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Abstract

We propose a new test method for investigating which macroscopic continuum models, among the many existing mod-
els, give the best description of rarefied gas flows over a range of Knudsen numbers. The merits of our method are: no
boundary conditions for the continuum models are needed, no coupled governing equations are solved, while the Knudsen
layer is still considered. This distinguishes our proposed test method from other existing techniques (such as stability anal-
ysis in time and space, computations of sound speed and dispersion, and the shock wave structure problem). Our method
relies on accurate, essentially noise-free, solutions of the basic microscopic kinetic equation, e.g. the Boltzmann equation or
a kinetic model equation; in this paper, the BGK model and the ES-BGK model equations are considered.

Our method is applied to test whether one-dimensional stationary Couette flow is accurately described by the following
macroscopic transport models: the Navier—Stokes-Fourier equations, Burnett equations, Grad’s 13 moment equations,
and the regularized 13 moment equations (two types: the original, and that based on an order of magnitude approach).
The gas molecular model is Maxwellian.

For Knudsen numbers in the transition-continuum regime (Kn < 0.1), we find that the two types of regularized 13
moment equations give similar results to each other, which are better than Grad’s original 13 moment equations, which,
in turn, give better results than the Burnett equations. The Navier—Stokes—Fourier equations give the worst results. This is
as expected, considering the presumed accuracy of these models. For cases of higher Knudsen numbers, i.e. Kn > 0.1, all
macroscopic continuum equations tested fail to describe the flows accurately. We also show that the above conclusions
from our tests are general, and independent of the kinetic model used.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The Boltzmann equation is the basic mathematical description of rarefied gas flows commonly encountered
in aerodynamics, environmental problems, aerosol reactors, micromachines, the vacuum industry, etc. [1,2].
Kinetic models with simplified expressions for the molecular collision term are often considered in order to
reduce the mathematical complexity of the original Boltzmann equation [2-4]. Macroscopic continuum-type
equations for rarefied gas flows can also be derived from the Boltzmann equation, or from other kinetic mod-
els, by a variety of means [4] including the Chapman—Enskog method [2-7], Grad’s moment method [4,5,8],
and variations and combinations of these [4,9-22].

Consequently, many competing macroscopic continuum models (MCMs) are now available in the litera-
ture. These include the Navier—Stokes—Fourier (NSF) equations and the Burnett equations from the tradi-
tional Chapman-Enskog expansion method [2-7], the augmented Burnett equations [9], Chen and Spiegel’s
modified NSF and Burnett equations [10,11], the regularized Burnett equations [12,13], Grad’s 13 moment
equations (abbreviated as Gradl3 in this paper) [4,5,8], moment equations from some method related to
maximum entropy [14-16], 13 moment equations from consistent order extended thermodynamics [17], the
original regularized 13 equations (abbreviated as R13A in this paper) [3,4,18,19], and regularized 13 equations
based on an order of magnitude approach (abbreviated as R13B in this paper) [3,4,20,21], NSF equations with
a wall function technique [22], and others.

Evidently, it is necessary now to develop some way of assessing which MCM gives the best description of
rarefied gas flows. Several test techniques are routinely used to examine the capabilities of MCMs, including
the computation of shock wave structures [4,19,23], tests of temporal and spatial stability [4,18,19,24], disper-
sion and damping of sound waves [4,11,18], thermodynamic consistency (validity of the second law of ther-
modynamics) [12,14-17], and description of the Knudsen layer in Couette flow [4,25] (or its limiting case,
Kramer’s problem [26]).

Since boundary conditions for sets of MCMs are still in development, non-mature and inconsistent
[4,20,25-27], existing test techniques (except the description of Couette flow and Kramer’s problem) do not
generally predict the flow in the Knudsen layer, even though this is a very important aspect of rarefied gas
dynamics [2,5,28]. In [25], only the general structure of linear solutions of several MCMs applied to the Knudsen
layer in Couette flow was discussed, and some coefficients still need to be determined by the unknown bound-
ary conditions. In [26], these boundary conditions were obtained from the kinetic theory solution of Kramer’s
problem based on the linearized BGK model.

In this paper, we present an alternative test method for assessing MCM:s for rarefied gas dynamics. It allows
us to incorporate the Knudsen layer without requiring boundary conditions but relies on an accurate numer-
ical solution of the microscopic equation (e.g. the Boltzmann equation, or other kinetic model equations). This
allows us to compute accurate values of macroscopic quantities (i.e. the moments of the distribution function),
such as mass density p, temperature 7, velocity u;, pressure tensor p;;, viscous stress (or pressure deviator) oy,
and heat flux ¢;. In this paper, we call the values of these moments from this type of computation “direct
values”.

In our test method, the viscous stress and the heat flux are calculated from the corresponding expressions in
a MCM for a specific flow, where values of the moments in the MCM expressions are chosen to be the direct
values obtained from the kinetic theory computations. Any differences between the values of the viscous stress
and heat flux calculated in this manner and their direct values is then a measure of the quality of the MCM.
An MCM can be considered to be more physically realistic (at least for this test flow) than another when its
calculated values of viscous stress and heat flux are closer to the direct values.

We also note that this test technique does not require a solution of the governing equations of the MCMs
(coupled partial differential equations), but even so real rarefied gas flows involving the Knudsen layer are con-
sidered using the full equations, not just linear solutions as in [25,26]. On the other hand, our method requires
the solution of a kinetic equation for rarefied flows, which is numerically expensive. The spatial derivatives of
moments using their direct values are required in the tests, which means a high accuracy is needed of the com-
putations of the kinetic equations.

The most common method for simulating rarefied gas flows — direct simulation Monte Carlo (DSMC) [29]
—could be used here, although very intensive computational effort is required to limit the amount of stochastic
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noise which can spoil our calculations of spatial derivatives. In this paper, we use instead a deterministic solver
for the kinetic models proposed by Miecussens [30-32].

