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Abstract. The order of magnitude method offers an alternative to the methods of Chapman-Enskog and Grad to derive
macroscopic transport equations for rarefied gas flows. This method yields the regularized 13 moment equations (R13) which
are presented and discussed. Approximate solutions of the R13 equations are considered for steady state Couette flow. The
order of magnitude method is used to derive the non-linear bulk equations, which are of second order in the Knudsen number.
Knudsen layers result from the linearized R13 equations, which are of third order. Superpositions of bulk solutions and
Knudsen layers show excellent agreement with DSMC calculations.

INTRODUCTION

Processes in rarefied gases are well described by the Boltzmann equation [1, 2], a non-linear integro-differential
equation that describes the evolution of the particle distribution function f in phase space, i.e. on the microscopic
level.

The most important scaling parameter to characterize processes in rarefied gases is the Knudsen number Kn,
defined as the ratio between the mean free path of a particle and a relevant reference length scale (e.g. channel width,
wavelength, etc.). If the Knudsen number is small, the Boltzmann equation can be reduced to simpler models, which
allow faster solutions. Indeed, if Kn < 0.01 (say), the equations of ordinary hydrodynamics—the laws of Navier-
Stokes and Fourier (NSF)—can be derived from the Boltzmann equation, e.g. by the Chapman-Enskog method [1, 2].
The NSF equations are macroscopic equations for mass density ρ, velocity vi and temperature T , and thus pose a
mathematically less complex problem than the Boltzmann equation.

Macroscopic equations for rarefied gas flows at Knudsen numbers above 0.01 are highly desirable, since they
promise to replace the Boltzmann equation with simpler equations that still capture the relevant physics. The Chapman-
Enskog expansion is the classical method to achieve this goal, but the resulting Burnett and super-Burnett equations
are unstable [3]. Thus, one either has to find ways to stabilize the Burnett and super-Burnett equations [4]–[6], or to
find alternatives to the Chapman-Enskog expansion.

A classical alternative is Grad’s moment method [7] which extends the set of variables beyond the hydrodynamic
ones by adding deviatoric stress tensor σi j, heat flux qi and possibly higher moments of the phase density. The resulting
equations are stable but lead to spurious discontinuities in shocks, and for given value of the Knudsen number it is not
clear what set of moments one would have to consider [2].

Combinations of the Grad and Chapman-Enskog methods were presented by Reinecke and Kremer who rederived
the Burnett equations [8], and by Struchtrup and Torrilhon who performed a Chapman-Enskog expansion around a non-
equilibrium phase density of Grad type [9, 10, 2]. The latter approach led to the ”regularized 13 moment equations”
(R13 equations) which form a stable set of equations for the 13 variables ρ, vi, T , σi j, qi at super-Burnett order.

The weak point in the Grad method is that no statement is made to connect Knudsen number and relevant moments.
As a consequence the original derivation of the R13 equations in Refs. [9, 10] required the assumption of different
time scales for the basic 13 moments, and higher moments. While this assumption leads to a set of equations with
desired behavior, it is difficult to justify since the characteristic times of all moments are, in fact, of the same order.

An alternative approach to the problem was presented by Struchtrup in Refs. [11, 12, 2], partly based on earlier
work by Müller et al. [13]. The order of magnitude method considers not the Boltzmann equation itself, but its infinite
system of moment equations. The method of finding the proper equations with order of accuracy λ0 in the Knudsen
number consist of the following three steps:

1. Determination of the order of magnitude λ of the moments.
2. Construction of a moment set with minimum number of moments at any order λ.



3. Deletion of all terms in all equations that would lead only to contributions of orders λ > λ0 in the conservation
laws for energy and momentum.

Step 1 is based on a Chapman-Enskog expansion where a moment φ is expanded according to

φ = φ0 +Knφ1 +Kn2φ2 +Kn3φ3 + · · · ,
and the leading order of φ is determined by inserting this ansatz into the complete set of moment equations. A moment
is said to be of leading order λ if φβ = 0 for all β < λ. This first step agrees with the ideas of Ref. [13]. Alternatively,
the order of magnitude of the moments can be found from the principle that a single term in an equation cannot be
larger in size by one or several orders of magnitude than all other terms [15].

In Step 2 new variables are introduced by linear combination of the moments originally chosen. The new variables
are constructed such that the number of moments at a given order λ is minimal. This step does not only simplify
the later discussion, but gives an unambiguous set of moments at order λ. This ensures that the final result will be
independent of the initial choice of moments.

