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Summary. A new closure for Grad’s 13 moment equations is presented that adds
terms of super-Burnett order to the balances of pressure deviator and heat flux
vector. The resulting system of equations contains the Burnett and super-Burnett
equations when expanded in a series in the Knudsen number. However, other than
the Burnett and super-Burnett equations, the new set of equations is linearly stable
for all wavelengths and frequencies. Dispersion relation and damping for the new
equations agree better with experimental data than those for the Navier-Stokes-
Fourier equations, or the original 13 moments system. The new equations allow the
description of Knudsen boundary layers, and yield smooth shock structures for all
Mach numbers in good agreement with experiments and DSMC simulations.

1 Introduction

Processes in rarefied gases are well described by the Boltzmann equation [1, 2],
a non-linear integro-differential equation that describes the evolution of the
particle distribution function f (x,t,c) in phase space. Here x and t are the
space and time variables, respectively, and ¢ denotes the microscopic veloci-
ties of particles. The distribution function is defined such that f (x,¢,c) dcdx
gives the number of gas particles in the phase space cell dedx. Thus f is a
function of seven independent variables, and the numerical solution of the
Boltzmann equation, either directly [3] or via the Direct Simulation Monte
Carlo (DSMC) method [4], is very time expensive. In particular that is the
case at low Mach numbers in the transition regime. Since this regime is im-
portant for the simulation of microscale flows, e.g. in MEMS, there is a strong
desire for accurate models which allow the calculation of processes in rarefied
gases at lower computational cost.

Macroscopic models can be derived form the Boltzmann equations, in par-
ticular for smaller values of the Knudsen number Kn, defined as the ratio
between the mean free path of the molecules and the relevant macroscopic
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length scale. In this paper we present a new model, the regularized 13 mo-
ment equations, or R13 equations [5][6], which agrees with the Boltzmann
equation up to third order in the Knudsen number.

Before we discuss the new equations in some detail, we give an overview
on methods to derive macroscopic equations from the Boltzmann equation.
Then we introduce the R13 equations and discuss their main features.

2 Macroscopic models for rarefied gas flows

2.1 Chapman-Enskog expansion

The best known approach to derive macroscopic transport equations from
the Boltzmann equation is the Chapman-Enskog method [1, 2, 7] where the
distribution function is expanded in powers of the Knudsen number, f =
FO 4 Knf® 4 Kn?f@ ... The expansion parameters f(®) are determined
successively by plugging this expression into the Boltzmann equation, and
equating terms with the same factors in powers of the Knudsen number, see
e.g. Refs. [1, 2, 7] for details.

To zeroth order the expansion yields the Euler equations, the first order
correction results in the equations of Navier-Stokes and Fourier, the second
order expansion yields the Burnett equations [2, 7], and the third order ex-
pansion yields the so-called super-Burnett equations [8, 9].

The equations of Navier-Stokes and Fourier cease to be accurate for Knud-
sen numbers above 0.05, and one is lead to think that Burnett and super-
Burnett equations are valid for larger Knudsen numbers. Unfortunately, how-
ever, the higher order equations become linearly unstable for processes involv-
ing small wavelengths, or high frequencies [8], and they lead to unphysical os-
cillations in steady state processes [10], and thus cannot be used in numerical
simulations .

There is no clear argument why the Chapman-Enskog expansion leads to
unstable equations. It seems, however, that a first order Chapman-Enskog
expansion leads generally to stable equations, while higher order expansions
generally yield unstable equations, although exceptions apply, e.g. see [11][12].

In recent years, several authors presented modifications of the Burnett
equations that contain additional terms of Super-Burnett order (but not the
actual super-Burnett terms) to stabilize the equations to produce the ”aug-
mented Burnett equations” [13][14], or derived regularizations of hyperbolic
equations that reproduce the Burnett equations when expanded in the Knud-
sen number [15, 16]. These models are only partially successful: the augmented
Burnett equations still are unstable in space [6], and both approaches lack a
rational derivation from the Boltzmann equation [6].
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2.2 Grad’s moment method

In the method of moments of Grad [17, 18], the Boltzmann equation is replaced
by a set of moment equations, - first order partial differential equations for
the moments of the distribution function. Which and how many moments
are needed depends on the particular process, but experience shows that the
number of moments must be increased with increasing Knudsen number [19,
20, 21, 22, 23].

For the closure of the equations, the phase density is approximated by
an expansion in Hermite polynomials about the equilibrium distribution (the
local Maxwellian), where the coefficients are related to the moments.

