/2
Kn

]
, which are unphysical [18].
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Fig. 1 Knudsen layer contributions for Knudsen numbers between 0.01 and 0.5

4.2 Superpositions

The superposition of bulk solution and Knudsen layers for the R13 equations gives

v = v|B − 2

5

q1|L
P0

, θ = θ|B − 2

5

θ0σ22|L
P0

, σ12 = σ12|B, σ22 = σ22|B + σ22|L ,

p = P0 − σ22|L , ρ = p

θ
, q1 = q1|B + q1|L , q2 = q2|B . (38)

The constants of integration, A, B, C, D, should be computed from additional boundary conditions for
normal stress, σ22, and parallel heat flux, q1. Since at present no set of reliable boundary conditions is available,
the constants were obtained by fitting to DSMC simulations for Maxwell molecules. The coefficients A, D for
the simulations are

Kn = 0.05 Kn = 0.1 Kn = 0.5

vL
W = 200 m

s A = 0.009 A = 0.015 A = 0.03
D = 0.0015 D = 0.003 D = 0.02

;

due to the symmetry of the results, one finds B = C = 0.
The figures compare results of DSMC calculations, NSF equations with first-order jump and slip boundary

conditions, and the R13 equations (superpositions) for v0
W = 0, vL

W = 200 m
s , θ0

W = θ L
W = 273K and Knudsen

numbers Kn = 0.05 (Fig. 2), for Kn = 0.1 (Fig. 3), and Kn = 0.5 (Fig. 4). The numerical method for solving
the bulk equations with jump and slip boundary conditions is presented in [21].

For Kn = 0.05 and Kn = 0.1 the superposition matches the DSMC simulations quite well; the most visible
differences lie in the bulk values for σ12 and σ22. Due to the quadratic term V 2

4 in the jump condition (34)2,
the temperature maximum is reproduced very well, while some differences can be observed at the boundaries.

The NSF, on the other hand, can neither describe Knudsen boundary layers nor the rarefaction effects
described by the bulk contributions to σ22 and q1. Nevertheless, the NSF results for the hydrodynamic variables
ρ, θ , v and the classical fluxes σ12 and q2 agree quite well with the DSMC simulations. The NSF temperature
curve lies too low, inclusion of the term V 2

4 into the temperature boundary condition would improve the results
further.

We note that for Kn = 0.05 the Knudsen layers do not contribute to the result in the middle of the domain
(see Fig. 1). Thus the result in the middle of the domain is governed by the bulk solution which gives excellent
agreement to the DSMC results. Moreover, for Kn = 0.05 and Kn = 0.1, the computed shape of the Knudsen
layers agrees perfectly with the DSMC simulations.

For Kn = 0.5 we notice marked deviations in the curves for the hydrodynamic variables and for shear
stress σ12 and normal heat flux q2. These are due to a lack of accuracy of the bulk equations, which are only
of second order in Kn. It can be expected that consideration of higher order terms, i.e., of the full non-linear
R13 equations, which are of third-order accuracy in Kn, will give a better match.

In Ref. [10], Marquez and Kremer present an analytical solution of Grad’s 13 moment equations for Cou-
ette flow under the assumption of constant pressure. Their solution agrees with our bulk solution, but does
not include boundary layer contributions which are not contained in the Grad 13 equations, but arise only
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Fig. 2 Couette flow at Kn = 0.05,with vL
W = 200 m

s . Continuous line: DSMC, finely dashed line: NSF, dashed line: superposition
of bulk solution and linear Knudsen layer solution. Recall that NSF implies q1 = σ22 = 0 (curves not shown)

in higher order theories. The solution of the bulk equations allows the direct control of the boundary values
for temperature and velocity, while the analytical solution in Ref. [10] needs the shear rate as input, and then
deduces the corresponding boundary values for temperature and velocity.