At present, the complete boundary conditions for all higher order MCMs are not known. While their
importance was realized several decades ago [5,8], the computation of the boundary conditions still is an unre-
solved problem [4]. It must be noted that the boundary conditions will not be the same for the various MCMs.
Nevertheless, our proposed test method helps to determine which MCMs would be better than others for the
description of rarefied gas flows, especially when the Knudsen layer flow is important. The benefit of this work
is that the research community do not need to develop boundary conditions for every MCM, we just need to
focus on which MCM shows better results than others. If the additional boundary conditions are developed in
the future, this test method becomes unnecessary and obsolete.

In this paper, we investigate the effectiveness of the NSF equations, the Burnett equations, the Gradl3,
the R13A and the R13B from the BGK model and the ES-BGK model [7,32-34] with a Prandtl number
Pr=2/3, for a one-dimensional steady Couette flow. We model the gas as Maxwellian molecules [1-4],
and Appendix B. A brief description of the Boltzmann equation, BGK model and ES-BGK model is given
in Appendix A.

2. Macroscopic continuum models

In continuum theories of rarefied gas dynamics, the state of the gas is described by macroscopic quantities
such as mass density, p, macroscopic flow velocity, u;, temperature, T, which depend on position, x;, and time,
t. These quantities are moments of the particle distribution function, f, in the Boltzmann equation [1-7] and
are obtained by taking velocity averages of the corresponding microscopic quantities, i.e.

p:m/fdcldcqu:m/fdc, pui:m/c,-fdc,

3 3 m
pezEpZEpRTZE/CZfdc, pl:/-:péij‘f’o','j:WI/fCidec,

O-l/ = m/fc(lcj> dc, q;, = % /Czclf dc7 (1)
Pijiy = m/fC<,.CjCk> de,  pu = m/fC2C<,-C,-> de,

prrss = m/fC4 dc’

where pe is the internal energy density, R = k/m is the gas constant, k is Boltzmann’s constant, m is the mass of
a molecule, ¢; is the microscopic particle velocity, C; = ¢; — u; is the peculiar velocity, p is the hydrostatic pres-
sure, p;; is the pressure tensor, ¢; is the heat flux , g is the viscous stress (and an angular bracket around indices
denotes the symmetric and trace-free part of a tensor, i.e. C;,C = C,C; — C25,-j/3; for more details on the com-
putation of symmetric and trace-free tensors, see [4,21]). The third expression in Egs. (1) gives the definition of
temperature based on the ideal gas law. Higher order moments pj, p,.; and p,.,; appear in the 13 moment
equations in Section 2.2.

Multiplying the Boltzmann equation successively by 1, ¢;, and ¢?/2, then integrating over particle phase
velocity and utilizing the conservation laws at the microscopic level [2,4], yields the macroscopic conservation
laws for mass, momentum and energy,

op , O(pu;) _
o oy O (22)
6[01/[,‘ 0
— (puu; ) =0, 2
at +ax,(puuj+p”) ( b)

0 1 0 1
3 <pe+2puf> +a—xl_ <peuj+2pu2uj+u,-pi,+qj) =0. (2¢)
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Note that this set of equations (which is exact, without any assumption or approximation, and should be sat-
isfied by any MCM) is not closed unless additional equations for the viscous stress, o;;, and heat flux, ¢;, are
given. These additional equations can be obtained from the Boltzmann equation or kinetic models through
different methods that always involve some assumptions and/or approximations.

In some MCMs — such as the NSF, the Burnett equations [2-7], augmented Burnett equations [9], and the
NSF equations with a wall function technique [22] — ¢;; and ¢; are expressed as explicit functions of density,
velocity, temperature and their spatial derivatives, which means the constitutive relations for ¢;; and ¢, are not
governing equations of similar form to the conservation laws (Egs. (2)). The set of equations in this type of
MCM have only five independent variables in general three-dimensional problems. We denote these MCMs
as “first type” MCMs.

In other MCM s — such as Chen and Spiegel’s modified NSF and Burnett equations [10,11], the regularized
Burnett equations [12,13], the Gradl3 [5,8], moment equations from some method related to maximum
entropy [14-16], 13 moment equations from consistent order extended thermodynamics [17], the R13A
[3,4,18,19] and the R13B [3,4,20,21] - 6, and ¢; can only be expressed as implicit functions of density, velocity,
temperature. The equations for ¢ ; and ¢, are coupled governing equations in the system, in addition to the
conservation laws (Egs. (2)). This means that the number of variables in these sets of equations is 13 (or some-
times more) in general three-dimensional problems. These MCMs are denoted as “second type”” MCMSs here.

In this paper, we consider one-dimensional steady Couette flow between two parallel plates a distance L apart,
with one plate moving in the x; direction; the direction perpendicular to the plates is x,. Therefore, the velocities
u> = uz = 0, and 0/0x; = 0/0x, = 0. The unknown quantities in the viscous stress and heat flux for this flow are
O11, 022, 012, 41, and ¢a, while 633 = —(01; + 022), 621 = 012, 031 =013 =0, 03 = 03 = 0, and g3 = 0.

The NSF and Burnett equations for the BGK and ES-BGK models in three dimensions are listed in Appendix
B.1. The Grad13, R13A and R13B equations for the BGK and ES-BGK models in three dimensions are listed in
Appendix B.2. The derivation of the corresponding governing equations for one-dimensional steady Couette
flow is quite straightforward, but long and tedious and so is omitted from this paper for reasons of conciseness.

2.1. NSF and Burnett equations for the BGK and ES-BGK models

We have the following expressions for the NSF equations in one-dimensional Couette flow,

% Ouy NSF _ NSF _

oy = —2p o = _“a_xz’ O =0 ) (3a)
oT
HF = _Ka_xz’ g =0. (3b)

Similarly, the governing Burnett equations for the ES-BGK model with Maxwellian gas molecules in one-
dimensional Couette flow are,
2 2
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Iy =pRT

2
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with b =1 — (1/Pr). Egs. (4) and (5) simplify to the Burnett equations for the traditional BGK model when
b=0[7]

From Egs. (4) and (5), we can see that the expressions for shear stress, o1,, and normal heat flux, ¢,, are the
same in both the NSF and Burnett. However, the expressions for normal stresses, o1, 62,, and parallel heat
flux, ¢, are different. Non-zero values of 11, 05> and ¢; reflect rarefaction effects which are not described by
the NSF equations.

