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Summary. Methods to derive macroscopic transport equations for rarefied gases
from the Boltzmann equations are presented. Featured methods include the
Chapman-Enskog expansion, Grad’s moment method, and the author’s order of
magnitude method. The resulting macroscopic equations are compared and discussed
by means of simple problems, including linear stability, shock wave structures, and
Couette flow.

1 Introduction

The most important scaling parameter to characterize processes in rarefied gases
is the Knudsen number Kn, defined as the ratio between the mean free path of a
particle and a relevant reference length scale (e.g. channel width, wavelength, etc.).
For a complex flow the local Knudsen number might differ by several orders of
magnitude between locations. Thus, rarefied gas flows are multiscale problems.

Processes in rarefied gases are well described by the Boltzmann equation [1, 2, 3],
a non-linear integro-differential equation that describes the evolution of the particle
distribution function f in phase space, i.e. on the microscopic level. The numerical
solution of the Boltzmann equation, either directly [4] or via the Direct Simulation
Monte Carlo (DSMC) method [5], is very time expensive.

If the Knudsen number is small, the Boltzmann equation can be reduced to
simpler models, which allow faster solutions,

If Kn < 0.01 (say), the equations of ordinary hydrodynamics—the laws of Navier-
Stokes and Fourier (NSF)—can be derived from the Boltzmann equation. The NSF
equations are macroscopic equations for mass density ρ, velocity vi and tempera-
ture T , and thus pose a mathematically less complex problem than the Boltzmann
equation.

Macroscopic equations for rarefied gas flows at Knudsen numbers above 0.01 are
highly desirable, since they promise to replace the Boltzmann equation with simpler
equations that still capture the relevant physics. Several methods are available to
derive the desired higher order equations, and all of these suggest different sets of
equations.
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Naturally, the complexity of the subject forbids a detailed discussion of this
rather complex topic on the space available. Thus, this contribution aims mainly
at presenting the main ideas of the most important methods, and to point out the
relations and differences between the various sets of equations. The reader searching
for greater detail is referred to the cited literature, in particular to the author’s
textbook [3].

2 Basic Kinetic Theory

We shall consider mon-atomic ideal gases exclusively. The basic quantity in kinetic
theory is the particle distribution function f (x, t, c); x and t are the space and time
variables, respectively, and c denotes the microscopic velocities of particles. The
distribution function is defined such that f (x, t, c) dcdx gives the number of gas
particles in the phase space cell dcdx at time t.

Macroscopic quantities are obtained by taking suitable averages (moments) of
the phase density. The basic hydrodynamic variables are obtained according to

ρ = m

)
fdc , ρvi = m

)
cifdc , ρu =

3

2
ρθ =

m

2

)
C2fdc . (1)

Here, θ = k
m
T is the temperature in energy units (that will be used from now on

instead of T ), m is the mass of a particle, k denotes Boltzmann’s constant, and
Ci = ci − vi is the peculiar velocity. u denotes the specific internal energy, and (1)3
must be considered as the definition of temperature.

The phase density is obtained as the solution of the Boltzmann equation,

∂f

∂t
+ ci

∂f

∂xi
= S (f, f) . (2)

Here, S is the collision term which describes the change of f due to collisions among
particles. The full expression for S can be found in the literature [1, 2, 3], here we
only list its most important properties:

1. Mass, momentum and energy are conserved in a collision,

m

)
Sdc = 0 , m

)
ciSdc = 0 ,

m

2

)
C2Sdc = 0 . (3)

2. The production of entropy is always non-negative (H-theorem),

Σ = −k
)

ln fSdc � 0 . (4)

3. In equilibrium the phase density is a Maxwellian distribution, i.e.

S = 0 =⇒ f = fM =
ρ

m

1√
2πθ

3
exp

�
−C

2

2θ

�
. (5)

The Boltzmann collision term S is a complex non-linear integral expression in f
that depends also on the interaction potential between the particles. Its mathemat-
ical treatment becomes particularly simple for particles interacting with a repulsive
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fifth-order power potential, the so-called Maxwell molecules. More realistic poten-
tials, e.g. general power laws, hard sphere molecules, or Lennard-Jones potentials
introduce higher complexity.

Simplified expressions for S that capture its basic properties are often used, the
most popular of these is the BGK model [6] where

SBGK = ν (fM − f) ; (6)

ν is the average collision frequency for a particle.
Multiplication of the Boltzmann equation (2) with

�
m,mci,

m
2
C2

�
and subse-

quent integration over the microscopic velocity yields the conservation laws for mass,
momentum and internal energy,

∂ρ

∂t
+
∂ρvk
∂xk

= 0 ,

ρ
∂vi
∂t

+ ρvk
∂vi
∂xk

+
∂p

∂xi
+
∂σik
∂xk

= 0 , (7)

3

2
ρ
∂θ

∂t
+

3

2
ρvk

∂θ

∂xk
+
∂qk
∂xk

= − (pδij + σij)
∂vi
∂xj

.

Here, the pressure p obeys the ideal gas law, p = ρθ, and

qi =
m

2

)
C2Cifdc (8)

denotes the heat flux vector. The pressure tensor is defined as

pδij + σij = m

)
CiCjfdc with σij = m

)
C〈iCj〉fdc (9)

where σij denotes the stress, that is the symmetric and tracefree part of the pressure
tenor, with σii = 0, σij = σji. Indices in angular brackets denote symmetric trace-
free tensors (see [3], Appendix A.2).

The conservation laws (7) together with the definitions for stress and heat flux
(9, 8) are exact, that is they are valid for any solution f of the Boltzmann equation.
Mathematically, the five conservation laws do not form a closed set of equations for
the hydrodynamic variables {ρ, vi, θ}, since they contain stress and heat flux as well.

The idea of macroscopic continuum approximations is to close the set of equa-
tions by deriving additional macroscopic equations for σij and qi from the Boltz-
mann equation by means of rational approximation procedures. Various methods
available to this end, and the corresponding additional equations for σij and qi, will
be discussed in the sequel.