It is worthwhile to note that only the superpositions of linear Knudsen layers and bulk solution gives
good agreement over the whole range of velocities. The non-linear contributions of the bulk solution can be
ignored only at very low velocities (far lower than those presented) [19]. For the cases presented here, both
contributions are equally important. At larger velocities the non-linear contributions play a more marked role.
For those cases the solution of Ref. [10] agrees better with DSMC.

Due to the fitting of the Knudsen layer amplitudes, the presented results are not self-contained. We are
currently working on developing additional boundary conditions for q1 and σ22 and hope that we will be able
to present a set of reliable additional boundary conditions in the future.

Obviously, the presented superposition of bulk equations and Knudsen layers can only be done in simple
geometries, e.g., Couette and Poiseuille flows. We see the present results as a test for the reliability and as
proof for the richness of the basic equations solved, the R13 equations.

The NSF equations can describe the basic hydrodynamic features of the flows reasonably well, but cannot
describe any rarefaction effects other than jump and slip. For Couette flow, hydrodynamic (ρ, θ, v, σ12, q2) and
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Fig. 3 Couette flow at Kn = 0.1,with vL
W = 200 m

s . Continuous line: DSMC, finely dashed line: NSF, dashed line: superposition
of bulk solution and linear Knudsen layer solution. Recall that NSF implies q1 = σ22 = 0 (curves not shown)

rarefaction (σ22, q1) effects are geometrically decoupled. For more complex flow, one will expect a stronger
coupling, which might lead to stronger deviations. In any case, the non-linear term V 2

4 should be included in
the temperature jump boundary conditions for the NSF equations.

It should be noted that, for the presented results, the computational time is comparable to solution of the
NSF equations (few seconds), while the computation of the DSMC results takes hours or days depending on
Knudsen number and velocity (small Knudsen numbers require many simulated particles, computations with
small velocities have strong numerical noise, in both cases run times must be large).

In conclusion we state that the R13 equations gives reliable results for boundary value problems, includ-
ing the description of Knudsen boundary layers and rarefaction effects, like heat flux without a temperature
gradient. The R13 equations and their reduction to the bulk equations are derived by means of the order of
magnitude method. Due to the success of the equations the order of magnitude method must be considered as
a useful and reliable tool for the reduction of models.

Acknowledgment This research was supported by the Natural Sciences and Engineering Research Council (NSERC). We thank
Adam Schuetze (University of Victoria) for performing the DSMC calculations.
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Fig. 4 Couette flow at Kn = 0.5,with vL
W = 200 m

s . Continuous line: DSMC, finely dashed line: NSF, dashed line: superposition
of bulk solution and linear Knudsen layer solution. Recall that NSF implies q1 = σ22 = 0 (curves not shown)

Appendix: Reduction of Burnett equations

In Couette geometry, the Burnett equations [8,18] reduce to

σ
(B)
12 = −µ

dv

dy
, q(B)

2 = −5

2

µ

Pr
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dy
,

σ
(B)
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p

2

3
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]

Insertion of σ
(B)
12 , q(B)

2 into the conservation laws (12)1,3 shows, with d ln µ = d ln θω = ωd ln θ , that
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With this, the equations for σ
(B)
22 , q(B)

1 become

σ
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�3 Pr −�6
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3
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dv
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q(B)
1 = −µ2
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ω
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θ4 − 3
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+ θ3

2

µ2θ
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(42)

at first glance, the underlined terms are of second order (as can be seen form the factor µ2 ∝ ε2). However, the
conservation of normal momentum gives dp = −dσ22 and σ22 is of second order. Thus, the terms involving
pressure derivatives lead to terms of fourth order in ε. Since the Burnett equations were derived by considering
second-order terms in ε, these fourth-order terms must be ignored. Note that a proper theory of the fourth order
would contain additional terms of the fourth order, so that, obviously, the Burnett equations are not correct to
fourth order. As was shown in [18], these terms would lead to Knudsen layers for density, and σ22. Removal of
the underlined terms recovers the bulk equations (31) when gradients of velocity and temperature are replaced
by σ12 and q2.
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