2.2. Gradl3, RI3A and RI3B equations for BGK and ES-BGK models

The nine basic moment equations from the general ES-BGK model for one-dimensional steady Couette
flow are the same in the Grad13, the R13A and the R13B equations, viz.

u, =0, (6a)
%L); =0, (6b)
g—Zi —+ 0122—2 =0, (6d)
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These equations do not form a closed set for the nine variables since they contain the higher order moments
P12y P22y P(222)s Prr(12ys Pric22y A0 prss. The difference between the Gradl3, the R13A, and the R13B equa-
tions arises from the expressions for these higher moments.

For the Gradl3 equations, we have:

Pfllfm = P?11232> = P<Gzlz32> =0, P%m = TRTa1, (7a)
2
Py = TRTGn,  phd = 15%- (7b)

For the R13A equations, we have:
R134 _3L<1 T% 2 _don L|RT 0p 2 RT 6p>
Pr

(112) =

3 15 an 3 p Mo 15 p Py
u

_3 " _~_E % 1 11 0oy 8012@ 2 oy Oop
Prp 75q16x2 3 p x 15 p Ox, 15 p 0xy )’
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For the R13B equations, we have:
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If we use accurate computational results from kinetic models (what we term here “direct values™) for all mo-
ments in Egs. (6), that is to say without considering any of the closure relations (7)—(9), then Egs. (6) should be
satisfied within the limits of computational error. This is because this set of equations is exact: no assumption
or approximation is applied. Indeed, Egs. (6a)—(6d), which state that u,, 015, p2», and ¢, + 10, are constant in
the whole domain at steady state, can be used to check whether the kinetic computational results are
converged and at steady state or not [3,32].

Verification of Eqs. (6e)—(61) is more difficult, since this requires the calculation of derivatives. If a good
expression for calculating the derivatives can be chosen, Eqs. (6e)—(61) should also be satisfied if results from
kinetic models are used. This is shown below.
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3. Description of the test method

We rewrite Egs. (6e)—(61) as:

m 4 dq, 4 du  Opun
= ——| - — — — R — _— 1
o ( 5o, 3%, oy ) (10a)
U 8 g, 2 Oui  Oppyy
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o2 p (+ 150x, 3 7 o, + ox, /)’ (10b)
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=_=C i — — 10
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7 Prp\ 2 O, p dxp p xp p Oxp
U 7 0wy 10p, Ouy
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If a good expression for calculating derivatives is chosen, Eqgs. (10) should be satisfied (within the limits of
computational error) by the computational results of kinetic models for a particular flow problem. This is
because Egs. (10) are exact, without any assumption or approximation. In other words, if we use direct val-
ues of all moments in the right-hand side of Egs. (10), and calculate the derivatives accurately, our calcu-
lated values of ¢; and g; on the left-hand side of Eqgs. (10) should be the same as our direct values of ¢, and
¢;- We use this equality test as the basis for choosing the best technique for calculating derivatives in our
tests.

All MCMs for rarefied gas flows involve some assumptions or approximations, e.g., the NSF is only the
first order approximation in the Chapman-Enskog expansion. Therefore, if we use direct values of moments
in MCM expressions for ¢, and ¢;, and use the same technique to calculate derivatives (e.g., Egs. (3) for the
NSF), our calculated o;; and ¢; will not necessarily be equal to our direct values of ¢; and ¢;. The differences
between these calculated values and direct values for different MCMs will not be the same as well. A smaller
difference between these direct and calculated values implies a higher accuracy of the MCM under consider-
ation. That is to say, we judge an MCM to be more physically realistic (at least for the flow considered) than
another one when its calculated ¢;; and ¢; are closer to the direct values. This is the fundamental idea behind
the test method we propose here.

From this description, we can see that no boundary conditions for the MCMs are needed for these tests, no
coupled governing equations are solved, but still a real flow involving the Knudsen layer can be considered.
What is necessary, though, is to compute the direct values of the moments from an accurate solution of the
microscopic kinetic equation.

For the first type of MCMs, introduced in Section 1, i.e. the NSF and Burnett equations, the expressions
for o, and ¢; are explicit functions of density, velocity and temperature, and their spatial derivatives. These
expressions can therefore be used directly in the tests. For the second type of MCMs, the governing equations
for 6;; and ¢; are implicit, and must be transferred first into a form similar to Eqgs. (10) in order to apply the test
method. Furthermore, if some higher order moments are used in the expressions for ¢; and ¢;, e.g., p¢12) In
Egs. (10), the direct values of the 13 moments (i.e., p, u;, T, o;; and ¢;) should be used in the closure relation of
these higher order moments.

The parameters we use for our numerical tests are: the gas is argon; the temperature of both plates is 273 K;
speed of plate 1 is zero; speed of plate 2 is as indicated in Table 1; initial molecule number density is
1.4x10°° m™3; reference temperature is 273 K; viscosity at the reference temperature is 1.9552x 107>
kg/(m s); molecular mass of argon is 6.63 x 1072° kg. Table 1 shows the various one-dimensional steady
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Table 1

One-dimensional steady Couette flows used in the tests

Case Knudsen number Plate speed (m/s) Domain width (mm) Mach number Reynolds number Number of cells
1 0.025 300.0 3533 0.975 50.345 200
2 0.1 300.0 88.33 0.975 12.587 100
3 0.5 300.0 17.67 0.975 2.518 100
4 1.0 300.0 8.833 0.975 1.259 50
5 0.5 600.0 17.67 1.950 5.036 100
6 0.5 1000.0 17.67 3.251 8.393 100
7 0.1 600.0 88.33 1.950 25.174 100
8 0.1 1000.0 88.33 3.251 41.970 100

Couette flows we considered for our tests. The “number of cells” in Table 1 indicates the number of finite vol-
ume cells in our kinetic model computation, which, as stated previously, is based on Mieussens’s discrete
velocity method [30-32] for the general ES-BGK model.