For completeness we mention that multiplication of the Boltzmann equation with
−k ln f

y
(y is a constant) yields the balance of entropy, which has a non-negative

production (4) [1, 2, 3].

3 Chapman-Enskog method

The best known approach to derive macroscopic transport equations from the Boltz-
mann equation is the Chapman-Enskog (CE) method [1, 2, 3, 7, 8]. The CE method
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is based on the dimensionless form of the Boltzmann equation which contains the
Knudsen number as a scaling parameter for the collision term,

∂f

∂t
+ ci

∂f

∂xi
=

1

Kn
S (f, f) . (10)

In the limit Kn→ 0, the collision term must vanish, and it follows from the properties
of S that the corresponding phase density is the local Maxwellian (5), f (0) = fM .
Evaluation of σij and qi with the Maxwellian gives zero stress and heat flux,

σ
(0)
ij = q

(0)
i = 0 . (11)

Insertion of this into the conservation laws (7) yields the well known Euler equations.
The idea of the CE expansion method is to add corrections to the local equilib-

rium distribution by adding terms of higher orders in the Knudsen number,

f = f (0) + Knf (1) + Kn2f (2) + · · · . (12)

An important condition on the expansion (12) is that the hydrodynamic variables
{ρ, vi, θ} are the same at any level of expansion, so that

ρ

�
1, vi,

3

2
θ

�
= m

) �
1, ci,

C2

2

�
f (0)dc , 0 =

) �
1, ci,

C2

2

�
f (α)dc (α ≥ 1) .

These compatibility conditions guarantee that only the equations for the non-
equilibrium variables σij and qi change with increasing degree of approximation,

σij = σ
(0)
ij + Knσ

(1)
ij + Kn2σ

(2)
ij + · · · , qi = q

(0)
i + Knq

(1)
i + Kn2q

(2)
i + · · · . (13)

The expansion parameters f (α) are determined successively by plugging the se-
ries (12) into the Boltzmann equation, and equating terms with the same factors
in powers of the Knudsen number. This leads to an iterative structure, where the
correction at order α is a function of (derivatives of) the lower order corrections,

f (α) = F
'
f (β), 0 ≤ β < α

(
, see e.g. [7, 3]. All correction terms depend only on

the hydrodynamic variables and their gradients,† since the zeroth order term—the
Maxwellian—depends only on the hydrodynamic variables {ρ, vi, θ}. Stress and heat
flux are computed from the approximation (12) by accounting for terms up to a cer-
tain order, and the resulting expressions will relate σij and qi to the hydrodynamic
variables and their gradients.

Obviously, to zeroth order the expansion yields the Euler equations (11). The
first order correction gives the laws of Navier-Stokes and Fourier,

σ
(1)
ij = −2μ

∂v〈i
∂vj〉

, q
(1)
i = −κ ∂θ

∂xi
. (14)

The most important success of the CE method is that it gives accurate expres-
sions for viscosity μ and heat conductivity κ, which relate these to the microscopic
interaction potential and the hydrodynamic variables. In particular one finds, in
accordance with experiments, that the viscosity depends only on temperature, and
not on density. For power potentials the CE method yields

† Time derivatives are replaced by means of the conservation laws [7, 3].
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γ ω %1 %2 %3 %4 %5 %6 θ1 θ2 θ3 θ4 θ5

5 1 10/3 2 3 0 3 8 75/8 45/8 −3 3 39/4

7.66 0.8 3.600 2.004 2.761 0.254 1.784 7.748 10.160 5.656 −3.014 2.761 9.019

∞ 0.5 4.056 2.028 2.418 0.681 0.219 7.424 11.644 5.822 −3.09 2.418 8.286

Table 1: Burnett coefficients for power potentials (γ = 5 for Maxwell molecules,
γ = 7.66 for argon, γ =∞ for for hard sphere molecules) [10].

μ = μ0

�
θ

θ0

�ω
(15)

with ω = 1/2 for hard spheres and ω = 1 for Maxwell molecules; experiments
indicate ω # 0.8 for argon [5]. Heat conductivity and viscosity are related through
the Prandtl number,†

Pr =
5

2

μ

κ
# 2

3
.

The value of Pr varies only slightly (less than 1%) with the molecule model, and
measured values are close to 0.66 [2, 3].

The second order contributions are the Burnett equations [9, 2, 7, 3],

σ
(2)
ij =

μ2

p

�
%1

∂vk
∂xk

Sij −%2

�
∂

∂x〈i

�
1

ρ

∂p

∂xj〉

�
+

∂vk
∂x〈i

∂vj〉
∂xk

+ 2
∂vk
∂x〈i

Sj〉k

�
+%3

∂2θ

∂x〈i∂xj〉
+%4

∂θ

∂x〈i

∂ ln p

∂xj〉
+%5

1

θ

∂θ

∂x〈i

∂θ

∂xj〉
+%6Sk〈iSj〉k

�
, (16)

q
(2)
i =

μ2

ρ

�
θ1
∂vk
∂xk

∂ ln θ

∂xi
− θ2

�
2

3

∂2vk
∂xk∂xi

+
2

3

∂vk
∂xk

∂ ln θ

∂xi
+ 2

∂vk
∂xi

∂ ln θ

∂xk

�
+θ3Sik

∂ ln p

∂xk
+ θ4

∂Sik
∂xk

+ 3θ5Sik
∂ ln θ

∂xk

�
. (17)

The Burnett coefficients %α, θα depend on the molecule type, and for power poten-
tials with exponent γ some values are given in Table 1 [10].

The third order expansion yields the super-Burnett equations. Their compu-
tation is extremely cumbersome, and the full three-dimensional non-linear super-
Burnett equations were never derived. One only finds the linearized equations in
3-D [11, 12, 13, 3], and the non-linear equations for one-dimensional geometry
[11, 14, 15, 3].