Only few moments have an intuitive physical meaning, i.e. density o, mo-
mentum density gv;, energy density pe, heat flux ¢; and pressure tensor p;;.
This set of 13 moments forms the basis of Grad’s well known 13 moment
equations [17] which are commonly discussed in textbooks. However, the 13
moment set does not allow the computation of boundary layers [24, 25, 20]
and, since the equations are symmetric hyperbolic, leads to shock structures
with discontinuities (sub-shocks) for Mach numbers above 1.65 [19, 26]. With
increasing number of moments, one can compute Knudsen boundary layers
[27, 20, 28] and smooth shock structures up to higher Mach numbers [26, 22].
As becomes evident from the cited literature, for some problems, in particular
for large Mach or Knudsen numbers, one has to face hundreds of moment
equations.

2.3 Reinecke-Kremer-Grad method

In most of the available literature, both methods - moment method and
Chapman-Enskog expansion - are treated as being completely unrelated. How-
ever, using a method akin to the Maxwellian iteration of Truesdell and Tken-
berry [29, 30], Reinecke and Kremer could extract the Burnett equations from
Grad-type moment systems [31, 32].

Which set of moments one has to use for this purpose depends on the
model for the collisions of particles. For Maxwell molecules it is sufficient to
consider Grad’s classical set of 13 moments.

In Ref. [25] it was shown that this iteration method is equivalent to
the Chapman-Enskog expansion of the moment equations. In the original
Chapman-Enskog method one first expands, and then integrates the resulting
distribution function to compute its moments. In the Reinecke-Kremer-Grad
method, the order of integration and expansion is exchanged.

2.4 Regularization of Grad’s 13 moment equations

The original derivation of the regularized 13 moment equations uses a different
combination of the methods of Grad and Chapman-Enskog. The basic idea is
to assume different time scales for the 13 basic variables of the theory on one
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side, and all higher moments on the other. Under that assumption, one can
perform a Chapman-Enskog expansion around a non-equilibrium state which
is defined through the 13 variables.

This idea was also presented by Karlin et al. [33] for the linearized Boltz-
mann equation. Based on the above idea they compute an approximation to
the distribution function, which they then use to derive a set of 13 linear equa-
tions for the 13 moments. These equations correspond to Grad’s 13 moment
equations for linear processes plus some additional terms.

Our derivation of the R13 equations in Ref. [5] exchanges the order of
expansion and integration: The derivation of the equations is based on the
non-linear moment equations for 26 moments, instead of the linearized Boltz-
mann equation, so that we obtain a set of mon-linear equations. Also, the
use of moment equations allows for a much faster derivation of the equations,
and yields explicit numerical expressions for coefficients that were not spec-
ified in Ref. [33]. The Karlin et al. equations follow from our equations by
linearization.

A closer inspection of the regularized equations shows that the terms added
to the original Grad equations are of super-Burnett order. The additional
terms, which are obtained from the moment equations for higher moments,
place the new equations in between the Super-Burnett and Grad’s 13 moment
equations in as much as the new equations keep the desirable features of both,
while discarding the unwelcome features.

In particular, the R13 equations

e contain the Burnett and Super-Burnett equations as can be seen by means
of a Chapman-Enskog expansion in the Knudsen number,
are linearly stable for all wavelengths, and/or frequencies,
show phase speeds and damping coefficients that match experiments bet-
ter than those for the Navier-Stokes-Fourier equations, or the original 13
moments system,
exhibit Knudsen boundary layers,
lead to smooth shock structures for all Mach numbers.

The most important of these features will be discussed in the sequel.

Hyperbolic partial differential equations imply finite wave speeds and dis-
continuities that make them difficult to handle with standard analysis. Regu-
larization is a method to add some parabolic terms which change the character
of the equations so that no discontinuities occur, but a narrow smooth tran-
sition zone [34, 35]. We decided to adopt the notion of regularization for the
new equations since the additional terms indeed are smoothing out the dis-
continuities (sub-shocks) that occur in Grad’s 13 moment system for Mach
numbers above 1.65. It is important to note, though, that the shocks in Grad’s
moment equations (at Ma = 1.65 for 13 moments, at higher Mach numbers for
extended moment sets, see Refs. [26]) are artefacts of the method, and thus
unphysical. The parameter that controls our regularization is the mean time
of free flight, which is a physical parameter. In other words, the regularization
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of Grad’s 13 moment system removes artificial discontinuities, and replaces
them by a shock structure which is based in physics.

2.5 Order of magnitude / order of accuracy approach

The weak point in the derivation of the R13 equations as outlined above is
the assumption of different time scales for the basic 13 moments, and higher
moments. While this assumption leads to a set of equations with desired
behavior, it is difficult to justify, since the characteristic times of all moments
are of the same order.

