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Abstract

A linearization is developed for Mieussens’s discrete velocity model (see, e.g., [L. Mieussens, Discrete-velocity models and nu-
merical schemes for the Boltzmann-BGK equation in plane and axisymmetric geometries, J. Comput. Phys. 162 (2000) 429–466])
for kinetic equations. The basic idea is to use a linearized expression of the reference distribution function in the kinetic equation,
instead of its exact expression, in the numerical scheme. This modified scheme is applied to various kinetic models, which include
the BGK model, the ES-BGK model, the BGK model with velocity-dependent collision frequency, and the recently proposed ES-
BGK model with velocity-dependent collision frequency. One-dimensional stationary shock waves and stationary planar Couette
flow, which are two benchmark problems for rarefied gas flows, are chosen as test examples. Molecules are modeled as Maxwell
molecules and hard sphere molecules. It is found that results from the modified scheme are very similar to results from the original
Mieussens’s numerical scheme for various kinetic equations in almost all tests we did, while, depending on the test case, 20–40
percent of computational time can be saved. The application of the method is not affected by the Knudsen number and molecular
models, but is restricted to lower Mach numbers for the BGK (or the ES-BGK) model with velocity-dependent collision frequency.
© 2006 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The Boltzmann equation, which is the fundamental equation of rarefied gas dynamics, is a nonlinear integro-
differential equation, and difficult to handle. Therefore, kinetic models have been proposed with simplified expressions
for the collision term in the Boltzmann equation [1–5].

Discrete Velocity Models (DVMs) offer a deterministic approach to the approximate solution of the Boltzmann
equation with kinetic models [2,3]. Among the existing DVMs, Mieussens’s DVM [5–10] is particularly interesting,
since the distribution function remains always positive, and conservation laws and dissipation of entropy are ensured
at the discrete level. Moreover, computational time can be saved from Mieussens’s DVM, compared to traditional
DVMs, since the number of discrete velocities does not need to be too large. These features are achieved since the
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reference distribution functions fref in the kinetic models are not discretized directly, but determined by the discrete
minimum entropy principle [6,7]. This numerical method has been applied successfully to the BGK model, the ES-
BGK model, the BGK model with Velocity-Dependent Collision Frequency (VDCF) (ν(C)-BGK model), and the
ES-BGK model with VDCF (ν(C)-ES-BGK model) [5–10].

In order to save computational time, and reduce the complexity of the program code further, Mieussens’s original
DVM is simplified in this paper by using a linearized expression of the reference distribution in the kinetic equation,
instead of its exact expression.

Numerical tests are performed for one dimensional shock waves at steady state and planar Couette flow at steady
state, which are two important benchmark problems for rarefied gas flows. Molecules are modeled as Maxwell mole-
cules and hard sphere molecules [1].

2. Kinetic models and kinetic equations

In the microscopic theory of rarefied gas dynamics, the state variable is the (mass) distribution function f (xi, ci, t),
which specifies the density of microscopic particles with velocity ci at time t and position xi . The particles, which can
be thought of as idealized atoms, move freely in space unless they undergo collisions. The corresponding evolution of
f is described by the Boltzmann equation [1–4], which, when external forces are omitted, is written as

∂f

∂t
+ ci

∂f

∂xi

= S(f ). (1)

Here, the term on the right-hand side, S(f ), describes the change of f due to collisions among particles.
In the macroscopic continuum theory of rarefied gas dynamics, the state of the gas is described by macroscopic

variables, such as mass density ρ, macroscopic flow velocity ui , temperature T , and so on, which depend on position
xi and time t . These quantities can be recovered from the distribution f by taking velocity averages (or say, moments)
of the corresponding microscopic quantities:

ρ =
∫

f dc1 dc2 dc3 =
∫

f dc, ρui =
∫

cif dc,

p = ρRT = 1

3

∫
C2f dc, pij =

∫
f CiCj dc = pδij + σij , (2)

σij =
∫

f C<iCj> dc, qi = 1

2

∫
C2Cif dc.