The relevant characteristic dimensionless numbers for these flows are the Mach number, the Reynolds num-
ber and the (global) Knudsen number, which are defined as:

. L I M \/RT
1‘40:%7 Re:7pdveup2 s Kl/l:_’\’_aa l:.uref ’ ) (11)
a, Kot L Re PaveRTp

where /is the molecular mean free path, u,, is the speed of the moving plate, a, = \/5RT,/3 is the sound speed
at plate temperature 7, L is the distance between the two plates, u.ris the viscosity of the gas at temperature
T,, and p,y. is the average mass density in the whole domain.

Once we obtain direct values of the moments from the kinetic model, it is important to find an appropriate
way of calculating the spatial derivatives of these moments. We consider two ways of calculating the deriva-
tives for the viscous stress, g, and heat flux, ¢;, in Eqgs. (10). These are:

e the classical three point formula [35] (central difference),

ar| 1
dx -~ 2Ax

X=X;

(F(xit1) = F(xi-1)), (12)

where function F = F(x), and Ax is the regular spatial stepsize;
e the five point formula [35],

drF 1
A — = %(F(xi—Z) = 8F(x;1) + 8F (X 41) — F(xiy2)). (13)

The first formula is second order accurate, while the second formula is third order accurate. Results using
Eq. (12) were quite similar to results from Eq. (13), while the first is a simpler expression. Therefore, we choose
the central difference formula, Eq. (12), to calculate all derivatives in our tests.

It should also be noted that if we calculate the viscous stress and heat flux in Eqs. (10) from the original
computational results of kinetic theory including higher order moments, the calculated ¢; and ¢; have some
small oscillations, and a jump in values adjacent to the boundaries. These oscillations in our calculated results
show that the original computational results of kinetic theory do not seem to be accurate enough for our test
method, even though these results are quite good when the conservation laws are checked [3,32]. The jumps
adjacent to the boundaries in our calculated results come from the fact that there are inconsistencies immedi-
ately adjacent to the boundaries even in the original computational results of Mieussens’ discrete velocity
method [30-32]. These lead to a slight violation of the conservation laws due to numerical inaccuracy, and
can be reduced when the grid spacing in the kinetic theory computations is reduced [3]. Note that in all the
figures in this paper the values of viscous stress and heat flux adjacent to the walls are not shown because
of these inconsistencies. Since results at those positions are needed in the calculation of spatial derivatives
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nearby, the calculated results from MCMs very near the walls, not only the nodes immediately adjacent to the
walls, are not shown in all figures.

In order to reduce these oscillations and jumps in the calculated data, while avoiding having to do time-
consuming computation from the kinetic models again, we smooth the original computational results from
the kinetic models by averaging over adjacent points (i.e., if the original number of cells used for the kinetic
theory computation is N, the number of cells we use in our tests is N/2). We use this smoothed data, then, as
the “direct values” in our calculations in the test. Consequently, oscillations and jumps in ¢;; and ¢; calculated
from Egs. (10) are significantly decreased, while at the same time the cross-channel profile of the smoothed
data still follows closely the profile of the original results from the kinetic models. This can be seen in
Fig. 1, which shows the original results for ¢;; in Case 2 of Table 1 using the ES-BGK kinetic model, with
the oy, calculated using Egs. (10) with and without smoothing.

Therefore, we apply central differences for calculating derivatives, and smoothed data from the kinetic
theory computation as direct values, for all our tests. The average relative error in the viscous stress between
values calculated from Egs. (10) with a// direct data including higher order moments on the right-hand side
and the direct values is less than 0.01 in all test cases. Since the relative error becomes meaningless when a
quantity approaches zero (as the heat flux does in the middle of the channel), we have not checked the average
relative error in the heat flux.

4. Numerical results

Figs. 2-13 show the direct values of ¢, and ¢;, and their calculated values from the NSF equations (3), the
Burnett equations (4) and (5), the Grad13 (7) and (10), the R13A (8) and (10), the R13B equations (9) and
(10). The test cases shown in the figures are Case 1 with the ES-BGK model, Case 7 with the ES-BGK model,
and Case 6 with the ES-BGK model. Note that, since the profile of ¢y, is similar to the profile of —¢,,, and no
new information can be obtained from graphs of a,,, graphs of o5, are omitted in the figures.

The only difference between the Grad13, the R13A and the R13B equations for ¢;; and g; in the tests is the
way in which the higher order moments p;xy, o, and p,, in Egs. (10) are calculated. A comparison of their
calculated values using the Grad13, the R13A, the R13B equations and their direct values is discussed briefly
in Appendix C.

The NSF equations are first order in Kn, the Burnett equations are second order in Kn, the Gradl3
equations are between second and third order in Kn, the R13B equations are third order in Kn, and the
R13A equations are between third and fourth order in Kn [4,20]. Therefore, we would expect that at small
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Fig. 1. Cross-channel Couette flow profile of ¢y in Case 2 (Kn=0.1, Ma = 0.975); original values from the ES-BGK model and
calculated values from Egs. (10), with and without smoothing.
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Knudsen numbers the R13A and the R13B would give the best results, followed by the Gradl3, the Burnett
equations, and that the NSF equations would provide the worst results.

At small Kn numbers, such as in Case 1 (Figs. 2-5), the calculated values of a1, 62, ¢; and ¢, give very
good agreement with the direct data in the main part of the flow for all models except the NSF equations.
Recall that the NSF equations do not account for any rarefaction effects on a1, 02> and ¢, and, by Egs.
(3), predict their values as zero, while the direct values of these quantities are not zero even in the middle
of the domain.

Results from the R13A and the R13B equations give the same profile across the channel as the direct values
even near the boundary, while the Burnett equations differ in profile: if the curve from the R13A, the R13B
and direct values is convex, then the corresponding curve from the Burnett equations is concave. The calcu-
lated values of o, from all MCMs in Case 1 are a good fit with the direct data in the centre of the channel, but
not so good near the boundary. Therefore, as expected, at relatively small Knudsen numbers the R13A and
the R13B equations give similar results; the next best model is the Grad13, followed by the Burnett equations.
The NSF equations give the worst results.