Only recently, an alternative approach to the problem was presented by
Struchtrup in Ref. [36]. This approach is an extension of an idea developed
by Miiller et al. in Ref. [37].

Miiller et al. [37] consider the infinite system of coupled moment equations
of the BGK equation [38]. From these they determine—by means of a Maxwell
iteration—the order of magnitude of moments in terms of orders in powers
of the Knudsen number, and then declare that a theory of order n needs to
consider all moments of that order, and their respective moment equations.
This approach depends strongly on the definition of moments—NMiiller et al.
used eigenfunctions of the Boltzmann collision term for Maxwell molecules—
and demands very high moment numbers already at low orders [37].

The extension of this idea in Ref. [36] is independent of the definition of
moments, and yields smaller moment numbers for a theory of a given order.
The main difference to the method of Ref. [37] is the distinction between
the order of magnitude of moments, and the order of accuracy of the corre-
sponding equations, both measured in powers of the Knudsen number—this
difference was ignored in Ref. [37]. This method was applied to the special
cases of Maxwell molecules and the BGK model, and it could be shown that
it yields the FEuler equations at zeroth order, the Navier-Stokes-Fourier equa-
tions at second order, Grad’s 13 moment equations (with omission of a non-
linear term) at second order, and the regularized 13 moment equations in
third order.

The lone scaling parameter in this method is the Knudsen number, and
the assumption of different time scales is not needed for the derivation of the
R13 equations. Thus, one can consider this derivation of the R13 equations
to be better founded than the original derivation in Ref. [5].

3 Regularized 13 moment equations

The regularized 13 moment equations for monatomic gases were derived in
[5][36], and here we just present the results. The R13 equations are a set of
field equations for the 13 variables py4 = {Q, ov;, 0 = %QRT, Oij, qi}, where o
is the mass density, v; is the gas velocity, ¢ is the specific internal energy, T’
is the temperature, R is the specific gas constant, o;; is the trace-free part
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of the pressure tensor, and ¢; is the heat flux vector. The field equations for
these variables are the conservation laws for mass, momentum and energy,
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Here, p = oRT is the pressure, and p denotes the viscosity. Indices in angular
brackets denote the symmetric trace-free parts of tensors. The above equations
contain the additional quantities m;;i, Rix , A, and constitutive equations
are required to close the equations. With the choice

mijk = Rix = A =0 (4)

the above set of equations is reduced to the well-known set of 13-moment-
equations of Grad [17][18]. The regularization of the Grad equations yields

s
Rij = 254Z [RTng R%% — RTq aalgig lq ag;;k (5)
R o T )t ]
A=—12 {RT% +2R kng RT kaalng + RTo ”g lqjaao;jﬂ .

In the resulting system (1)-(3) with (5), second order derivatives appear in the
balance equations of stress tensor and heat flux which lead to a regularization
of the original 13 moment case of Grad.
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The R13 equations were derived from the Boltzmann equations for the
special case of Maxwell molecules, that is particles that interact in a repulsive
5-th power potential. The corresponding viscosity is proportional to temper-

ature as Y
— — 6
n= Kg <T0> (6)

with s = 1. It is well known [4] that the viscosity is of this form also for other
interaction potentials if one only adjusts the exponent s. In particular one
computes s = 1/2 for hard spheres, and one measures s ~ 0.8 for argon. For
the purpose of this paper we shall use s = 1 exclusively.

4 Chapman-Enskog expansions

The idea of the Chapman-Enskog expansion is to expand the distribution
function in a series in the Knudsen number Kn as

f=rO 4+ Knf® + Kn?f® + Kn®f® 4 ...

where the f(®) are obtained from the Boltzmann equation [7][2]. In our case,
we operate on the level of moments and moment equations, and thus we
expand pressure deviator and heat flux in a series as

1) (2 3 (3

o =0 ()+Kna( +Kna + Kno

4 = qf )+ anl(l) + Kn2q§2) + Kn®g (3)

4+ -

In order to expand properly, one needs to consider the dimensionless forms
of equations (2) and (3), into which the above expressions are inserted. Then

terms with equal powers in Kn are equated to find the 0” ), ql(a). Note that
the dimensionless equations have Knp instead of g in Eqgs. (2, 3, 5). The
dimensions are restored after the expansion is performed.

In the Chapman Enskog method it is customary to express the time deriv-
atives of UZ?), q" by time derivatives of the hydrodynamic variables o, T', v;.
Some details how this must be done successively can be found for the linear
case in [5], and for the non-linear case in [25].