Here R = k/m is the gas constant, m is the mass of one microscopic particle, k is the Boltzmann constant, Ci = ci −ui

is the peculiar velocity, p is the hydrostatic pressure, pij is the pressure tensor, δij is the unit matrix, qi is the heat
flux, and σij is the trace-free part of the pressure tensor. An angular bracket around indices denotes the symmetric
and trace-free part of a tensor, i.e. C<iCj> = CiCj −C2δij /3. For more details on the computation of symmetric and
trace-free tensors, please refer to [1]. The third expression in Eqs. (2) gives the definition of temperature for the ideal
gas law.

In kinetic models, the Boltzmann collision term S(f ) is replaced by a relaxation expression which is typically of
the form

Sm(f ) = −νref(f − fref). (3)

Here, fref is a suitable reference distribution function, and νref is the collision frequency. The subscript ref will be
replaced by the name of the kinetic model, when a specific kinetic model is applied. The various kinetic models differ
in their choices of reference distribution fref and collision frequency νref [5,10], while all kinetic models need to
guarantee the conservation laws for mass, momentum and energy, which read∫

Sm dc = 0,

∫
ciSm dc = 0,

1

2

∫
c2Sm dc = 0. (4)

Several kinetic models have been proposed in the literature. Here, only the reference distributions of those kinetic
models, which relate to this work, will be given. For more detailed information about these and other kinetic models
please refer to [5,10].
Please cite this article as: Y. Zheng, H. Struchtrup, A linearization of Mieussens’s discrete velocity model for kinetic equations, European
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The BGK model [1,3,11] is the original and simplest kinetic model; its reference distribution is simply the
Maxwellian distribution,

fref = fBGK = ρ

√(
1

2πRT

)3

exp

(
− C2

2RT

)
, (5)

where the subscript BGK denotes a quantity used in the BGK model. νBGK depends on density and temperature, but
is independent of the microscopic velocity.

The ES-BGK model [1,12–14] replaces the Maxwellian with a generalized Gaussian, so that

fref = fES = ρ
(
det(2πλij )

)−1/2 exp

(
−1

2
CiεijCj

)
, (6)

where the subscript ES denotes a quantity used in the ES-BGK model. νES depends on density and temperature, but
is independent of the microscopic velocity.

The matrix λij is given by

λij = RT δij + bσij /ρ = (1 − b)RT δij + bpij /ρ, (7)

where b is a number that serves to adjust the Prandtl number, and εij is the inverse of the tensor λij . The parameter b

must lie in the interval [−1/2,1] to ensure that λij is positive definite, which further ensures the integrability of fES.
In the ES-BGK model, the reference distribution fES is in fact defined by the following ten conditions (the first five
conditions are the conservation laws, Eqs. (4)),∫

fES dc = ρ,

∫
CifES dc = 0,

∫
CiCjfES dc = ρλij = (1 − b)pδij + bpij , (8)

which will be used in the numerical work later.
The ν(C)-BGK model [9,10,15–18] (or say, the BGK model with VDCF) is an extension of the classical BGK

model that allows incorporating the VCDF. The corresponding reference distribution in this kinetic model is a shifted
Maxwellian,

fref = fγ = a exp
(−Γ C2 + γiCi

)
, (9)

where the subscript γ denotes a quantity used in the ν(C)-BGK model, and the coefficients a, Γ , and γi are chosen
so as to guarantee the conservation of mass, momentum and energy as given in Eqs. (4). νγ depends on density and
temperature, and also depends on the microscopic velocity [9,10].

In the ν(C)-ES-BGK model [5,10,19], or say the ES-BGK model with VDCF, the reference distribution is writ-
ten as

fref = fN = a exp

(
−1

2
Γ εijCiCj + γiCi

)
, (10)

where the subscript N denotes a quantity used in the ν(C)-ES-BGK model. Here, the matrix εij has the same expres-
sion as in the ES-BGK model. The coefficients a, Γ , and γi are chosen so as to guarantee the conservation of mass,
momentum and energy. νN depends on density and temperature, and also depends on the microscopic velocity [10].

3. Mieussens’s discrete velocity model for kinetic equations

For one-dimensional shock waves, flow is along the x direction in an x−y−z Cartesian frame. In the planar Couette
flow problem, there are two parallel infinite plates in the y−z plane (one plate is fixed, while the other plate is moving
with a certain speed in the y direction), and the direction perpendicular to the plates is the x direction. The flow in the
planar Couette flow is along the y direction. Therefore, macroscopic variables in both stationary situations vary only
in the x direction.