The equations of Navier-Stokes and Fourier cease to be accurate for Knudsen
numbers above ∼ 0.01, and one would expect that Burnett and super-Burnett equa-
tions are valid for larger Knudsen numbers. Unfortunately, however, the higher order
equations become linearly unstable for processes involving small wavelengths, or high
frequencies [12, 15], and they lead to unphysical oscillations in steady state processes
[16], and thus cannot be used in numerical simulations .

There is no clear argument why the Chapman-Enskog expansion leads to unsta-
ble equations. It seems that a first order Chapman-Enskog expansion leads generally

† Our defintion of the Prandtl number differs from the usual one by a factor k
m

due
to the use of θ instead of T .
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to stable equations, while higher order expansions generally yield unstable equations,
although exceptions apply, e.g. see [17, 18].

Zhong et al. suggested the “augmented Burnett equations” where some terms
of super-Burnett order (but not the actual super-Burnett terms) are added to the
Burnett equations to stabilize these [19, 20]. The augmented Burnett equations still
are unstable in space [15, 3], and they lack a rational derivation from the Boltzmann
equation [15].

For reference in subsequent sections we print the distribution function for the
NSF equations (with ξ = C/

√
θ)

f|CE = fM

�
1 +

σ
(1)
ik

2p
A


ξ2

� C〈iCk〉
θ

+
2

5

q
(1)
k

pθ
B


ξ2

�
Ck

�
C2

2θ
− 5

2

��
. (18)

The dimensionless functions A and B result from the approximate inversion of the
Boltzmann collision term [2, 7, 3] and thus depend on the interaction potential. For
Maxwell molecules they are constants, A = B = 1, while for all other interaction
potentials they are polynomials; fourth order polynomials give an excellent approx-
imation [2, 10]. Setting A = B = 1 leads to small deviations between theory and
measurement of viscosity and heat conductivity.

4 Grad moment method

The Chapman-Enskog method leads to expressions for stress and heat flux that
contain higher derivatives of the hydrodynamic variables. Grad suggested a quite
different approach, in which the number of variables is extended beyond the 5 hydro-
dynamic variables ρ, vi, θ, by adding stress σij , heat flux qi and other moments to the
list of variables [21, 22]. The corresponding transport equations for the additional
variables are obtained as moments of the Boltzmann equation and are first order
partial differential equations for the moments. They do not form a closed set for the
variables and require a closure argument. For this Grad suggests to approximate
the phase density by an expansion in Hermite polynomials about the equilibrium
distribution (the local Maxwellian), where the expansion coefficients are related to
the moments.

A crucial point in the method is the question which and how many moments
are needed to describe a process. The answer depends on the particular process, but
experience shows that the number of moments must be increased with increasing
Knudsen number [23, 24, 25, 26, 27, 28]. Grad’s method does not provide an ar-
gument that links the Knudsen number to the set of moments to be considered as
variables.

The best known set of Grad-type moment equations is the 13 mo-
ment system, which has the variables {ρ, vi, θ, σij , qi}. The corresponding mo-
ment equations are obtained by multiplying the Boltzmann equation with�
m,mci,

m
2
C2,mC〈iCj〉, m2 C

2Ci
�
. This gives the conservation laws (7) plus addi-

tional moment equations for stress and heat flux,

∂σij
∂t

+ vk
∂σij
∂xk

+ σij
∂vk
∂xk

+
4

5

∂q〈i
∂xj〉

+ 2p
∂v〈i
∂xj〉

+ 2σk〈i
∂vj〉
∂xk

+
∂mijk

∂xk
= Pij , (19)
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∂qi
∂t

+ vk
∂qi
∂xk

+
5

2
p
∂θ

∂xi
+

5

2
σik

∂θ

∂xk
+ θ

∂σik
∂xk

− θσik ∂ ln ρ

∂xk
+

7

5
qk
∂vi
∂xk

+
2

5
qk
∂vk
∂xi

+
7

5
qi
∂vk
∂xk

+
1

2

∂Rik
∂xk

+
1

6

∂Δ

∂xi
+mijk

∂vj
∂xk
− σij

ρ

∂σjk
∂xk

= Pi . (20)

Equations (19, 20) contain additional moments of the distribution function, which
are defined as

Δ = m

)
C4 (f − fM ) dc , Rij = m

) 
C2 − 7θ

�
C〈iCj〉fdc ,

mijk = m

)
C〈iCjCk〉fdc . (21)

The terms on the right hand sides are the moments of the Boltzmann collision term,

Pij = m

)
C〈iCj〉Sdc , Pi =

m

2

)
C2CiSdc . (22)

Obviously, the set of equations can be closed by finding expressions for
Δ,Rij ,mijk,Pij ,Pi that relate these to the basic 13 variables {ρ, vi, θ, σij , qi}. To
this end, the Grad method provides the distribution [21, 22, 3]

f|13 = fM

�
1 +

σik
2p

C〈iCk〉
θ

+
2

5

qk
pθ
Ck

�
C2

2θ
− 5

2

��
. (23)

This function recovers the basic 13 variables, and allows to compute the unknowns
(21, 22) as

Δ = Rij = mijk = 0 , Pij = − p
μ
σij , Pi = −2

3

p

μ
qi . (24)

Insertion of (23) into (19, 20) gives, together with (7), the closed set of equations
for the 13 variables.

By comparing the distribution functions (18) and (23) it becomes evident that
they are quite similar. However, there are two differences: (a) the CE phase density

contains only the first approximations to stress and heat flux, σ
(1)
ij and q

(1)
i , while

the Grad distribution contains both as independent variables, σij and qi. (b) In the
Grad function, the coefficients A and B assume the values for Maxwell molecules,
A = B = 1. From the last point one will infer that the Grad 13 moment equations
will be best suited for Maxwell molecules, while for other molecule types they can
only be an approximation.