From the R13 equations as given above we find the Euler equations at

zeroth order,

o) =q” =0, (7)
and the first order corrections are the Navier-Stokes-Fourier equations
vy, 15 0T
D) — 9,270 and ¢V = — 2R 8
Tij W, od 1 g (8)

The second order terms yield the Burnett equations for Maxwell molecules,
that can be written as



8 Henning Struchtrup and Manuel Torrilhon

s _ W [p 9T RT 9% RT 9o 9o R IT 9o
iy D 61’<Zaxj> 0 8$<L81’J> 92 6%(1 (9$J> anh 61'J>
R 0T 0T 10 a’l)k c%k avk c%j)
— — + =S5, — — 45, -2 85115 9
Tax(z‘ 6$j> * 3 7Y 0z K 6$j> (9.”C<i oxy, + OOk (9)
and
@_ [ Bpp o 3., v BT, o
% = P 4 O0x;0x), 2 0z 0z o Y 0

25 (9’Uk oT 15 (9Uk oT 105 (91)1‘ oT
8 Raxk 0x; + 8 Raxi oz, + 8 R@xk 3x;€] ’ (10)

where we have used the abbreviation
a’l)@‘
;)

Sij =

It is not surprising that the Burnett equations arise from the second order
expansion of the R13 equations, since it is an established fact that the Bur-
nett equations can be obtained already from Grad’s 13-moment-equations
[31][32][25], i.e. with the Grad closure (4).

Indeed, a closer inspection of the closure relations (5) of the R13 equations
shows that these contribute terms of super-Burnett order. The derivation of
the super-Burnett equations is a very cumbersome task, and they are quite
difficult to find in the literature. Thus, we expanded the R13 equations for
two special cases only: The three-dimensional, linear equations and the one-
dimensional, non-linear equations. For the three-dimensional, linear case one
obtains [5]

3 81:@8%») a_l‘k B § kaaxk 813j>

ij pz

3) w3 <5RT 0% Ou, 4 T 9?2 6v<i)

(11)
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These are the same equations that Shavaliyev found from the Boltzmann equa-
tion [9]. It can also be shown that the third order Chapman-Enskog expansion
of the non-linear one-dimensional R13 equations agrees with the correspond-
ing super-Burnett equations [6], but we abstain from printing these here.

From the above discussion follows that the R13 equations agree up to the
super-Burnett order with the Boltzmann equation. Note that Grad’s classical
13 moment equations agree up to Burnett order, but not to super-Burnett
order.

Moreover, the R13 equations have several advantages above the Burnett
and super-Burnett equations: (a) They can be derived much easier, and faster,
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so that errors can be excluded with higher certainty. (b) The R13 equa-
tions contain only space derivatives of first and second order while the super-
Burnett equations contain derivatives of up to fourth order. Thus, the R13
equations fit more conveniently to existing numerical methods. Note that their
mathematical structure is very similar to the NSF equations, so that methods
for these can be used as well for solving the R13 equations. (c¢) Most impor-
tant, however, is the fact that the R13 equations are linearly stable as will be

shown below [5], while the Burnett and super-Burnett equations are linearly
unstable [8][10].

5 Linear Stability

We start our analysis of the R13 equations by considering the linear stability.
For this, we consider small deviations from an equilibrium state given by
00, T0,vi,0 = 0, and consider one-dimensional processes where x; = x, and
v; = {v (x,t),0,0}. Dimensionless variables p, T', ¥, &, § are introduced as

o=0(1+8), T=T(1+7) , p=0RTy (1+2+7) ,
3
v=1+/RIpv, o011 =0yRToc, q1 =09/ RIy q.

Moreover, we identify a relevant length scale L of the process, and use it to
non-dimensionalize the space and time variables according to

Li, t L_;
r=L%, t= .
Vv RTj
The corresponding dimensionless collision time is then given by the Knudsen
number, which we define here as

_ TV RITy _ Lo
L 00V RToL

Linearization in the deviations from equilibrium p, T, v, &, ¢ yields the
dimensionless linearized system in one dimension as
0o 00
— =0
o or
b 0 oT L0
ot o0 0%  oF
30T  9q 0b
S === 12
29 oz op O (12)
06 804 400 6_. 0% o

Kn

of "150: T38: 5 9 Kn’

09 50T 06 18, 0% _ 24

ot ' 20% "9r 5
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This set of equations is equivalent to the equations proposed by Karlin et al.
[33], who, however, did not give explicit numerical expressions for the factors
that multiply the second derivatives of 6 and ¢, but presented them as integrals
over the linearized collision operator which are not further evaluated.