The numerical method we use is based on the explicit scheme of Mieussens’s DVM. Here, since its modification
is the main aim of this paper, we shall only discuss the discrete reference distribution to save space. Other important
details related to the numerical scheme, in particular the choice of boundary conditions, time step, space grid and
velocity grid, can be found in Refs. [5–10].
Please cite this article as: Y. Zheng, H. Struchtrup, A linearization of Mieussens’s discrete velocity model for kinetic equations, European
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In the following, a dense notation is used, e.g.

f
(
xi, tn, c

j1
x , c

j2
y , c

j3
z

) = f n
i,j1,j2,j3

= f n
i,j , (11)

where xi is the discrete space node in the x direction, tn is the time after n time steps. Therefore, in Sections 3
and 4, a superscript n denotes values after n time steps, a subscript i denotes values at position xi , and a subscript
j denotes values at the discrete velocity node (j1, j2, j3). Then, the discretized kinetic equation based on an explicit
finite volume scheme is

f n+1
i,j = f n

i,j − �tn

�x

(
Fn

i+ 1
2 ,j

− Fn

i− 1
2 ,j

)
− �tnν

n
i,j

(
f n

i,j − f n
ref,i,j

)
, (12)

where �tn is the nth time step, νn
i,j is the discrete collision frequency, �x is the step size of the position grid, and

Fn

i± 1
2 ,j

are the numerical fluxes [6,10,20]. As in Section 2, the subscript ref will be replaced by the name of the kinetic

model, when a specific kinetic model is applied. We are interested in steady state solutions which are obtained by
applying an iterative technique.

The main feature of Mieussens’s DVM is that the coefficients in the reference distribution functions fref are not
discretized directly, but determined by the discrete minimum entropy principle [6–8]. This is equivalent to obtaining
the coefficients in the reference distribution from the discrete constraints of the reference distribution (e.g. Eqs. (16)
below for the BGK model).

Obviously, the values of the coefficients in the discrete reference distributions are not identical to their values in
the continuous situation. In fact, if we choose the values of the coefficients directly from the continuous case (by
setting γ n

BGK,i = 0 in the following Eq. (14) for the BGK model), which was called the “natural approximation” by
Mieussens [6,7], the conservation laws and dissipation of entropy will not be strictly satisfied in the discrete case
[6,7]. We emphasize that in the continuum limit, where the bounds of the discrete velocity approach infinity, and
the step sizes of the velocity grid approach zero, Mieussens’s DVM will be equivalent to DVMs where the natural
approximation is applied [8].

Since a nonlinear system of equations is easier and more robust to be solved when the magnitudes of the terms in all
equations are similar, dimensionless quantities are used in the code. The discrete dimensionless reference distribution
Fn

ref,i,j is defined by

f n
ref,i,j = Fn

ref,i,j
ρn

i

�c
, (13)

where �c denotes the volume of a cell in discrete velocity space.
For the BGK model in the shock waves, the dimensionless reference distribution reads

Fn
BGK,i,j = f n

BGK,i,j�c

ρn
i

= an
BGK,i exp

(−Γ n
BGK,i

(
ηn

i,j

)2 + γ n
BGK,iη

n
i,j1

)
, (14)

where

ηn
i,j = Cj/

√
2RT n

i (15)

is the dimensionless peculiar velocity, and (ηn
i,j )

2 = (ηn
i,j1

)2 + (ηn
i,j2

)2 + (ηn
i,j3

)2. The dimensionless coefficients
an

BGK,i , Γ
n

BGK,i and γ n
BGK,i must be determined from the conservation laws, Eqs. (4), which in the discrete case read

J∑
j=1

Fn
BGK,i,j = 1,

J∑
j=1

ηn
i,j1

Fn
BGK,i,j = 0,

J∑
j=1

(ηn
i,j )

2

1.5
Fn

BGK,i,j = 1. (16)

By inserting the dimensionless distribution (14) into Eqs. (16), we obtain the final system of equations to determine
the three coefficients as

J∑
an

BGK,i exp
(−Γ n

BGK,i

(
ηn

i,j

)2 + γ n
BGK,iη

n
i,j1

) = 1,
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J∑
j=1

ηn
i,j1

an
BGK,i exp

(−Γ n
BGK,i

(
ηn

i,j

)2 + γ n
BGK,iη

n
i,j1

) = 0, (17)