The Grad 13 equations have two major drawbacks: (a) The equations are sym-
metric hyperbolic for most values of the variables, and this leads to shock structures
with discontinuities (sub-shocks) for Mach numbers above 1.65 [23, 26]. (b) Since
Grad’s method is not linked to the Knudsen number, the range of applicability for
the equations is unclear.

These problems remain for Grad-type equations with more variables, which give
smooth shocks up to higher but not too high Mach numbers [26, 27]. The 13 mo-
ment equations do not describe Knudsen boundary layers [29, 30, 24], increasing the
number of moments allows to compute these [31, 24, 32].

For some problems, in particular for large Mach or Knudsen numbers, one has to
face hundreds of moment equations, but the relation between moment number and
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Knudsen or Mach number is not clear. Computations for hundreds of moments are
only manageable for simple geometries and problems [33, 23, 24], and were never
performed in two or three dimensions. Indeed, the goal of a macroscopic set of
equations must be to have a simplification compared to the Boltzmann equation,
and using hundreds of moments does not achieve this goal.

5 Combining the Chapman-Enskog and Grad methods

In most of the available literature, the two classical methods—Grad moment method
and Chapman-Enskog expansion—are treated as being completely unrelated. How-
ever, using a method akin to the Maxwellian iteration of Truesdell and Ikenberry
[34, 35], Reinecke and Kremer extract the Burnett equations from Grad-type mo-
ment systems [10, 36]. Which set of moments one has to use for this purpose depends
on the interaction potential. For Maxwell molecules it is sufficient to consider Grad’s
set of 13 moments.

In [30] it was shown that this iteration method is equivalent to the CE expan-
sion of the moment equations. In the original CE method one first expands, and
then integrates the resulting distribution function to compute its moments. In the
Reinecke-Kremer-Grad method, the order of integration and expansion is exchanged.

For Maxwell molecules the Burnett equations result from the second order CE
expansion of the 13 moments set, while the super-Burnett equations result from the
3rd order CE expansion of the 26 moment set (which adds Δ,Rij , mijk to the list
of variables) [30, 13, 15, 3].

While the Reinecke-Kremer-Grad method does not give new results, it allows
an easier access to higher order CE expansions, in particular the Burnett equations.
The method does not solve the stability problems of the Burnett equations

M. Torrilhon and the present author used a different way to combine the two
methods by assuming different time scales for the 13 basic variables of the theory
on one side, and all higher moments on the other [13, 15, 3]. This allows to perform
a CE expansion around a non-equilibrium state which is defined through the 13
variables. This method, which appeared first as a side note in Grad’s contribution
to the Encyclopedia of Physics [22], gives a regularizing correction to the Grad13
equations, the regularized 13 moment equations (R13 Eqs.).

The same idea was used by Karlin et al. [37] for the linearized Boltzmann equa-
tion. They compute an approximation to the distribution function, which is used
to derive a set of 13 linear equations for the 13 moments. Their equations are the
linearized form of the R13 equations.

The R13 equations are not hyperbolic, give smooth shock structures for all Mach
numbers, and they are stable. Therefore, this combination of the CE and Grad
methods yields a marked improvement over the original methods. The R13 equations
will be shown and discussed later, in Sec. 6, which presents an alternative method
of derivation.

The Grad distributions, e.g. the 13 moment phase density f|13 (23), define non-
equilibrium manifolds in phase space [37, 38]. The Maxwellians form a subset on
these non-equilibrium manifolds (they are the appropriate Grad distribution for the
5 moments case, i.e. the Euler equations). The Grad closure restricts the phase
space so that the gas cannot access all states in phase space, but only those on the
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Grad non-equilibrium manifold. This strong restriction is inherent to Grad’s closure,
and has no physical foundation, since Grad distributions cannot be extracted from
the Boltzmann equation. This is different, of course, for the Maxwellians, which are
those phase densities that give a zero collision term. With no argument from physics
to support the Grad distributions, it seems to be daring to restrict the gas on the
Grad non-equilibrium manifolds. One way to relax the Grad assumption—at least
somewhat—is to allow states in the vicinity of the Grad manifolds. This stands
in analogy to the relation between Euler and NSF equations, which describe the
equilibrium manifold, and its vicinity.

It must be emphasized that there is no evidence in physics to support the exis-
tence of pseudo-equilibrium manifolds for the gas. In particular there is no guideline
for choosing the relevant moments, or the pseudo-equilibrium distribution, which
could, e.g., be a Grad distribution with any number of moments. A somewhat pop-
ular alternative are distribution functions that result from maximizing entropy or
extended thermodynamics, see [23, 39, 40, 41, 42, 43] as well as [3] for details on,
and problems associated with, this approach.

6 Order of Magnitude Method

The weak point in the Grad method is that no statement is made to connect Knudsen
numbers and relevant moments. As a result, the derivation of the R13 equations as
outlined above required the assumption of different time scales for the basic 13
moments, and higher moments. While this assumption leads to a set of equations
with desired behavior, it is difficult to justify, since the characteristic times of all
moments are, in fact, of the same order.

An alternative approach to the problem was presented by Struchtrup in [44, 45,
3], partly based on earlier work by Müller et al. [46].

The order of magnitude method considers not the Boltzmann equation itself, but
its infinite system of moment equations for symmetric and trace-free moments

u
(a)

〈ii···in〉 = m

)
C2aC〈i1 · · ·Cin〉fdc (a, n = 0, 1, 2, . . .) . (25)

Here, due to space restrictions, we cannot present the method in detail, but only
describe its main steps; in particular we shall not show the general moment equations
for the moments (25).

The method of finding the proper equations with order of accuracy λ0 in the
Knudsen number consists of the following three steps:

1. Determination of the order of magnitude λ of the moments.
2. Construction of a moment set with minimum number of moments at any order

λ.
3. Deletion of all terms in all equations that would lead only to contributions of

orders λ > λ0 in the conservation laws for energy and momentum.