For comparison, we shall also consider the Chapman-Enskog expansion to
various orders (7-10), in which case we have to replace the last two equations
with the relevant terms of

4 9p 49% 28T 2 930
5o = —Kn-— — Kn? | === — = Kn®Z
oop =—Wn35s 3022 30:2| Moo T
15 9T 7 9% 157937 583
o = —Kn— — Kn2= —Knd | == £
T 1032 16 92% 8033 |

We assume plane wave solutions of the form
¢ = dexp {z (wf— ki)}

where ¢ is the complex amplitude of the wave, w is its frequency, and k is its
wave number. The equations can be written as

Aup (0 k)i =0 with ap = {@,T,@,&,q}
and nontrivial solutions require
det [Aap (w, k)] =0,

the resulting relation between w and k is the dispersion relation.

If a disturbance in space is considered, the wave number k is real, and the
frequency is complex, w = w, (k) + iw; (k). Phase velocity v,;, and damping
a of the corresponding waves are given by

k
Uph = wrkg ) and o =w; (k)
Stability requires damping, and thus w; (k) > 0.
If a disturbance in time at a given location is considered, the frequency w
is real, while the wave number is complex, k = k. (w) + ik; (w). Phase velocity
vpn, and damping o of the corresponding waves are given by

Uph = kTL(w) and a=—k;(w) .
For a wave traveling in positive z-direction (k, > 0), the damping must be
negative (k; < 0), while for a wave traveling in negative a-direction (k, < 0),
the damping must be positive (k; > 0).

It is convenient to chose the mean free path as reference length, and the
mean free time as reference time, so that Kn = 1. Then the wave number is
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Fig. 1. The solutions k (w) of the dispersion relation in the complex plane with w as
parameter for Navier-Stokes-Fourier, Grad’s 13 moments, Burnett, Super-Burnett,
and Reguarized 13 moment equations. The dots denote the points where w = 0.

measured in units of the inverse mean free path, and the wave frequency in
terms of the collision frequency 1/7. This implies that the Knudsen number
for an oscillation with dimensionless frequency w is Kn,, = w, and for a given
wave number k the Knudsen number is Kn; = k.

We test the stability against local disturbances of frequency w. As we have
seen, stability requires different signs of real and imaginary part of k (w).
Thus, if k (w) is plotted in the complex plane with w as parameter, the curves
should not touch the upper right nor the lower left quadrant.

Fig. 1 shows the solutions for the different sets of equations considered in
this paper, the dots mark the points where w = 0. Grad’s 13 moment equa-
tions (Grad13), and Navier-Stokes-Fourier equations (NSF) give two different
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Fig. 2. Inverse phase velocity (up) and damping (below), theoretical results from
Navier-Stokes-Fourier, Grad’s 13 moments, and regularized 13 moments and mea-
surements by Meyer and Sessler [39] (dots).

modes each, and none of the solutions violates the condition of stability (up-
per left in Fig.1). This is different for the Burnett (3 modes, upper right) and
Super-Burnett (4 modes, lower left) equations: the Burnett equations have
one unstable mode, and the Super-Burnett have two unstable modes. The
R13 equations, shown in the lower right, have 3 modes, all of them are stable.

In a similar manner it can be shown that the R13 equations are stable
with respect to a disturbance of given wave length, or wave number k, while
the Burnett and Super-Burnett equations are unstable [5][8].

6 Dispersion and Damping

Next we compare phase speed and damping with experiments performed by
Meyer and Sessler [39]. Fig. 2 shows the inverse phase speed and the damping
(as a/w) as functions of the dimensionless inverse frequency 1/w, computed
with NSF, Grad 13, and R13 equations, and experimental data from Ref. [39].
Here we consider only those modes that yield the speed of sound for w — 0.
As can be seen, the R13 equations reproduce the measured values of the
damping coefficient « for all dimensionless frequencies less than unity, while
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the NSF and Gradl3 equations fail already at w = 0.25 and w = 0.5, re-
spectively. The agreement of the R13 prediction for the phase velocity is less
striking, but also the other theories do not match well. One reason for this
might be insufficient accuracy of the measurement. Altogether, the R13 equa-
tions give a remarkably good agreement with the measurements for values of
w < 1.

Equations from expansions in the Knudsen number can be expected to be
good only for Kn < 1. We conclude that the R13 equations allow a proper
description of processes quite close to the natural limit of their validity of
Kn, = 1. It is not surprising that all theories show discrepancies to the
experiments for larger frequencies. The reasonable agreement between the
NSF phase speed and experiments must be seen as coincidence.