J∑
j=1

(
ηn

i,j

)2
an

BGK,i exp
(−Γ n

BGK,i

(
ηn

i,j

)2 + γ n
BGK,iη

n
i,j1

) = 1.5,

which is obviously a nonlinear system of equations for unknown coefficients an
BGK,i , Γ n

BGK,i , γ n
BGK,i . This nonlinear

system must be solved at each position node and for every time step. The Newton–Raphson (N–R) algorithm [21]
(also known as the Newton method with a backtracking line search [22]) is applied to solve the nonlinear system in
our work here as well as in Refs. [5,10] and in Mieussens’s work [6–9].

For the ES-BGK model in the shock waves, the dimensionless reference distribution is

Fn
ES,i,j = an

ES,i exp
(−Γ n

ES,xx,i

(
ηn

i,j1

)2 − Γ n
ES,yy,i

((
ηn

i,j2

)2 + (
ηn

i,j3

)2) + γ n
ES,iη

n
i,j1

)
, (18)

and the conditions [6,23] to determine the four coefficients are the discrete form of Eqs. (8).
Expressions for Fn

ref,i,j and discrete constraints for kinetic models in other flow situations can be built following
the same ideas as above [5,10].

4. A linearization of Mieussens’s discrete velocity model

As we see from the above Section 3, the equations to determine coefficients in the discrete reference distribution
f n

ref,i,j form a nonlinear system of equations, and the N–R algorithm (or another nonlinear solver) is needed to solve
the equations. This makes the program code complex and requires a considerable amount of computational time.

Note that the reference distribution for the continuous BGK model is the local Maxwellian, Eq. (5). Thus, as was
shown by Mieussens in [8], in the continuous limit (infinitely many velocity nodes) the coefficients in the discrete

dimensionless reference distribution expression (14) assume the values an
BGK,i = �c/

√
(2πRT n

i )3, Γ n
BGK,i = 1, and

γ n
BGK,i = 0. For a reasonably fine velocity grid the coefficients will differ only slightly from these values, which allows

a linearization of the scheme.
Therefore, in order to simplify the program and save computational time, and simultaneously obtain the same

results, we propose to use a linearized discrete reference distribution f n
ref,i,j , instead of the original nonlinear distrib-

ution. Then the system of equations for the undetermined coefficients becomes a linear system, which can be solved
much faster and easier.

For the BGK model and the ν(C)-BGK model, in which an isotropic Gaussian distribution appears in the original
reference distribution, the way to construct the linearization is to expand the original reference distribution around
the Maxwellian distribution, which is an isotropic Gaussian distribution. Following this idea, we obtain the linearized
dimensionless reference distribution in the BGK model for the shock waves as

Fn
BGK,i,j = exp

(−(
ηn

i,j

)2)(
a1n

BGK,i + a2n
BGK,iη

n
i,j1

+ a3n
BGK,i

(
ηn

i,j

)2)
, (19)

and now a1n
BGK,i , a2n

BGK,i , a3n
BGK,i are the three undetermined (dimensionless) coefficients. Within the validity of

the linearization, the relation between new and old coefficients is given by

a1n
BGK,i = an

BGK,i , a2n
BGK,i

∼= an
BGK,iγ

n
BGK,i , a3n

BGK,i
∼= −an

BGK,i

(
Γ n

BGK,i − 1
)
. (20)

Note that for the exact BGK model the coefficients a2n
BGK,i and a3n

BGK,i vanish. Since Mieussens’s scheme converges
to the BGK equation for increasing number of discrete velocities [8], the coefficients γ n

BGK,i and (Γ n
BGK,i − 1) are

small, which allows Taylor expansion in these coefficients. The Taylor expansion leads to our linearized scheme.
The essential constraints for these three unknown coefficients are still the conservation laws Eqs. (16). Insertion of

the expression (19) into Eqs. (16) gives the system of equations for the new coefficients as

a1n
BGK,iJ

n
i,11 + a2n

BGK,iJ
n
i,12 + a3n

BGK,iJ
n
i,13 = 1,

a1n
BGK,iJ

n
i,21 + a2n

BGK,iJ
n
i,22 + a3n

BGK,iJ
n
i,23 = 0, (21)

a1n J n + a2n J n + a3n J n = 1.5,
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where