Step 1 is based on a Chapman-Enskog expansion where a moment φ is expanded
according to

φ = φ0 + Knφ1 + Kn2φ2 + Kn3φ3 + · · · ,
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and the leading order of φ is determined by inserting this ansatz into the complete
set of moment equations. A moment is said to be of leading order λ if φβ = 0 for all
β < λ. This first step agrees with the ideas of [46], where, however, the authors do
not perform a Chapman-Enskog expansion, but a Maxwellian iteration [35].

In Step 2, new variables are introduced by linear combination of the moments
originally chosen. The new variables are constructed such that the number of mo-
ments at a given order λ is minimal. This step does not only simplify the later
discussion, but gives an unambiguous set of moments at order λ. This ensures that
the final result will be independent of the initial choice of moments. Note that, while
the basic set of moments (25) makes it easy to identify the order of magnitude (in
Step 1), any alternative complete set of moments could have been chosen to arrive
at the same new variables after Step 2.

Step 3 follows from the definition of the order of accuracy λ0: A set of equations
is said to be accurate of order λ0, when stress σij and heat flux qi are known within
the order O 

Knλ0
�
. The evaluation of this condition is based on the fact that all

moment equations are strongly coupled. This implies that each term in any of the
moment equations has some influence on all other equations, in particular on the
conservation laws. A theory of order λ0 will consider only those terms in all equations
whose leading order of influence in the conservation laws is λ ≤ λ0. Luckily, in order
to evaluate this condition, it suffices to start with the conservation laws, and step
by step, order by order, add the relevant terms that are required

The accounting for the order of accuracy is the main difference between the
order of magnitude approach and Consistently Ordered Extended Thermodynamics
(COET) [46], which assumes that all terms in all moment equations that are of
leading order λ ≤ λ0 or smaller must be retained. The order of magnitude approach
leads to smaller systems of equations for a given order, and can be performed for
the full three dimensional and time dependent equations, while [46] presents the
equations only for one-dimensional steady state processes.

The order of magnitude method was applied to the special cases of Maxwell
molecules and the BGK model in [44, 3], and it was shown that it yields the Euler
equations at zeroth order, the Navier-Stokes-Fourier equations at first order, and

Grad’s 13 moment equations (with omission of the non-linear term
σij

ρ

∂σjk

∂xk
) at

second order. The regularized 13 moment equations (R13) are obtained as the third
order approximation, they consists of the conservation laws (7) and the balance laws
for stress (19) and heat flux (20) which now are closed by the expressions†

Δ = −σijσij
ρ
− 12

μ

p

�
θ
∂qk
∂xk

+ θσkl
∂vk
∂xl

+
5

2
qk

∂θ

∂xk
− qkθ ∂ ln ρ

∂xk

�
,

Rij = −4

7

1

ρ
σk〈iσj〉k − 24

5

μ

p

�
θ
∂q〈i
∂xj〉

+ q〈i
∂θ

∂xj〉
− θq〈i ∂ ln ρ

∂xj〉
+

10

7
θσk〈i

∂v〈j〉
∂xk〉

�
mijk = −2

μ

p

�
θ
∂σ〈ij
∂xk〉

− σ〈ijθ ∂ ln ρ

∂xk〉 +
4

5
q〈i

∂vj
∂xk〉

�
. (26)

† There are some differences between the original R13 equations of [13] and the
equations presented here, which result from the order of magnitude method. The
original equations contain some higher (4th) order terms, and were derived for
the linearized collision operator, see [3] for details and discussion.
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The moments of the collision operator (24)2,3 are exact for Maxwell molecules, and
remain unchanged, Pij=− p

μ
σij , Pi = − 2

3
p
μ
qi.

A closer inspection of the regularized equations (26) shows that the terms added
to the original Grad 13 moment equations are of super-Burnett order.

For general, i.e. non-Maxwellian, molecule types the order of magnitude method
was performed to second order in [45, 3]; the derivation of the third order equations
would be far more involved than for Maxwell molecules. Again the equations at
zeroth and first order are the Euler and NSF equations (with exact viscosity, heat
conductivity and Prandtl number). The second order equations are a generalization
of Grad’s 13 moment equations,†

Dσij
Dt

+ σij
∂vk
∂xk

+ 2σk〈i
∂vj〉
∂xk

+
4

5
Pr

%3

%2

�
∂q〈i
∂xj〉

− ωq〈i ∂ ln θ

∂xj〉

�
+

4

5
Pr

%4

%2
q〈i

∂ ln p

∂xj〉
+

4

5
Pr

%5

%2
q〈i

∂ ln θ

∂xj〉
+

�
%6

%2
− 4

�
σk〈iSj〉k

= − 2

%2

p

μ

�
σij + 2μ

∂v〈i
∂xj〉

�
, (27)

Dqi
Dt

+ qk
∂vi
∂xk

+
5

3
qi
∂vk
∂xk
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Pr
σik

∂θ
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+

5

4

1

Pr

θ3

θ2
θσik

∂ ln p

∂xk

+
5

4

1

Pr

θ4

θ2
θ

�
∂σik
∂xk

− ωσik ∂ ln θ
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�
+
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1

Pr
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θ5

θ2
σik

∂θ
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= − 1

θ2
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2

1

Pr

p

μ

�
qi +

5

2

μ

Pr

∂θ

∂xi

�
. (28)

Here, the coefficients %α, θα are the Burnett coefficients of Table 1 and ω is the
viscosity exponent of (15).

Jin and Slemrod [47, 48] proposed an alternative regularization by constructing a
set of equations that (a) gives the Burnett equations in a second order CE expansion,
and (b) gives a positive entropy production for all values of the variables. Up to
second order their equations agree with the generalized Grad 13 equations (27, 28)
to which they add terms of super-Burnett order that were designed to achieve their
goal (b). These higher order terms cannot be justified from the Boltzmann equation
[3].