When the Knudsen number increases, which means that the thickness of the Knudsen layer increases and
the central part of the flow becomes smaller, none of the tested MCMs can be said to be a suitable model for
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Kn>0.1. To our surprise, the calculated ¢; and ¢; from the R13A and the R13B equations have the opposite
sign to the direct data, and also have a discontinuity near the boundaries when Kn > 0.1, i.e., in Figs. 10-13
for Case 6. (Note that this discontinuity disappears or can be neglected when Kn < 0.1, i.e. see Figs. 2-5.)
These two unusual phenomena are difficult to understand, and the reasons for them are still under
investigation.

Generally, the calculated values of ¢;; and ¢, from all sets of macroscopic equations fit the direct data well at
small Knudsen numbers, but not so well at large Knudsen numbers. We suggest that the R13A or the R13B
equations may be more appropriate as macroscopic continuum equations in rarefied gas flows with Kn < 0.1,
and up to moderate Mach number. As the Knudsen number increases, and boundary effects dominate, all
tested models fail, which can be attributed to their inability to properly describe non-equilibrium near solid
surfaces. Note that the above discussion is independent of the kinetic models (BGK or ES-BGK) used in
the tests.

Our observations here match those in the calculation of shock structures [19]: Burnett, Grad13, and R13A
equations yield shock structures in agreement with DSMC computations for Mach numbers below about
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Ma = 3.0, but not for higher Mach numbers, where rarefaction effects and deviations from equilibrium states
become increasingly important.

5. Knudsen layers and the Knudsen number

Our numerical results show that, at least in this test method, all MCMs have difficulties in reproducing the
data from the kinetic solution within the Knudsen layers. This warrants further discussion.

All MCMs discussed are related to the Knuden number as a smallness parameter: by their derivation, the
NSF equations are exact within an error of the order O(Kn?), the Burnett and Grad 13 moment equations are
exact within an error of the order O(K#n?), and the R13 equations are exact within an error of the order O(Kn®).
Based on this, we expect the differences between the kinetic solution and the solutions of the MCMs to be
related to their respective errors, i.e. powers of the Knudsen number.

Normally, the Knudsen number is defined as the ratio between mean free path, /, and a relevant macro-
scopic length, L..;: Kn = I/L.y. For the description of Couette flow, the intuitive choice for the macroscopic
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reference length is the channel width, L; which we do indeed use to define the Knudsen number in our numer-
ical experiments. However, the failure of the MCMs to describe the Knudsen layers in our test indicates that
this conventional definition of the Knudsen number (with the channel width) is appropriate to describe the
bulk flow but not the Knudsen layers.

We may argue that, if the Knudsen layer is to be resolved, its thickness should be chosen as the ref-
erence length. Since the Knudsen layer has a thickness of the order of a molecular mean free path, this
would imply L.s= 1/, which results in a Knudsen number of order unity [4]. Then, none of the MCMs
would be appropriate, since the basic requirement of their derivation — small Knudsen number — is not
fulfilled.

Some researchers define a local Knudsen number that considers a reference length L. based on the steep-
ness of gradients. In regions of steep gradients, the local length scale can be considerably smaller than the
channel width (L, < L), and this would result in a higher relevant Knudsen number Knjo. = I/ Lio. > Kn.
A common definition of the local reference length uses the density gradient [29,36]



Y. Zheng et al. | Journal of Computational Physics 218 (2006) 748-769 761

**"*‘,¢¢¢00000000600040““""
ettt AR SR
— 2+
N
£
S~
5 1t OEOEDGODE0EDEDOEOBENEEENEBEOGHDE0BEDEOE0NE0E008
= O R B & e o O 3 S S O S e o e e e e O O O W SV U W W W W g
—
o)
0] O F 09000900006006000000006060900000000606000000000
[0}
[0}
* *
5 1 wvﬁ"“?wﬁ ;&*‘**“ﬁﬁ
-1t 5% frgr. s
0] ﬁﬁﬁﬁﬁ** . ) gww*ﬁ*ﬁ
0 A Direct values ]
3 A Exact moment equations
0 5| < NSF
2 - Burnett
= = Gradl3
- R13A
3l #  RI13B
* n n n n x
0.2 0.4 0.6 0.8 1

Dimensionless Domain width vy/L

Fig. 10. Cross-channel Couette flow profile of oy;; direct values from the ES-BGK model and corresponding calculated values from
indicated sets of macroscopic equations; Case 6 (Kn = 0.5, Ma = 3.251).

—~ 4t
N
£ :
~ S Direct values
=4 -4 Exact moment equations
~ 3 < NSF
~ -+ Burnett
6 (=3 Gradl3
- R13A
na 27 * R13B
0]
8
[ e B B At R AR AR Ay :

ﬁ 1 . ﬁwﬁaﬁﬁﬁaﬁw wwﬁwﬁﬁﬁwﬁﬁ '

e e ge
9]
3
[¢] 0 r
,[ﬂ OEOECGEODENE0EHHEIBHE0N0E080 068080800 08088E0 08
> AAAAAAAAALAAALAAALAALALAALAAALAALALAAALAAALAALAALALAALAALAALALAALALAALAALAALAL

-1
MARAAAAAAAAARES S SRS S s a AR AARAOAAMM

0.2 0.4 0.6 0.8 1
Dimensionless Domain width vy/L

Fig. 11. Cross-channel Couette flow profile of o1,; direct values from the ES-BGK model and corresponding calculated values from
indicated sets of macroscopic equations; Case 6 (Kn = 0.5, Ma = 3.251).

p
Lloc - dp/dx (14)
For the numerical data in our test cases, the local length defined by Eq. (14) turns out to be larger than the
channel width, and thus would lead to Knudsen numbers well below the Knudsen number based on the chan-
nel width. In any case, the length definition given by Eq. (14) is not well suited, since it relates a quantity that
does not vanish in equilibrium (the density) to a non-equilibrium quantity (the density gradient). So for linear
processes, where gradients are small, the corresponding lengthscale would be very large. Knudsen layers can
be considered as linear phenomena [4,25,26], and thus the length scale defined by Eq. (14) is not suitable to
identify Knudsen layers. The same holds true for dispersion and damping of ultrasonic sound waves. Thus,
the local reference length scale must be defined differently, but presently it is unclear what definition would
be a proper choice. In any case, one will expect that the local Knudsen number should be larger in regions
of large gradients, in particular within the Knudsen layers.