Jn
i =

⎡
⎢⎣

∑J
j=1 exp(−(ηn

i,j )
2)

∑J
j=1 ηn

i,j1
exp(−(ηn

i,j )
2)

∑J
j=1(η

n
i,j )

2 exp(−(ηn
i,j )

2)∑J
j=1 ηn

i,j1
exp(−(ηn

i,j )
2)

∑J
j=1(η

n
i,j1

)2 exp(−(ηn
i,j )

2)
∑J

j=1(η
n
i,j )

2ηn
i,j1

exp(−(ηn
i,j )

2)∑J
j=1(η

n
i,j )

2 exp(−(ηn
i,j )

2)
∑J

j=1 ηn
i,j1

(ηn
i,j )

2 exp(−(ηn
i,j )

2)
∑J

j=1(η
n
i,j )

2(ηn
i,j )

2 exp(−(ηn
i,j )

2)

⎤
⎥⎦ ,

which is a symmetric matrix. The above linear system of equations for a1n
BGK,i , a2n

BGK,i , and a3n
BGK,i can be solved

faster than the original nonlinear system of equations for an
BGK,i , Γ n

BGK,i and γ n
BGK,i (Eqs. (17)). Since the system

must be solved for each position node at every time step, a noticeable reduction of the computational time can be
expected.

For the ES-BGK model and the ν(C)-ES-BGK model, in which an anisotropic Gaussian distribution appears in the
original reference distribution, we construct the linearization by expanding their original reference distribution around
a suitable anisotropic Gaussian distribution. This gives the linearized reference distribution in the ES-BGK model for
the shock waves as

Fn
ES,i,j = exp

(−εn
ES,xx,i

(
ηn

i,j1

)2 − εn
ES,yy,i

((
ηn

i,j2

)2 + (
ηn

i,j3

)2))
× (

a1n
ES,i + a2n

ES,iη
n
i,j1

+ a3n
ES,i

(
ηn

i,j1

)2 + a4n
ES,i

((
ηn

i,j2

)2 + (
ηn

i,j3

)2))
. (22)

Here

εn
ES,xx,i = pn

i

pn
BGK,xx,i/Pr + (1 − 1/Pr)pn

xx,i

and εn
ES,yy,i = pn

i

pn
BGK,yy,i/Pr + (1 − 1/Pr)pn

yy,i

,

are the discrete values of the dimensionless coefficient εijRT of the ES-BGK model; see Eq. (7) in Section 2 for the
definition in the continuous case. Above we have used the abbreviations pn

BGK,xx,i = ∑J
j=1(C

n
i,j1

)2f n
BGK,i,j�c and

pn
BGK,yy,i = ∑J

j=1(C
n
i,j2

)2f n
BGK,i,j�c, which are pressure tensor components computed from the reference distribu-

tion of the BGK model [6,23].
Expressions of the linearized reference distributions Fn

ref,i,j and corresponding linear systems for other flow situa-
tions can be built following the same ideas [5,10].

It is difficult to estimate the values of the coefficients in the discrete reference distributions beforehand. Thus, in
order to test the applicability of the suggested linearization of the reference function, we shall compare results obtained
from the nonlinear and linear reference distributions.

We point out that the conservation laws are always fulfilled, since they are used to compute the coefficients. There-
fore, this most important feature of Mieussens’s original method is retained with the use of the linearization of the
reference distribution. However, due to the linearization, the reference distribution does not strictly minimize entropy.
More importantly, the approximation might lead to negative values of the reference distribution, similar to the Shakhov
model and the Liu model for the collision term [5,10]. The H-theorem for the discrete transport equation will be valid
only approximately, and a violation of the H-theorem will likely lead to instabilities in the numerical calculations. This
might become an issue when only a small number of velocity nodes is used (so that the coefficients are not “small”).
We shall come back to this point in the discussion of the results in Section 6.

Finally, we would like to say that if Mieussens’s original DVM, instead of its linearization, is applied, our present
method still would be useful. In particular it can be used to provide well-prepared initial data for the unknown coeffi-
cients an

BGK,i , Γ n
BGK,i and γ n

BGK,i , through Eqs. (20), in the nonlinear system, which need be solved through the N–R
algorithm.