We summarize as follows: The order of magnitude method reproduces the estab-
lished results of the CE expansion at zeroth (Euler) and first (NSF) order. Moreover
it provides a new link between the Knudsen number and Grad’s 13 moment equa-
tions which turn out to be of second order in the Knudsen number, together with a
generalization of these for non-Maxwellian molecules. Finally, the method provides a
rational derivation of the R13 equations that does not require artificial assumptions.

7 Relations between the various sets of equations

The derivation of macroscopic equations from the Boltzmann equation is simplest
for the special case of Maxwell molecules. Accordingly, theories of higher orders

† Recall that Grad’s 13 moment equations are only suitable for Maxwell molecules.
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Boltzmann equation
↓ ↓

O (Kn∞) infinite moment system
↓ ↓

...
...

...
O 

Kn4
�

Grad26
↓

O 
Kn3

�
super-Burnett ←− R13

augmented B. ↓ ↓ Jin-Slemrod
O 

Kn2
�

↪→ Burnett ←− Grad13 ←↩
↘ ↙

O 
Kn1

�
NSF
↓

O 
Kn0

�
Euler

Table 2: The hierarchy of macroscopic equations for Maxwell molecules [3].

in the Knudsen number, like the super-Burnett and the R13 equations, are—at
present—only available for Maxwell molecules.

The Chapman-Enskog expansion of increasing order gives the Euler, Navier-
Stokes-Fourier, Burnett, and super-Burnett equations.

The augmented Burnett equations contain terms of super-Burnett order, which
are added ad hoc, and cannot be derived from the Boltzmann equation.

Grad-type moment equations can be constructed for arbitrary moment sets,
but the 13 moment system and the 26 moment system are particularly interesting,
since they are equations of orders O 

Kn2
�

and O 
Kn4

�
, respectively. They can be

obtained also from the order of magnitude approach which gives the R13 equations
as the proper equations at order O 

Kn3
�
, and the NSF and Euler equations at

orders O 
Kn1

�
and O 

Kn0
�
, respectively.

Jin and Slemrod’s equations are accurate to order O 
Kn2

�
, but contain terms

of super-Burnett order, O 
Kn3

�
, which cannot be derived from the Boltzmann

equation.
A Chapman-Enskog expansion of higher order moment equations can be per-

formed by means of CE expansions for stress and heat flux (see (13)); the results
agree with those of the CE expansion of the Boltzmann equation.

The relations between the various sets of equations are depicted in Table 2, in
which an arrow between two sets of equations indicates that one set can be derived
from the other (e.g. the Burnett eqs. from the Grad13 eqs. by means of a CE
expansion). Note that at a given order the equations derived from the CE method
and from the order of magnitude approach are quite different, due to the marked
differences in methodology. Indeed, the CE based equations (e.g. the super-Burnett
equations, at third order), contain less information than their counterparts (e.g. the
R13 equations, also at third order), since the former can be derived from the latter,
but not vice versa.

For other types of interaction potentials, accurate sets of equations are only
available to order O 

ε2
�
, namely the generalized 13 moment equations which were
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Boltzmann equation
↓ ↓

O (Kn∞) infinite moment system
↓ ↓

...
...

...
O 

Kn3
�

↓ ↓ Jin-Slemrod
O 

Kn2
�

Burnett ←− generalized13 ←↩
↘ ↙

O 
Kn1

�
NSF
↓

O 
Kn0

�
Euler

Table 3: The hierarchy of macroscopic equations for molecules with arbitrary inter-
action potentials [3].

obtained from the order of magnitude method, and the Burnett equations from the
CE method. The Euler and NSF equations form the proper equations at zeroth
and first order. The Jin-Slemrod equations are available as well. Table 3 shows the
known equations as well as their order of accuracy, and their relations.

8 Applications

The previous sections gave an overview over several methods to derive macroscopic
equations for rarefied gas flows; see Tables 2 and 3. We now turn the attention to
some applications in order to discuss the behavior and quality of the equations. As
before, space restrictions forbid to go into detail, and the interested reader is referred
to the cited literature.

Linear stability: Bobylev [12] has shown that the Burnett and super-Burnett
equations are unstable in transient problems. This failure is the most important
reason to discard the Burnett and super-Burnett equations (and thus the CE ex-
pansion), and to strive for alternative methods.

For one-dimensional processes the linearized transport equations of the previous
sections can be written as

∂uA
∂t

+AAB ∂uB
∂x

+ BAB ∂
2uB
∂x2

+ · · · = CABuB , (29)

with constant matrices AAB , BAB , CAB, . . . For the solution, we assume plane waves
of the form

uA = ũA exp [i (Ωt− kx)]

where ũA is the complex amplitude of the wave, Ω is its frequency, and k is its wave
number. The equations (29) can then be written as

GAB (Ω, k) ũB = 0 where GAB (Ω, k) = iΩδAB − ikAAB − k2BAB + · · · − CAB
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and nontrivial solutions require det [GAB (Ω, k)] = 0; the resulting relation between
Ω and k is the dispersion relation.

If a disturbance in space is considered, the wave number k is real, the frequency
is complex, Ω = Ωr (k) + iΩi (k), and stability requires Ωi (k) ≥ 0.

If a disturbance in time at a given location is considered, the frequency Ω is real,
while the wave number is complex, k = kr (Ω) + iki (Ω). Then, for a wave traveling
in positive x-direction (kr > 0), the damping must be negative (ki < 0), while for
a wave traveling in negative x-direction (kr < 0), the damping must be positive
(ki > 0). Thus, if k (Ω) is plotted in the complex plane with Ω as parameter, the
curves should not touch the upper right nor the lower left quadrant.

Thus, in order to test the stability of a given set of equations, one has to test for
stability in time and space. However, for the Burnett and super-Burnett equations,
most authors only consider stability in time, and ignore stability in space [12, 19].