7 Knudsen boundary layers

In this section we briefly study boundary value problems for the linearized
R13 equations. The goal is to show that the R13 equations lead to Knudsen
boundary layers.

To this end we consider a simple steady state Couette flow problem: two
infinite, parallel plates move in the {xs, z3}-plane with different speeds in x5
direction. The plate distance is . = 1 in dimensionless units, and the plates
have different temperatures. In this setting, we expect that all variables will
depend only on the coordinate x1 = x. Since matter cannot pass the plates,
we will have v; = 0. Moreover, for symmetry reasons, there will be no fluxes
in the z3 direction, so that

v; ={0,v(z),0} and g3 = 013 =023 =0.

Under these assumptions, the linearized R13 equations can be split into the
flow problem with the equations
0 20 9 0?
s R T Kn2S L2

dx ' 50r  Kn 27y 0x?

and the heat transfer problem, with the equations

§3_T dou ——gq—l—const o _§Kn282011
20r Or  3Kn PO T dx?

Two more non-trivial equations serve to compute o, and oa9, viz.

2820'22 iazdu 6@ oT 80’11

3 0x2 15 Ox2 " Ox Oz Oz =0.

099 — an

The linear equations are easy to integrate, and we obtain the solution of the
flow problem as
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v(r) =vo — 012% - %% (x) (13)

. o ba—3 Vgx—%
with go () = Asinh (\@ Kn ) + B cosh ( 9 Kn

where vg, 012, A, B are constants of integration.
The solution of the heat transfer problem reads

4 T 2
T(JI) = T() — quﬁ — 50'11 (l‘) (14)

: o br—3 vgx—%
with o017 () = C'sinh (\/; Ko ) + D cosh ( 6 Ko

where Ty, q1, C, D are constants of integration.

Thus, in order to obtain the fields of temperature and velocity between the
plates, we need 8 boundary conditions. The velocities and temperatures of the
two plates give only four boundary conditions, and thus additional boundary
conditions are required. As of now, the problem how to prescribe meaningful
boundary conditions for the R13 equations is unsolved, and we hope to be able
to present proper boundary conditions (that, of course, allow for temperature
jumps and velocity slips) in the future.

Nevertheless, it is worthwhile to study the general solutions (13, 14): In the
linear Navier-Stokes-Fourier case both, temperature and velocity, are straight
lines according to

unsF (z) = v — 012% and Tysr (z) =Ty — %m% ,
that is for the NSF case one finds ¢2 () = 011 (z) = 0.

With the R13 equations, on the other hand, these functions are non-zero
as given in (13, 14). From that, we identify —2¢; (z) and —2011 () as the
Knudsen boundary layers for velocity and temperature according to the R13
equations. Indeed, these functions have the typical shape of a boundary layer,
their largest values are found at the walls, and the curves decrease to zero
within several mean free paths away from the walls.

The curves are governed by the Knudsen number, so that for small Knud-
sen numbers g2 () and 011 (z) are equal to zero almost everywhere between
the plates. The boundary layers are confined to a small region adjacent to the
wall, and contribute to temperature jump and velocity slip. In this case, the
Navier-Stokes-Fourier theory can be used with proper jump and slip boundary
conditions.

As Kn grows, the width of the boundary layers is growing as well. For
Knudsen numbers above ~0.05 one cannot speak of boundary layers anymore,
since the functions g5 (x), 011 () as given in (13, 14) are non-zero any where in
the region between the plates. In this case boundary effects have an important
influence on the flow pattern.
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Since, at this point, we have no recipe for prescribing all boundary val-
ues required, we can not say whether the boundary layers obtained from the
R13 equations coincide well with those of the Boltzmann equation. Note that
similar problems arise with the Burnett and super-Burnett equations which,
however, lead to unphysical oscillations in space [10].

8 Shock structure computations

Now we turn to the non-linear equations. The shock profile connects the equi-
librium states of density p,, velocity vg, and temperature Ty before the shock
at © — —oo with the equilibrium p,, v1, 71 behind the shock at x — oco. The
process is modeled as one-dimensional flow. Hence, velocity, pressure devia-
tor and heat flux have only one single non-trivial component in the direction
normal to the shock wave. The field quantities are related to their values at
x — —o0 by definition of the non-dimensional quantities

N voos_ T o . q N
p=—0= 7T:_7O—: y 4= y M T .
Po VR To poRTo poV/ETo’ Fo
As in the linear case, 6 = 0 (11) represents the non-trivial component of the
pressure deviator, called stress in the following, and ¢ denotes the normal heat
flux.
A dimensionless space variable is introduced as

zpov RIo

Ho

T =

where i, is the viscosity of the state before the shock. From the viscosity
follows the mean free path, see e.g. [4] or [2], calculated for x — —o0, viz.

o = EL (15)

pO\/%RTO'

Thus, the relation
T )

A 4
holds for our dimensionless space variable. In the plots we shall always use
x/Ao as space variable. For the sake of simplicity we drop the "hats” of non-
dimensional variables in the sequel.