762 Y. Zheng et al. | Journal of Computational Physics 218 (2006) 748-769

w
2000 r . - Direct values S
/ ‘m’ A Exact moment equations
. s NSF
— \‘\ -+ Burnett
~ o =) Gradl3 ;
g 1000 *] = RI3A ot
= # R13B
o
o
b 0 ]
s}
—
[
% -1000 f 1
[0}
=5
-2000 t 4

0.2 0.4 0.6 0.8 1
Dimensionless Domain width y/L

Fig. 12. Cross-channel Couette flow profile of ¢,; direct values from the ES-BGK model and corresponding calculated values from
indicated sets of macroscopic equations; Case 6 (Kn = 0.5, Ma = 3.251).

4000 A Direct values . ]
A Exact moment equations
-0 NSF
— - Burnett
~ ] Gradl3
£ 2000} = ki3 ]
= .
~
o
><: 0 asssmaassdassiat ]
3
3
H
JJ - r 4
o 2000
]
=5
-4000 t ]

0.2 0.4 0.6 0.8 1
Dimensionless Domain width vy /L

Fig. 13. Cross-channel Couette flow profile of ¢,; direct values from the ES-BGK model and corresponding calculated values from
indicated sets of macroscopic equations; Case 6 (Kn = 0.5, Ma = 3.251).

6. Critique of the testing method

In this section, we take a critical look at our proposed test method. For this discussion we need to distin-
guish between three sets of values for the moments:

(a) the direct values, which result from the solution of the kinetic equation, ¢° = {pP, o Tij» qlD}

(b) the hypothetical solution of the MCMs with reliable boundary conditions, ¢" = {p s g

(c) the values computed from our test, ¢’ = {%qu }, which use the MCM equations together with the
direct values, ¢°. In this case, the direct values for p, u;, T are used for both types of MCMs. For MCMs
of the first type, stress and heat flux are computed in the test, while the test for the second type of MCMs
computes the test values for stress and heat flux by means of the complete set of moments from the
kinetic solution, including stress and heat flux.

We emphasize that the proper test for quality of an MCM should be a comparison of the direct values, ¢°,
to the full numerical solution of the MCM, ¢, but this route is not accessible while the boundary conditions
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are not known. Instead, our test method compares the direct values, qSD, with the test values, (bT, and so the
question arises whether an insufficient agreement between ¢ and ¢! implies an insufficient agreement
between ¢ and ¢".

In our test the hydrodynamic variables p, u;, and T are given by the kinetic solution, and only the test values
for 6;; and ¢; differ from the kinetic solution. In contrast, in the full numerical solution of the MCM, the values
of all variables will be different from the accurate kinetic result. This difference leads to the question whether
the variance between the kinetic results and the full numerical solution can be smaller than the variance
between the kinetic results and test values. Indeed, in the test method some of the variables are forced to fol-
low the kinetic solution, and that might lead to a larger variance for the remaining variables [37].

From the discussion of the preceding section, we expect that all differences between MCMs and the kinetic
solutions are related to the (local) Knudsen number. Accordingly, in a proper dimensionless formulation, the
absolute differences from the kinetic solution (i.e. the direct values) should be related to (powers of) the Knudsen
number for all variables. This should be so for the test values as well as for the hypothetical full solution.

It is possible that the absolute differences are, in fact, less important than relative differences. If the absolute
values of two variables differ, but the absolute error in those values has the same size, then the relative errors
can be quite different. We recall that (as can be seen, e.g., from the Burnett equations, Eqgs. (4) and (5)) p, u;,
and T are equilibrium quantities that will be larger than ¢y,, ¢,, which are of first order in the Knudsen num-
ber. For Couette flow, gy, 025, and ¢ are even smaller (second order in Kn). The higher order MCMs lead to
corrections of the values for all variables, and the relative importance of the corrections is more marked for
those moments that are “small” (15, ¢») or very small (o11, 2o, ¢1) [4].

In our test method we use direct values of p, u;, and T and force all deviations from the direct values on a,,
q», 011, 022, ¢1- 1t is quite likely that the overall relative error for all variables could be smaller, by forcing some
deviation on the equilibrium variables p, u;, and 7. This would allow us to reduce the relative errors in the
non-equilibrium variables (which are large in the current tests), that might then result in small relative errors
for p, u;, T. It is not clear, however, how this could be done technically, and we have not attempted this here.

From this discussion we suggest that our test method paints a bleaker picture of the quality of MCMs than
may be the case. Indeed, in [4] the Couette flow problem was considered in a semi-analytic way by a super-
position of a non-linear “bulk solution” and linear Knudsen layers, whose amplitude was adjusted to fit
DSMC data. This allowed a matching of the non-equilibrium variables (61,2, ¢», 011, 622, ¢1) quite well (for
Kn =0.1), while discrepancies were forced on p, u;, and T where the relative errors are comparatively small.

In summary, we propose that our presented test method can give important insight into the behavior of
MCMs, but the full solution of the MCMs (with proper boundary conditions currently unknown) would
certainly be a more comprehensive approach.

7. Conclusions

Many macroscopic continuum models (MCMs) have been proposed for rarefied gas flows. No single model
is commonly accepted, especially for gas microfluidics where the Knudsen layer is important and the gas rar-
efied even at normal pressure. For computational efficiency, MCMs would, however, be preferred over kinetic
models or the DSMC for rarefied gas flows as long as a physically accurate and numerically tractable model
can be found. Unfortunately this question cannot yet be answered, for the boundary conditions of MCMs,
except for the conventional NSF equations, are still under development.