Fig. 1: The solutions k (Ω) of the dispersion relation in the complex plane with Ω as
parameter for Navier-Stokes-Fourier, Burnett, Super-Burnett, augmented Burnett,
Grad 13, and R13 equations [13, 15]. The dots denote the points where Ω = 0.

Figure 1, taken from [13, 15], considers the stability against local disturbances of
frequencyΩ. The figure shows the solutions of the dispersion relation for the different
sets of equations; the dots mark the points where Ω = 0. Grad 13 equations, and
NSF equations give two different modes each, and none of the solutions violates the
condition of stability. The R13 equations have 3 modes, all of them are stable. This
is different for the Burnett (3 modes), super-Burnett (4 modes), and augmented
Burnett (4 modes) equations: the Burnett equations have one unstable mode, and
super-Burnett and augmented Burnett have two unstable modes.
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The test for stability in time [15] shows that NSF, augmented Burnett, Grad 13,
and R13 equations are stable for all wavelengths, while Burnett and super-Burnett
equations are unstable.

All Burnett type equations, including the augmented Burnett equations, fail the
tests for stability. The NSF, Grad-type equations and the R13 equations are stable
for all frequencies and for disturbances of any wavelength.

Shock structures: The computation of shock structures is a standard test for
macroscopic equations designed to describe rarefied gas flows, and we present some
of the results of [15].

A one-dimensional steady shock structure connects two equilibrium states, where
the values of density ρ0, ρ1, velocity v0, v1, and temperature θ0, θ1 in the two equi-
librium states are related through the Rankine-Hugoniot relations [3]. The relevant

parameter for the shock is the inflow Mach number M0 = v0
DE

5
3
θ0 .

We compare the shock structures obtained from macroscopic equations for rar-
efied flows to DSMC results obtained with Bird’s code [5], and plot results in di-
mensionless form [51, 15, 3]. Figure 2 shows the density and heat flux profiles of a
M0 = 2 shock calculated with the NSF and Grad13 equations as well as with the
Burnett and super-Burnett equations for Maxwell molecules. The NSF result sim-
ply mismatches the profile, while the Grad13 solution shows a strong subshock. The
Burnett and super-Burnett solutions are spoiled by oscillations in the downstream
part of the shock, which arise due to the spatial instabilities. Thus, for the compu-
tation of shock structures the Burnett equations and super-Burnett-equations have
to be rejected.

Fig. 2: Shock structure solutions for the NSF equations, Grad 13 equations, and Bur-
nett and super-Burnett equations, for Maxwell molecules at Mach number M0 = 2
(solid lines). Both Burnett results exhibit non-physical oscillations in the down-
stream region. The squares represent the DSMC solution.
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Fig. 3: Shock structures in a gas of Maxwell molecules with Mach numbers M0 = 2
and M0 = 4. The upper row shows the solution of the R13 equations, while the lower
row shows the results of the augmented Burnett equations. The squares correspond
to the DSMC solution.

In [52] DSMC results for velocity and temperature are used to compute stress
σ and heat flux q from the Burnett equations. Comparison with the actual DSMC
results for σ and q shows considerable improvement over the NSF equations. Thus,
the Burnett equations contain the proper physics of the shock, but are useless, since
their mathematical structure does not allow to compute a stable solution. Fiscko and
Chapman [14] deleted one linear term from the Burnett and super-Burnett equations
to obtain stable shock solutions in reasonable agreement to DSMC simulations.
Obviously, the mathematical properties of the equations are changed by deleting
terms ad hoc, and thus it is not surprising that they obtained stable behavior.

R13 equations and augmented Burnett equations give good results for a wider
range of Mach numbers. Figure 3 compares shock structures for Maxwell molecules
at M0 = 2 and M0 = 4 for R13 and augmented Burnett with DSMC results. For
M0 = 2 the density profiles exhibit no visible differences and both models match the
DSMC results very well. The shape of the heat flux is captured very well by the R13
equations, while the augmented Burnett equations do not reproduce the maximum
value and the upstream relaxation. The deviations from the DSMC solutions are
more pronounced for M0 = 4, where the R13 results begin to deviate in the upstream
part. In the tail of the augmented Burnett profiles small oscillations are present,
due to instability in space. This happens since the solution was obtained from a
boundary value problem; no stability problems arise when the augmented Burnett
equations are solved by by time stepping into steady state [19, 20]. Altogether, the
results of the R13 system for Maxwell molecules agree better with DSMC results
than the solutions of the augmented Burnett equations. For higher Mach numbers
both deviate somewhat from DSMC results.
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A shock is often characterized by the shock thickness, defined as [49, 50]

δ =
ρ1 − ρ0

max

∂ρ
∂x

� . (30)

Figure 4 compares thickness results for the R13 system to measurements in argon
(ω = 0.8) [49, 50]. The computed shock thickness yields a striking agreement with
the experimental data. The results of the augmented Burnett equations with ω = 0.8
lead to a similar agreement, while the NSF results lie far off. The good agreement of
the shock thickness for high Mach numbers should not be overemphasized, since the
single parameter δ cannot reflect the complete profile, so that the agreement with
shock thickness measurements does not imply a reliable description of the complete
profile. Nevertheless, the information that δ does reflect—a mean thickness—is pre-
dicted by the R13 equations accurately even for high Mach numbers.

Fig. 4: Comparison of the inverse shock thickness for the R13 equations with mea-
surements for Argon (squares, ω ≈ 0.8). The curve of the augmented Burnett equa-
tions with ω = 0.8 shows a similar agreement.

Couette flow: The biggest obstacle for any higher order model for rarefied
gas flows is to find proper boundary conditions. This is a difficult problem, and no
conclusive answers can be given at present. We shall not discuss the problems, but
only present some Couette flow calculations that were obtained by partial fitting
of boundary conditions. Couette flow describes the motion of a gas between two
infinite parallel plates at distance L, moving against each other with the speed vLW ,
details can be found in [3].