Step 3 follows from the definition of the order of accuracy λ0: A set of equations is said to be accurate of order λ0,
when stress σi j and heat flux qi are known within the order O

(
Knλ0

)
. The evaluation of this condition is based on

the fact that all moment equations are coupled. This implies that each term in any of the moment equations has some
influence on all other equations, in particular on the conservation laws. A theory of order λ0 will consider only those
terms in all equations whose leading order of influence in the conservation laws is λ≤ λ0. Luckily, in order to evaluate
this condition, it suffices to start with the conservation laws, and step by step, order by order, add the relevant terms
that are required

The order of magnitude method was applied to the special cases of Maxwell molecules and the BGK model in
Refs. [11, 2], and it was shown that it yields the Euler equations at zeroth order, the NSF equations at first order,
and Grad’s 13 moment equations (with omission of the non-linear term σi j

ρ
∂σ jk
∂xk

) at second order. The regularized 13
moment equations (R13) are obtained as the third order approximation. They consist of the conservation laws for mass,
momentum and energy (with θ = RT , and the ideal gas law p = ρθ; R is the gas constant),
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and the balance laws for deviatoric stress σi j (with σi j = σ ji and σkk = 0) and heat flux qk, which read
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The equations are closed are by the expressions
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In the above equations the indices between angular brackets refer to the symmetric and trace-free parts of tensors.
Grad’s original 13 moment equations are recovered by setting ∆ = Ri j = mi jk = 0. µ denotes the viscosity with
µ = µ0 (θ/θ0)

ω; for Maxwell moelcules ω = 1.
For general, i.e. non-Maxwellian, molecule types the order of magnitude method was performed to second order

in Refs. [12, 2]; the derivation of the third order equations would be far more involved than for Maxwell molecules.
Again the equations at zeroth and first order are the Euler and NSF equations with exact viscosity, heat conductivity
and Prandtl number. The second order equations are a generalization of Grad’s 13 moment equations.

The order of magnitude method reproduces the established results of the CE expansion at zeroth (Euler) and first
(NSF) order. Moreover it provides a new link between the Knudsen number and Grad’s 13 moment equations which
turn out to be of second order in the Knudsen number, together with a generalization of these for non-Maxwellian
molecules. Finally, the method provides a rational derivation of the R13 equations.

As was shown in Refs. [9, 10], the R13 equations have the following properties: They contain the Burnett and
super-Burnett equations when expanded in a series in the Knudsen number. However, other than the Burnett and super-
Burnett equations, the R13 equations are linearly stable for all wavelengths and frequencies. Dispersion relation and
damping for the R13 equations agree better with experimental data than those for the Navier-Stokes-Fourier equations,
or the original 13 moments system. They also allow the description of Knudsen boundary layers .

BULK EQUATIONS FOR COUETTE GEOMETRY

The scaling processes of Chapman-Enskog expansion and of the order of magnitude method are applied to the complete
set of equations without further consideration of geometry, boundary conditions etc. Thus the basic scaling argument
gives the maximum size (or minimum order of magnitude) of the moments involved. However, due to the particular
geometry of a problem the vector and tensor components of σi j or qi can be of different order of magnitude. This
allows to further reduce the equations.

In this section the 13 moment equations will be further reduced for steady-state Couette flow: Two infinite parallel
plates at constant distance L move with the constant velocities v0

W , vL
W relative to each other in their respective planes,

and are kept at constant temperatures θ0
W , θL

W . The coordinate frame is chosen such that the planes move into the
direction x = x1, and y = x2 is the direction perpendicular to the plates.

We are interested only in the second order equations, and thus it is sufficient to base the argument on Grad’s 13
moment equations; a similar treatment of the R13 equations would lead to the same result.

Due to the symmetry of the problem, all variables will depend only on the coordinate y. Since the walls are
impermeable, the velocity of the gas must point into the x-direction, that is
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Furthermore, since the set-up is independent of the third space coordinate, z = x3, neither stress nor heat flux should
be associated with that direction, so that σ13 = σ23 = q3 = 0, and

σi j =




σ11 (y) σ12 (y) 0
σ12 (y) σ22 (y) 0

0 0 −σ11 (y)−σ22 (y)




i j

, qi = {q1 (y) ,q2 (y) ,0}i . (5)

The conservation laws (1) reduce to
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The first and fourth equation are trivial, and two of the remaining three can be integrated so that
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12 = const. , ρθ+σ22 = P0 = const. ,
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The equations (2, 3) to second order (i.e. with ∆ = Ri j = mi j = 0) for the relevant components of stress and heat flux
can then be cast to read
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In Couette flow the gradients of velocity and temperature are prescribed, while stress and heat flux result from the
response of the gas to the given boundary conditions for temperature and velocity. To find the order of magnitude of
the components of stress, σi j, and heat flux, qi, for given values of the gradients and given Knudsen number, the scales
of the quantities are made explicit by replacing

µ→ εµ , σ12 → ε12σ12 , σ22 → ε22σ22 , q1 → ε1q1 , q2 → ε2q2 .

Here, ε is the Knudsen number, and ε12, ε22, ε1, ε2 are unknown coefficients that are to be determined from the
equations. From the original derivation, or from the Chapman-Enskog expansion, we know that these scaling factors
are at best of the order of the Knudsen number, but they might be smaller. Thus, they are of order O (εa) with a ≥ 1.
The hydrodynamic variables and their gradients are not scaled.