The aim of our test method proposed in this paper is to contribute towards an answer to the question of
which macroscopic model is suitable for gas microfluidics. The characteristics of our test method are: it does
not require boundary conditions in the calculations and comparison; coupled governing equations need not be
solved; full (non-linear) expressions are considered; the solution of the same flow using a kinetic equation is
required.

As the first application of this test method, the NSF equations, Burnett equations, Grad’s 13 moment equa-
tions, the original regularized 13 moment equations (R13A), and the regularized 13 moment equations from
an order of magnitude approach (R13B) are investigated for their ability to describe one-dimensional steady
Couette flow accurately. For relatively low Knudsen numbers (Kn < 0.1) in the transition-continuum regime,
it is found that the two types of R13 equations give results similar to each other, which are better than results
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from Grad’s 13 moment equations, which however give better results than the Burnett equations. The NSF
equations give the worst results in comparison. This, in fact, is as expected from the order of accuracy in
the Knudsen number of these MCMs.

For large Knudsen numbers (Kn > 0.1), all MCMs we tested fail to describe the flow with acceptable accu-
racy. Problems in describing Knudsen layers, as well as previous work on strong shock structures, indicates
there may be severe limitations on the applicability of some current MCMs for rarefied gas flows. In partic-
ular, the failure of MCMs in the vicinity of the wall can be attributed to the large local Knudsen number, so
that models that were derived under the assumption of small Knudsen number lose validity. The proper def-
inition of the local Knudsen number is unclear, although a deeper discussion of this question is outside the
scope of this paper.

While we have examined one-dimensional steady Couette flow in this paper, other benchmark flow prob-
lems should be considered in the future.
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Appendix A. A brief description of relevant kinetic theory

In the microscopic theory of rarefied gas dynamics, the state variable is the distribution function f{x,c, 1),
which specifies the density of microscopic particles with velocity ¢ at time # and position x [2-6]. The particles,
which can be thought of as idealized atoms, move freely in space unless they undergo collisions. The corre-
sponding evolution of f'is described by the Boltzmann equation [2,4], which, when external forces are omitted,
is written as

of  of

L o= = S(f). Al

5 e =S (A1)
Here, the first term on the left-hand side describes the local change of f with time and the second term is the
convective change of f due to the microscopic motion of the gas particles. The term on the right-hand side,
S(f), describes the change of f'due to collisions among particles. For a monatomic gas the collision term reads

S(f) = / (f'f" = ff"ogsin 0 dO de de', (A.2)

where the superscript 1 denotes parameters for particle 1 (which is the collision partner of the particle consid-
ered), the superscript ' denotes parameters for the state after collision, g = |c — ¢!| is the relative speed of the
colliding particles, ¢ is the scattering factor, and ¢ and 6 are the angles of collision.

In kinetic models, the Boltzmann collision term, S(f), is replaced by a relaxation expression which is typ-
ically of the form

Sulf) = =v(f = frer)- (A.3)

Here, f.or is a suitable reference distribution function, and v is the (mean) collision frequency; the various
kinetic models differ in their choices for f,.r and v. A detailed comparison of kinetic models is presented in
(3,4,32].

The BGK model [4,32,33] is the simplest kinetic model, where the reference function is simply the
Maxwellian,

L 1y C?
Jret =M= m (2TCRT) - CXp <— m) (A-4)

and its evaluation in the hydrodynamic limit yields (see e.g. [4])
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_P PR
.u - V’ K= 2 v 9
While this model is widely used for theoretical considerations, it gives the wrong value (Pr = 1) for the Prandtl
number. More recent models have been proposed to correct this failure.

The ES-BGK model [4,7,32,34] replaces the Maxwellian with a generalized Gaussian, so that

Pr=1. (A.5)

_ 1
Jret = fes = p - (det(2miy)) V2. eXp (_EcigifC/>v (A.6)
and it yields
1 p 5 pR 1
N =2 p=—". A.
T—byv T2 1—b (A7)
The matrix A is defined as
;= RTG, +b p” (1= B)RTS, + b I;;f (A8)

where b is a number that serves to adjust the Prandtl number, ¢,; is the unit matrix, and & is the inverse of the
tensor A. The value of b must be in the interval [—1/2, 1] to ensure that 4; is positive definite, which ensures the
integrability of fgs.

Appendix B. MCM equations in three dimensions
B.1. NSF and Burnett equations for the BGK and ES-BGK models

The Knudsen number, Kn, is normally defined as the ratio of the gas molecular mean free path to the
relevant macroscopic length scale of the problem, e.g. the channel width in our Couette flow problem. The
viscous stress, o;;, and heat flux, ¢; for the NSF equations are obtained from the Chapman—Enskog (CE)
expansion technique to first order in the Kn, while the expressions for the Burnett equations are obtained
at second order in the CE expansion. For details of the CE technique, see [4-6]; here, only the final expressions
are listed.

The viscous stress and heat flux at first order, the NSF order, are given by

NSF Ouy; NSF or
Uij - 2:“ a)Cj> » 4 =—K axi ’ (Bl)
where u is the viscosity and « is the thermal conductivity.

Equivalent Burnett expressions, calculated using the general ES-BGK model, are [3,7]

Ou; 1 or 1

b= —2p a+p2«;z>,1, q?z—xa—xljtﬁ-r,-, (B.2)
where
@, = —2R°T> axizng} _prRzTaxizaTx,> +2R;T2 aa xp< : 66);—21%2 g xT< ;5) 2p2';: ZLX’:
2_34wp2;l;i 222+2w(1—b)pR2§;§;, (B.3a)
I Rt Ty R D et
(1+w+%b) Z”f ST é[( 13— b) + (14 — 106)(1 — )] R;Zj SXT (B.3b)
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with b =1 — (1/Pr). Egs. (B.2) and (B.3) simplify to the Burnett equations for the traditional BGK model
when b =0 [7]. In the above, o is the power index (a positive number of order unity) used in the following
expression for the gas viscosity, u, as a function of temperature [5]:

w(T) = o (Tlo) (B.4)

where g is the viscosity at a reference temperature 7. Maxwellian gas molecules have w = 1, which is used in
our numerical simulations. The expressions for ag and ¢® in Egs. (B.2) and (B.3) are irreducible forms in terms
of the gradients of density, velocity, and temperature.