5. Test examples

Shock waves. Shock waves are characterized by their upstream Mach number Ma, which is defined as

Ma = uU

a
, (23)

where uU and a = √
5RTU/3 are the flow and sound speed at the upstream equilibrium state.

In the numerical tests we consider a weak shock wave (Ma = 1.5), a medium shock wave (Ma = 3.0), and a
strong shock wave (Ma = 6.0). For all tests, the gas molecules are modeled as ideal hard sphere molecules; the gas is
Please cite this article as: Y. Zheng, H. Struchtrup, A linearization of Mieussens’s discrete velocity model for kinetic equations, European
Journal of Mechanics B/Fluids (2006), doi:10.1016/j.euromechflu.2006.08.003
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Table 1
Quantities used in the numerical tests of kinetic models for shock waves

Case Domain width (m) Mach number Number of cells Number of velocities Bounds of velocities (m s−1)

x direction y (or z)

Sa 0.04 1.5 100 12 × 11 × 11 −2300, 3600 −2900, 2900
Sb 0.02 3.0 100 18 × 17 × 17 −3800, 5500 −4500, 4500
Sc 0.02 6.0 100 32 × 30 × 30 −7000, 10100 −8100, 8100
Sa2 0.04 1.5 200 12 × 11 × 11 −2300, 3600 −2900, 2900

Table 2
Quantities used in the numerical tests of kinetic models for planar Couette flow

Case Kn Domain width
(mm)

Molecular modela Speed of plate 2

(m s−1)

Number of cells Number of velocities Bound of velocities (m s−1)

y direction x (or z)

Sa 0.025 353.3 HSM 300.0 100 11 × 10 × 10 −1100, 1400 −1100, 1100
Sb 0.025 353.3 MM 300.0 100 11 × 10 × 10 −1100, 1400 −1100, 1100
Sc 0.1 88.33 HSM 300.0 50 11 × 10 × 10 −1100, 1400 −1100, 1100
Sd 0.1 88.33 MM 300.0 50 11 × 10 × 10 −1100, 1400 −1100, 1100
Se 0.5 17.67 HSM 300.0 50 11 × 10 × 10 −1100, 1400 −1100, 1100
Sf 0.5 17.67 MM 300.0 50 11 × 10 × 10 −1100, 1300 −1100, 1100
Sg 1.0 8.833 HSM 300.0 25 11 × 10 × 10 −1100, 1300 −1100, 1100
Sh 1.0 8.833 MM 300.0 25 11 × 10 × 10 −1100, 1300 −1100, 1100
Si 0.5 17.67 HSM 600.0 50 13 × 12 × 12 −1100, 1700 −1300, 1300
Sj 0.5 17.67 HSM 1000.0 50 16 × 14 × 14 −1200, 2200 −1500, 1500
Sk 0.5 17.67 MM 600.0 50 13 × 12 × 12 −1100, 1700 −1300, 1300
Sl 0.5 17.67 MM 1000.0 50 15 × 14 × 14 −1200, 2200 −1600, 1600

a In the column of “Molecular model”, “HSM” means hard sphere molecules, and “MM” means Maxwell molecules.

helium; the upstream temperature is 160.0 K; the upstream number density (defined as density over molecular mass) is
2.889×1021 m−3; Boltzmann’s constant is k = 1.381×10−23 J K−1; molecular mass of Helium m = 6.65×10−27 kg
[24]. Grid size, number of nodes, etc. follow Mieussens’s choice [5–10,23] and are given in Table 1.

The upstream mean free path l is 1.287 mm, based on the definition [1]

l = μ

√
RT

nkT
, (24)

where n = ρ/m is the number density, μ is the viscosity as computed from the empirical expression [1–4]

μ(T ) = μ0

(
T

T0

)ω

, (25)

where μ0 is the viscosity at the reference temperature T0, and ω is a positive number of order 1, which is related to
the power index γ in the inverse power potentials between particles [1–5],

ω = γ + 3

2(γ − 1)
. (26)