The Mach number of the shock

)
M():UO/\/;

acts as parameter for the computations. Shock structures are formally solu-
tions of the one-dimensional R13 equations with the boundary conditions

i

&~ 0.783% (16)
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5
at (x — —00): gp=1, vo\/;Mo , To=1,

00v0 5M3+3 (5Mg — 1)(ME +3)

t : = — = — T = .
at (r—o0)i o =27 = ylg=e s O 1603
and 0g = 01 =0, g9 = q1 = 0. The values behind the shock are given by the
Rankine-Hugoniot-relations. The density follows from the velocity by means
of the mass balance as

5 My
v) =4/=—, 18
p0) =3~ (15)
and the relations for stress ¢ and heat flux ¢ as functions of velocity and
temperature follow from the conservation laws for momentum and energy as

5 5 (T

o (v,T) =143 M; Mo\/; (5 +v> (19)
5 5. 0 5

q(0.T) =[5 Mo (MG +50° = 3T ) —v (14305 ). (20)

The R13 equations were solved by numerically with a method outlined in Ref.
[6]. We proceed to discuss the general behavior of shock structure solutions of
the R13 equations.

8.1 Transition from Grad’s 13-moment-equations

Grad’s 13-moment-case was derived as improvement of the NSF theory in
the description of rarefied flows. Unfortunately, the equations fail to describe
continuous shock structures, since they suffer from a subshock in front of the
shock beyond the Mach number M = 1.65, see [17] and [18]. This subshock
grows with higher Mach numbers and at My ~ 3.5 a second subshock appears
in the middle of the shock. Both subshocks are artefacts from the hyperbolic
nature of the 13-moment equations [40]. It turned out that any hyperbolic
moment theory will yield continuous shock structures only up to the Mach
number corresponding to the highest characteristic velocity, see [41] and [26].
Further validation of results with measurements shows that moment theories
succeed to describe shock thickness data accurately only for Mach numbers
far below this critical value. In particular, Grad’s 13-moment case describes
the shock thickness accurately only up to My =~ 1.1. Recent results from
[22] required up to 900 moments to calculate a smooth shock structure for
My = 1.8 that fits to experimental data. For more information on shock
structures in moment theories see the textbook [19].

One of the reasons for deriving the regularized 13 moment equations (R13)
in [5] was to obtain field equations which lead to smooth and stable shock
structures for any Mach number. Since the equations are based on Grad’s
13-moment-case, it must be emphasized that physicality of the R13-solutions
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Fig. 3. Regularization process of Grad’s 13-moment-equation. Profiles for three
different Mach numbers are shown with different values of § = 0.0, 0.1, 0.5, 1.0. The
results of Grad’s equation (6 = 0) exhibt kinks as well as up to two subshocks of
increasing strength. These singularities vanish in R13 case where § = 1.

is still restricted to small Mach numbers. However, the range of validity is
extended by including higher order expansion terms into the R13 equations.

Fig. 3 shows the transition to smooth shock structures for three different
Mach numbers by means of the normalized velocity field vy . The results are
obtained with s = 1, i.e. Maxwell molecules. For this, we multiplied the right
hand sides of Egs. (5) with a parameter ¢ that assumes values between zero
and unity. The structures with 6 = 0 represent solutions of the classical 13-
moment-case, Eqs. (4). For these, at My = 1.651 a kink at the beginning of
the shock indicates that the highest characteristic velocity is reached before
the shock. The kink develops into a pronounced subshock at My = 3. In the
case My = 6 a second subshock is present towards the end of the structure.

The curves for 6 = 0.1 follow mainly the results of Grad’s 13-moment-
case. The subshocks are still clearly visible, albeit smoothed out by increased
dissipation.

At 6 = 1, however, the additional terms in the regularized 13-moment-
equations succeed to completely annihilate the subshocks and an overall
smooth shock structure is obtained. At My = 6 the R13-solution (§ = 1)
exhibits obvious asymmetries which start to appear in the structure with
Mach numbers My > 3. Since experiments as in [42] or DSMC simulations
predict almost perfect s-shaped profiles we conclude that the validity of R13
solutions may be lost beyond Mach numbers My =~ 3.0.