B.2. Gradl3, RI3A4 and RI13B equations for the BGK and ES-BGK models

There are 13 unknown variables, and 13 moment equations in the Grad13, R13A and R13B models for a
three-dimensional problem. The independent variables are: p, uy, uy, u3, T, 0 11, 622, 012, 013, 023, 41, ¢» and ¢z;
while other variables can be derived from these quantities, such as p = pRT, 633 = —(011 + 022), 621 = 012,
031 =013, 032 = 023 .

The Gradl3 and the R13A equations for the general ES-BGK model are obtained along the same lines as
the corresponding equations for the Boltzmann equation with Maxwellian gas molecules [4,18]. Here, only
some steps in the derivation are shown; see [3,4,18] for more details.

After multiplying the kinetic equation by polynomials of the peculiar velocity, viz. 1, C;, C%, CiCj and
C>Cy/2, and then integrating over velocity space, the basic 13 moment equations for the general ES-BGK
model are obtained [3,4]

- 7k _F_ B.5
o T Pa T (B.5a)
Ou; Op Ooy
' =0 B.5b
Pt P o am  om (B.5b)
3 or 3 oT  Ogq, Ouy, Ou;
PR 4 pRuy —— 4 Ik , , B.
2 6t+2p Ueg +axk+pa +aka =0 (B.5¢)
. ) 40 2 a 3,
90y Oloyug) | 494 e R U N (B.5d)
ot Oxy 5 ox; 6x> ox Xk Oxy u
0q; 0(qu) op doy ou Op 0y;004 T Ouy 2 0w 2 Oup 1 0P,
i i ——RT———RT L ]
o T o o, v p oy p o 3%y 5%, 5% T2 o
1 0p Ou; Prp
- rrss e AL 4y B.
+ 6 a p(zjk) axk ,U qn ( Se)

with the definition of the moments as in Eq. (1). Egs. (B.5) simplify to a similarly basic 13 moment equation set
for the BGK model when we make Pr =1 [3,4,32]. Egs. (B.5a)—(B.5c) are, in fact, the non-conservative form
of Egs. (2). Note that Egs. (1). Egs. (B.5) do not form a closed set of equations for the 13 variables, since they
contain the higher order moments pgy, pPrr(ixy and py.s. In the Grad13 equations from the general ES-BGK
model, these are given as [4,8]

2
b
pild =0, S =TRTay, pf}if—lS;. (B.6)

In the R13A equations from the general ES-BGK model, we have the following expressions for the higher
order moments [3,4,18]

RI34 _ _3L RTaG<,'j RT ap 4 %_7’/ 66k}1
(ijk) Prp

el B.7
6xk> P T 6xk> + 6xk P 6x1 ( a)
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28 dq,; oT RTg, d . 00 ;
pfrlgjf;:mTa,.j—?PrL(RTa% R%a__ia_/’_‘ﬂ a%k)
P\ X p O p O
B (Soy O Sy, Ou) 2 n (Bpn(0 G g O 20 Qi)
S5 Prp 6 pdx, 6p ox; 5 Prp\7 Oy, Oxp 3 7 Oxg
(B.7b)

2 d 5 9T RTg, dop ¢, doy Ju;
Rt _ sl g B (ppSky 2p, S0 M O 40 SOk, ppg M) B.7
7ss p Prp axk+2 kox p Oxy p ka+ “*ak (B.7¢)

In the R13B equations from the general ES-BGK model, the expressions for higher order moments are similar
to Egs. (B.7), but some higher order terms are removed and non-linear terms in the production terms (which
have been omitted in [3]) are accounted for, i.e.

Pl = _3Per <RT662,<: - %W@/%JF%%%)’ (B.8a)
Py = TRTa; + 271;2‘7r<i0j>r - ? Per (RTZZ: + Rq,; % - RZ% a%)

_2_78% (awzixj:—l—aw%—%aijg—z) (B.8b)
pRIB — 15%2 + Zlezamasr - 8Per <RT27q/t + %qug—z; - Rqu S—JZ +RToy g—;:), (B.8c¢)

where b = 1 — (1/Pr) in the general ES-BGK model. Egs. (B.7) and (B.8) simplify to the corresponding expres-
sions for the BGK model when Pr =1 [3,4].

Appendix C. Discussion on higher order moments p;ixy, prrijy» and py.gq

In this appendix, we briefly discuss the values of higher moments that appear in the MCM equations. We
found that the computed values of the moments p,,22) from the Grad13 equations fit the data from the kinetic
model better than, or at least similar to, results from the R13A and the R13B equations for all test cases. While
for p¢xy and p,,12, the opposite is the case, that is the R13A and R13B equations give better results than the
Gradl13 equations. At small Knudsen numbers or small plate velocities, the computed values of p,,,, from the
Grad13, the R13A and the R13B equations fit the original data very well; however they are not so good when

1 b
-4~ Direct values
-0 Gradl3
s R13A
0.5
-+ RI13B

Moment p112 (W/m?)

0.2 0.4 0.6 0.8 1
Dimensionless Domain width vy/L

Fig. 14. Cross-channel Couette flow profile of p,,1»; direct values from the BGK model and corresponding calculated values from
indicated sets of macroscopic equations; Case 1 (Kn = 0.025, Ma = 0.975).
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Kn or the plate velocity is large. The computed p,., from the Grad13, R13A and R13B equations do not fit the
original data. There is no apparent way of deciding which one of the R13A and R13B equation sets is better.
As an example, Fig. 14 shows the comparison of calculated p(;1,y with its direct values from the BGK model in
Case 1 (Kn =0.025, Ma = 0.975).

As a general comment we add that higher moments are more difficult to match, since they reflect on higher
order deviations from equilibrium. Their exact values are less important, since they are not representing mean-
ingful physical quantities. What is important is their influence on the meaningful quantities (such as density,
temperature, velocity, stress, heat flux), as manifested in the moment equations.
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