For constructing the solution it is assumed that the non-equilibrium quantities
can be split into bulk (B) and Knudsen layer (L) contributions, φ = φB +φL, where
the Knudsen layer contributions vanish in some distance from the wall.

The bulk equations follow from a Chapman-Enskog expansion of the steady
state equations in Couette geometry; only the second order equations are considered,
which read (y = x2/L is the dimensionless space variable)
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σ12 = −μP0

ρθL

dv

dy
, q2 = −15

4

μP0

ρθL

dθ

dy
, σ22 = −6

5

σ12σ12

P0
, q1 =

7

2

σ12q2
P0

. (31)

The first two equations, for σ12 and q2, are the laws of Navier-Stokes and Fourier
multiplied with the factor P0/ρθ = P0/p. When these are used with the conservation
laws (7), it suffices to prescribe the jump and slip boundary conditions [3]

vα − vαW =
− 2−χ

χ
α1

�
π
2

√
θσ12n

α − 1
5
α2q1

ρθ + 1
2
σ22

,

θα − θαW = −
2−χ
2χ

β1

�
π
2

√
θq2n

α + 1
4
θσ22

ρθ + 1
2
σ22

+
V 2

4
, (32)

with correction factors α1, α2, β1 close to unity [1, 3]. The constant P0 follows from
the prescribed mass between the plates.

More interesting are the equations for the normal stress, σ22, and the heat flux
parallel to the wall, q1. Both vanish in the NSF theory, and thus their non-zero
values describe pure rarefaction effects. In particular it must be noted that there is
no temperature gradient in the x-direction: q1 is a heat flux that is not driven by a
temperature gradient.

Depending on the set of equations used, σij and qi can have linear Knudsen
layer contributions as well. The CE expansion, that gave the bulk solution, discards
these linear parts [3], but they can be obtained from the linearized equations [16].

The superposition of bulk solution and Knudsen layers for the R13 equations
gives

v = v|B − 2

5
q1|L , θ = θ|B − 2

5
σ22|L , σ12 = σ12|B , σ22 = σ22|B + σ22|L ,

p = P0 − σ22|L , ρ =
p

θ
, q1 = q1|B + q1|L , q2 = q2|B . (33)

with the Knudsen layer terms

q1|L = A sinh
*E

5
9

y− 1
2

Kn

+
, σ22|L = D cosh

*E
5
6

y− 1
2

Kn

+
. (34)

The constants of integration A and D, which should be computed from boundary
conditions for stress and heat flux, were fitted to DSMC simulations. Figure 5 com-
pares results of DSMC calculations, NSF equations with jump and slip boundary
conditions, and the R13 equations for Kn = 0.1. R13 matches the DSMC simulations
quite well; the most visible differences lie in the bulk values for σ12 and σ22. The
temperature maximum is reproduced very well, while some differences can be ob-
served at the boundaries. NSF, on the other hand, cannot neither describe Knudsen
boundary layers nor the rarefaction effects described by σ22 and q1.

NSF and Grad 13 equations do not give linear Knudsen layers at all. The Burnett
and super-Burnett equations cannot describe Knudsen layers of the type (34) but

give periodic solutions of the form A sin
*
λx−1/2

Kn

+
, B cos

*
λx−1/2

Kn

+
. The augmented

Burnett equations give expressions of the type (34), but the signs for the heat flux
parallel to the flow does not match the DSMC simulations [16].
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Fig. 5: Couette flow at Kn = 0.1,with vLW = 200m
s . Continuous line: DSMC, finely

dashed line (- - - - ): NSF, dashed line (– – – – ): superposition of bulk solution and
linear Knudsen layer solution. Recall that NSF implies q1 = σ22 = 0 (curves not
shown).
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9 Conclusions and Outlook

Several methods to derive macroscopic equations for rarefied gases, and the result-
ing equations were presented, including the classical Chapman-Enskog and Grad
methods, and the new order of magnitude method. Our interest was focussed on
equations for Knudsen numbers above 0.01, i.e. beyond the validity of the Navier-
Stokes equations.

The CE method suggests the Burnett and super-Burnett equations which, how-
ever, are unstable, lead to spurious oscillations in linear steady state processes, and
fail to accurately describe shock structures. Efforts to augment the equations were
only partially successful.

The Grad method leads to stable equations that can describe Knudsen layers
when more than 13 variables are considered. Due to the hyperbolicity of the equa-
tions, they lead to unphysical subshocks in shock structure problems.

The order of magnitude method suggest the Grad 13 moment equations at second
order and the R13 equations at third order. The latter are superior to the competing
sets of equations for several reasons: (a) they contain the Burnett and Super-Burnett
equations as can be seen by means of a CE expansion in the Knudsen number, (b)
they are linearly stable for all wavelengths and frequencies, (c) they show phase
speeds and damping coefficients that match experiments better than those for the
NSF equations, or the Grad13 system, (d) they exhibit Knudsen boundary layers,
and (e) they lead to smooth shock structures for all Mach numbers.

While the R13 equations have many desirable features, a number of difficult
problems must be solved before the R13 equations (or any other model above the
NSF equations) can be used as a reliable tool. (a) Reliable boundary conditions must
be developed. (b) Industrially relevant gases are diatomic (air!) or polyatomic, and
higher order equations for these and for mixtures must be derived. (c) The multiscale
character of rarefied flows requires advanced numerical methods that, based on a
well chosen local Knudsen number, use the most efficient set of equations in a flow
region; this requires the interplay of solvers for NSF, R13 and Boltzmann equations,
and reliable switching and transition conditions. (d) Currently, only the Jin-Slemrod
equations are accompanied by a proper entropy inequality, and it is desirable to find
equivalents for the other higher order models.

These problems are under investigation, and we hope to be able to present
solutions in the future.

Acknowledgement. This research was supported by the Natural Sciences and Engi-
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