The rescaled equations for σ12 and q2 read
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Each equation has only one explicit term of order O
(
ε0

)
. Since all unkown scaling parameters are at least of order

O (ε), by the principle that a single term in an equation cannot be larger in size by one or several orders of magnitude
than all other terms [15], this term must be matched in order of magnitude by the term on the right, so that ε12 = ε2 = ε.

With the previous results, the scaled equations for σ22 and q1 read
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All terms on the left hand sides are at least of order O (ε), hence it follows ε22 = ε1 = ε2.
The above arguments revealed the proper order of magnitude of all terms in the equations in powers of the Knudsen

number ε. The properly scaled equations read
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The first order equations are obtained by removing all terms that carry a factor εa (a ≥ 1). As one would expect, this
gives the NSF equations for Couette flow, viz.
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The second order equations are obtained by adding terms that carry the factor ε1 and ignoring those with higher powers
in ε. This gives again the NSF laws for σ12 and q2 and the leading contributions for σ22 and q1 [16, 2],
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The equations (7) will be termed as ”bulk equations”. Indeed, Grad’s 13 moment equations cannot describe Knudsen
layers [2], and thus the equations are valid only outside the Knudsen layer.

Normal stress, σ22, and heat flux parallel to the wall, q1, both vanish in the NSF theory, and thus their non-zero
values as given by (7) describe pure rarefaction effects. In particular it must be noted that there is no temperature
gradient in the x-direction: q1 is a heat flux that is not driven by a temperature gradient.



The solution of the bulk equations for Couette flow (1,7) requires jump and slip boundary conditions of second
order that can be computed from Grad’s 13 moment distribution [2],
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with correction factors α1,α2,β1 close to unity [1, 2]. The constant P0 follows from the prescribed mass between the
plates. Note that the solution of the full 13 moment equations would require an additional boundary condition for σ22.

SUPERPOSITION OF BULK SOLUTION AND KNUDSEN LAYERS

For constructing the solution it is assumed that the non-equilibrium quantities can be split into the bulk (B) and
Knudsen layer (L) contributions as φ = φB +φL, where the Knudsen layer contributions vanish in some distance from
the wall. The bulk contributions will be computed from the bulk equations of the previous section.

The Knudsen layer contribution is computed from the linearized R13 equations in Couette geometry. Together with
the linearized conservation laws, the relevant equations can be reduced to
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so that velocity and temperature are obtained as
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v0, σ12, A, B and θ0, q1, C, D are constants of integration and Kn = µ0
√

θ0
p0L is the Knudsen number. We can identify(
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as the Knudsen boundary layers for velocity and temperature according to the R13 equations.

Grad’s 13 moment equations do not give linear Knudsen layers. The Burnett equations yield Knudsen layers for
density ρ and σ22, but not for v, θ and q1. The super-Burnett equations give unphysical periodic solutions.

The superposition of bulk solution and Knudsen layers for the R13 equations gives
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, q1 = q1|B +q1|L , q2 = q2|B .

The constants of integration A,B,C,D, should be computed from additional boundary conditions for normal stress
and parallel heat flux. Since at present no set of reliable boundary conditions is available, the constants were obtained
by fitting to DSMC simulations for Maxwell molecules (the symmetry of the results shows that B = C = 0). Figures 1
and 2 compare results of DSMC calculations, NSF equations with first order jump and slip boundary conditions, and
the R13 equations (superpositions) for v0

W = 0, vL
W = 200 m

s , θ0
W = θL

W = 273K and Knudsen numbers Kn = 0.05, 0.1.
The numerical method for the solution of the R13 equation is outlined in Ref. [16]. Recall that σ22 = P0− p.

The superpositions match the DSMC simulations quite well. Due to the quadratic term V 2

4 in the jump condition
(8)2, the temperature maximum is reproduced very well, while some differences can be observed at the boundaries.
NSF, on the other hand, can neither describe Knudsen boundary layers nor the rarefaction effects described by σ22 and
q1. For Knudsen numbers ≥ 0.5 non-linear higher order terms become relevant which are not included in the second
order bulk equations (results not shown).

In conclusion we state that the results presented in this paper show that the R13 equations can give reliable results
for boundary value problems, including the description of Knudsen boundary layers.
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FIGURE 1. Couette flow at Kn = 0.05, with vL
W = 200 m

s . Continuous line: DSMC, finely dashed line (- - - - ): NSF, dashed line
(– – – – ): superposition of bulk solution and linear Knudsen layer. Recall that NSF implies q1 = σ22 = 0 (curves not shown).

FIGURE 2. Couette flow at Kn = 0.1, with vL
W = 200 m

s . Continuous line: DSMC, finely dashed line (- - - - ): NSF, dashed line
(– – – – ): superposition of bulk solution and linear Knudsen layer. Recall that NSF implies q1 = σ22 = 0 (curves not shown).
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