The reference temperature is T0 = 273.0 K which gives μ0 = 1.86 × 105 kg m−1 s−1 [24].
Couette flow. The important parameter for planar Couette flow is the Knudsen number Kn, defined as the ratio

of the mean free path l over the distance L between the two plates, Kn = l/L. In the tests of Couette flow Knudsen
numbers Kn = 0.025, 0.1, 0.5 and 1.0 are used, with the two limiting situations for the molecular model, hard sphere
molecules and Maxwell molecules. The relative plate speeds are set to be 300.0 m s−1, 600.0 m s−1 and 1000.0 m s−1,
corresponding to Mach numbers 0.975, 1.950 and 3.251. Altogether, there are twelve different test situations, see
Table 2 for details, which shows the relevant quantities used in the numerical tests. For all numerical tests the material
is argon, the temperature of both plates is 273.0 K; speed of plate 1 is zero; speed of plate 2 is chosen as indicated
in Table 2; number density at initial state is 1.4 × 1020 m−3; reference temperature is 273.0 K with μ0 = 1.9552 ×
10−5 kg m−1 s−1 [25]; the molecular mass of argon is 6.63 × 10−26 kg [25,26]. The mean free path l from Eq. (24) is
8.833 mm for the initial state.
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For each test case, the BGK model, the ES-BGK model with b = −0.5 (Pr = 2/3), the ν(C)-BGK model [10], the
ν(C)-ES-BGK model with b = −0.5 (Pr ∼= 2/3, see Table 2 in [10] for detail) have been computed.

6. Results and discussion

Due to space limitations, only a small part of the produced data and graphs can be shown. A wide array of results
is presented in Ref. [5].

6.1. Preliminary comments

Since there is no fixed coordinate label for the shock profile inherent to the problem [3,9], all shock wave data is
analyzed after shifting the curves such that in the origin, x = 0, of the new Cartesian frame the density takes on the
arithmetic mean of the downstream and upstream values [3]. For planar Couette flow, no shifting is needed since the
positions of the boundaries are fixed.

A good measure for the accuracy of the results obtained with the linearized reference distribution as compared
to the nonlinear one is given by the relative error of the results for macroscopic quantities. Since the relative error
will be meaningless when a quantity has values near to zero, we only consider average relative errors for density,
velocity, temperature and pressure, but not for viscous stress or heat flux (which vanish in the equilibria upstream and
downstream of shock waves and in the middle position of Couette flow).

For both, the original and the linearized reference distributions, the final computational results are converged for all
tests (no changes when computational time was doubled), and the numerical method is stable (no unstable behavior
observed).

In steady state, for shock waves the mass flux ρux , the momentum flux ρu2
x + pxx , and the energy flux 1.5pux +

0.5ρu3
x + pxxux + qx all should be constant in the whole domain [5]; while for planar Couette flow the quantities

ux = 0,pxx , σxy , uyσxy + qx should be constant in the whole domain [5]. These conditions were fulfilled in all
computational results [5].

6.2. Effect of space and velocity grids

As pointed out in the Section 5, the choice of space and velocity grids follow Mieussens [6–9,23]. Their influence on
results of macroscopic quantities have been discussed in detail elsewhere [5–10]. In [5], several choices of space and
velocity grids have been applied and compared for the kinetic models with the linearized reference distribution fref.
From that comparison, the space and velocity grids in Tables 1 and 2 are acceptable. Further increase of the number
of position nodes, bounds of discrete velocities, and number of discrete velocities will only give less than 0.01 relative
average error for density, velocity and temperature. Due to limited space, only one example is shown here: Fig. 1
shows the velocity profiles from the ES-BGK model with linearized fref for two different space grids (cases Sa and
Sa2 of Table 1) at Ma = 1.5. The difference of two curves in Fig. 1 is not noticeable.

6.3. Comparison with original Mieussens’s DVM

When the computational time for each time step is considered, using the linearized reference distribution fref can
save 20∼40% of computational time compared to using the original distribution fref in each test case and any kinetic
model. The difference between results using the linearized and the original reference distributions depends on the
kinetic model and test case considered.

Generally the time saved in the ES-BGK model (∼30% for shock waves, ∼40% for Couette flow) is larger than the
time saved in the BGK model (∼20% for shock waves, ∼30% for Couette flow), which reflects that in the ES-BGK
model a nonlinear system of equations needs to be solved twice at each node [5,6], while only one nonlinear system
must be solved for the BGK model.