8.2 Comparison with DSMC results

In this section we shall compare the shock structures obtained with the R13
equations to the results obtained with the direct simulation Monte-Carlo-
method (DSMC) of Bird [4]. For the DSMC results we used the shock structure
code which is available from Bird’s website. For the actual setup like interval
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length, upstream temperature, etc. we adopted the values of Pham-Van-Diep
et al. [43]. Note that the calculation of a single low Mach number shock struc-
ture by a standard DSMC program takes several hours which is several orders
of magnitude slower than the calculation with a continuum model.

We compare to DSMC solutions for Maxwell molecules, computed with
Bird’s code, see [4]. Since the DSMC code uses physical units we fixed the
mean free path of the upstream region A\g as A\g = 0.0014 m, which corresponds
to our definition (15) and also reproduces the shock thickness results of [43].

In the next figures we compare the profiles of density and heat flux. The
heat flux in a shock wave follows solely from the temperature and velocity
via the relation (20). Hence, its profile gives a combined impression of the
quality of the temperature and velocity profile. The soliton-like shape of the
heat flux helps also to give a more significant judgement of the quality of the
structure. Since it is a higher moment the heat flux is more difficult to match
than the stress. We suppress the profiles of velocity, temperature and stress
in the following. The density is normalized to give values between zero and
unity for each Mach number. Similarly, the heat flux is normalized such that
the DSMC result gives a maximal heat flux of 0.9.

Before we present the results of the regularized 13-moment-equations we
discuss briefly the failure of the classical theories and the standard Burnett
models. Fig.4 shows the density and heat flux profile of a My = 2 shock
calculated with the NSF and Grad’s 13-moment-system as well as with the
Burnett and super-Burnett equations. The NSF results simply mismatches
the profile, while the Grad13 solution shows a strong subshock. Burnett and
super-Burnett solutions are spoiled by oscillations in the back of the shock.

In the Burnett case the oscillations arise if the length of a grid cell is below
half of the mean free path. This is in correspondence to the result of the lin-
ear analysis which predicts spatial instabilities. It also explains the appearance
of the oscillations in the downstream region, because the mean free path is
smaller in that region. Since the oscillations stick to a wave length correspond-
ing to the length of a grid cell, high resolution calculations are impossible. The
super-Burnett result shows the same behavior, however the oscillation wave
length is a multiple of the length of a grid cell. Still, the oscillations increase
with grid refinement and convergence can not be established.

The oscillations of both models, Burnett and super-Burnett, increase for
shocks with higher Mach number and are also present for other values of the
viscosity exponent. Hence, for the description of shock structures the Burnett-
equations and super-Burnett-equations have to be rejected.

Fig.5 shows shock structures for the Mach numbers My = 1.5, 2, 3, 4
calculated with the R13 equations, displayed together with the DSMC results.
For smaller Mach numbers the shape of the heat flux is captured very well
by the R13 equations, and the density profiles exhibit no visible differences
to DSMC. The deviations from DSMC solutions become more pronounced
for higher Mach numbers. The R13 results begin to deviate from the DSMC
solution in the upstream part.
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Fig. 4. Shock structure solutions of the system of Navier-Stokes-Fourier, the classi-
cal 13 moment case of Grad, and Burnett and super-Burnett-equations for Maxwell
molecules at Mach number My = 2 (solid lines). Both Burnett results exhibit non-
physical oscillations in the downstream region. The squares represent the DSMC
solution.

From the presented figures we may conclude that the results of the R13
system for Maxwell molecules agree well with DSMC results. For higher Mach
numbers, however, the R13 equations deviate from DSMC data, and the ap-
plicability of the theory is no longer given, when quantitative features are
needed to be captured.

9 Conclusions

We conslude that the R13 equations are superior to all competing models,
i.e. Burnett and super-Burnett equations, models derived thereof, and Grad’s
13 moment equations. They are unconditionally stable, and stand in good
agreement with experiments for dispersion and damping, and shock structures.
The equations discussed above are derived for the special case of Maxwell
molecules. Other molecular interaction models can be incorporated ad hoc by
adjusting the viscosity coefficient s in Eq. (6). However, the proper derivation
is discussed in Ref. [36] where it becomes clear that more than 13 moments
will be needed for a proper third order theory for non-Maxwellian molecules.
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Fig. 5. Shock structures in a gas of Maxwell molecules with Mach numbers My =
1.5, 2.0, 3.0, 4.0. Solid lines show the solution of the R13 equations, while squares
correspond to the DSMC solution.

The most pressing question at present is to find proper boundary conditions
for the R13 equations, and we hope to be able to present these in the future.
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