The application of the linearized fref in the BGK model and the ES-BGK model does not introduce any noticeable
errors in all tests, e.g. there are no visible differences in Fig. 2 which shows the density profiles from the BGK model
at Ma = 6.0 and Fig. 3 which shows the density profiles from the ES-BGK model at Ma = 3.0.
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Fig. 1. Velocity profiles of shock waves with Ma = 1.5 from the
ES-BGK model with linearized fref and two choices of space grid.

Fig. 2. Velocity profiles of shock waves with Ma = 6.0 from the BGK
model.

Fig. 3. Density profiles of shock waves with Ma = 3.0 from the
ES-BGK model.

Fig. 4. Temperature profiles of shock waves with Ma = 3.0 from the
ν(C)-BGK model.

The application of the linearized reference distribution in the ν(C)-BGK model works well for planar Couette flow,
but not so good for shock waves at Ma = 3.0 and 6.0, in which cases the average relative errors are found to be 0.05
or higher. Fig. 4 shows the temperature profiles from the ν(C)-BGK model using the linearized and using the original
reference distribution at Ma = 3.0, in which the relative difference of the two curves in the middle part is as large as
0.20. Note, however, that this is due to the steepness of the curves where a small shift of the profile can result in a
large change of the value observed at a location. Despite of this, the two curves give a reasonable optical fitness.

When the linearized distribution fref is applied in the ν(C)-ES-BGK model, the results do not converge for
Ma = 6.0, but are close to the results obtained using the original fref for other Mach numbers with average relative
errors below 0.01. Fig. 5 shows the density profiles from the ν(C)-ES-BGK model for case Sc in Table 2 (Kn = 0.1,
300.0 m s−1 plate speed, hard sphere molecules). Fig. 6 shows the temperature profiles from the ν(C)-ES-BGK model
for case Si in Table 2 (Kn = 0.5, 600.0 m s−1 plate speed, hard sphere molecules). The difference between using the
linearized fref and using the original fref in Figs. 5 and 6 is invisible.

The results show that the linearization leads to problems particularly with those kinetic models where the collision
frequency depends on velocity [9,10]. We offer the following explanation for this failure: The linearization involves
the expansion of an exponential as exp(−η2 − aη) ∼= exp(−η2)(1 − aη). While the original expression is strictly
nonnegative, the expanded function can become negative for larger values of aη. This leads to a negative reference
distribution and in turn will lead to negative distribution functions. The Maxwellian exp(−η2) suppresses these nega-
tive values quite effectively, so that this will happen only when the expansion coefficient a is rather large. However, in
the ν(C)-ES-BGK model and the ν(C)-BGK model, the reference distribution is multiplied by the collision frequency
Please cite this article as: Y. Zheng, H. Struchtrup, A linearization of Mieussens’s discrete velocity model for kinetic equations, European
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Fig. 5. Density profiles of planar Couette flow at situation Sc
(Kn = 0.1, 300.0 m s−1 plate speed, hard sphere molecules) from the
ν(C)-ES-BGK model.

Fig. 6. Temperature profiles of planar Couette flow at situation Si
(Kn = 0.5, 600.0 m s−1 plate speed, hard sphere molecules) from the
ν(C)-ES-BGK model.

ν which strongly increases with η. For example, the collision frequency for hard spheres is given by (erf(x) denotes
the error function)

νHS = ν0(ρ,T )

{
exp

(−η2) +
√

π

2

(
1

η
+ 2η

)
erf(η)

}
. (27)

Then, the Maxwellian is less effective in suppressing the negative values, which thus become significant already
for smaller values of the expansion coefficient a. We believe that negative values of the distribution function are the
cause for low quality results and instabilities. Also note that the negative values will occur and influence the results
when the actual distribution is markedly different for the local Maxwellian, that is in case of strong non-equilibrium.
This is the reason why problems arise for flows with large Mach numbers.

From the tests, we see that the applicability of our method is not dependent on molecule models (unless the collision
frequency depends on velocity) and Knudsen number.

7. Conclusion

In this work, a modification of the original Mieussens’s discrete velocity model is presented. The basic idea is
to use a linearized expression, instead of a whole exact expression, of the reference distribution function fref in the
numerical scheme. Results from this modified scheme are almost identical to results from the original scheme for
most test cases, while up to 40 percent of computational time can be saved. The method works particularly well with
the classical BGK and ES-BGK models, while it can be used in the corresponding models with velocity dependent
collision frequency only for lower Mach numbers, or for very fine velocity meshes.
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