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Abstract. Linearized Burnett and super-Burnett equations are considered for steady state Couette
flow. It is shown that the linear super-Burnett equations lead to periodic velocity and temperature
curves, i.e. unphysical solutions. The problem is discussed as well for the so-called augmented
Burnett equations by Zhong et al. (AIAA Journal 31, 1036-1043 (1993)), and for the recently
introduced regularized 13 moment equations (R13) of Struchtrup and Torrilhon (Phys. Fluids
15(9), 2668-2680 (2003) ). It is shown that both theories exhibit proper Knudsen boundary layers
for velocity and temperature. However, the heat flux parallel to the wall has different signs for the
Burnett and the R13 equations, and a comparison with DSMC results shows that only the R13
equations predict the proper sign.
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1 Introduction

The laws of Navier-Stokes and Fourier (NSF) are applicable only for flows at sufficiently small Knudsen numbers,
and fail in the description of flows at Knudsen numbers Kn > 0.05 (say). These Knudsen numbers are easily
reached nowadays, e.g. in microscopic flows, or in high altitude flight, and a reliable set of equations that can
be solved at low computational cost for the description of these flows is highly desirable. Note that Bird’s direct
simulation Monte Carlo method [1] allows accurate computations, but still requires extreme computational time,
while a set of differential equations in general can be solved faster.

The NSF equation result from the Chapman-Enskog expansion of the Boltzmann equation where the Knudsen
number is the relevant smallness parameter. Thus, one might expect the next orders of the expansion, the Burnett
and super-Burnett equations [2,3], to be better suited for the description of flows at larger Knudsen numbers.
However, as was shown by Bobylev [4], the Burnett and super-Burnett equations are unstable, so that small
wavelength fluctuations will blow up in time. Also, as was shown recently [5], small oscillations in time at a
given space point will lead to large oscillations at other points.

Obviously, these stability problems are not relevant when one considers steady state solutions of the Burnett
and super-Burnett equations as was done in [6—8] for micro flows, and in [9] for shock waves. The applications
to steady state rely on the assumption that the Burnett and super-Burnett equations do not capture the time
behavior well, hence the instabilities, but are accurate for the description of space variations in steady state.
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This assumption becomes doubtful due to problems in computing meaningful shock structures from the Burnett
equations, where the non-linear terms seem to cause instabilities in the numerical solution of the equations
[9]. Zhong et al. introduced terms of super-Burnett order into the Burnett equations, and their “augmented
Burnett” equations [10,11] yield stability in time (no blow up of small wavelength oscillations), and facilitate
the computation of shock structures, but they are unstable in space (blow up of high frequency oscillations) [12].

Recently Struchtrup and Torrilhon derived a new set of equations of super-Burnett order [5,12] from a
regularization of Grad’s 13 moment equations [13]. The new equations termed as “regularized 13 moment
equations”, or "R13 equations”, are derived from a Chapman-Enskog like expansion of an extended set of
moment equations which in turn are based on the Boltzmann equation.

Just recently, in [14], an alternative derivation was presented, which is solely based on considerations of the
order of magnitude of the moments of the phase density, and the order of accuracy of the transport equations,
both measured in powers of the Knudsen number. This method is independent from the Grad method, and
quite different from the Chapman-Enskog method, with which it shares some similarity, however. In [14] the
new method is developed up to the third order in the Knudsen number, and it is shown that it yields the Euler
equations at zeroth order, the Navier-Stokes-Fourier equations at first order, Grad’s 13 moment equations (with
omission of a non-linear term) at second order, and the R13 equations at third order.

It could be shown that the R13 equations are linearly stable, that their predictions for phase speed and damping
of ultrasound waves agree well with measurements [5], and that the equations yield smooth meaningful shock
structures[12].

Moreover, it was shown that the R13 equations allow the description of linear Knudsen boundary layers in
principle, although it is unclear at present how boundary conditions can be prescribed for the moments. The
super-Burnett equations as well as the augmented Burnett equations face the same difficulties in prescribing
boundary conditions. Nevertheless, these equations can be tested for their ability to describe linear Knudsen
layers, and that is the topic of this note.

We shall consider linearized Burnett, super-Burnett and augmented Burnett equations for the case of steady
state Couette flow, and shall show that the super-Burnett equations do not predict Knudsen boundary layers but
unphysical oscillations in space. This renders them unsuitable as a tool for the description of micro flows. The
augmented Burnett equations yield Knudsen boundary layers, but are criticized for not being derived in a rational
manner. We repeat the analysis of the R13 equations for the same problem, and discuss the Knudsen boundary
layers.

Special attention is given to the heat flux parallel to the wall, which the linearized R13 equations and the
Burnett equations predict with different signs. The comparison with Direct Simulation Monte Carlo results shows
that the linearized R13 equations meets the numerical experiment, so that the linearized Burnett equations (and
the augmented Burnett equations) fail in the proper description of this phenomenon.

2 Burnett, super-Burnett, and augmented Burnett equations

We shall use dimensionless coordinates and variables throughout the paper, and consider only small devia-
tions from an equilibrium ground state with mass density py, temperature Tj and zero velocity, v; o = 0. 0y
and ¢; denote the trace free part of the stress tensor and the heat flux, respectively. Dimensionless variables
0, T, ¥4, 045, G; are introduced as

~ a A~ A~ 3/\
0=00(1+0) , T:TO(1+T> , vy =/ RIyb; , 045 = 00RT06:5 , qi = 0oV BRIy G,

R is the gas constant. Moreover, we identify a relevant length scale L of the process, and use it to non-
dimensionalize the space and time variables according to
L .
t.
v RTy

The corresponding dimensionless collision time is then given by the Knudsen number

.Z‘i:Lji, t=

Ho
Kn=——""7-— 2.1
n o VRTLL 2.1

where (9 denotes the viscosity of the ground state.
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For notational convenience, we shall drop the hats on the variables in the sequel. After linearizing in the
variables the conservation laws for mass momentum and energy read
Op | Oug
— =0 ,
8t + ail' k
Ov; N Op N oT n oy,
ot Ox;  Ox; Oz
30T aqk a’()k
s, Tt A =0,
20t " omy  Ouy
and these must be closed by a suitable set of equatlons for stress o;; and heat flux g;. The Chapman-Enskog
expansion yields

:O7

0ij :J(O)+Kna(1)+Kn2 (2)+Kn3 (3)+ RN
qi:qf)—l—ang)—FKn qE)—l-Kn q£3)+"-,

where, after linearization,

o =¢” =0. (2.2)
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Here, indices in angular brackets denote the tracefree symmetric part of an tensor. Considering only the zeroth
order terms (2.2) yields the Euler equations, the first order terms (2.3) are the Navier-Stokes-Fourier equations
[2], addition of the second order terms (2.4) yields the Burnett equations [2], and inclusion of the third order
terms (2.5) yields the super-Burnett equations [2,3,5].

The augmented Burnett equations of Zhong et al. replace the super-Burnett terms (2.5) by

O_Z(;L) _ 1 82 a’U<i and qga) _ E aST _ § aSp .
3 0z 0wy, Oz 16 0x;0x;,0x), 8 Ox;0x1L0x)

(a)

2.6)

Here, the express1on foro;;” is an ad-hoc extension to three dimensions of the proper expression in one dimension,

011 = 9 dwg However, (2 6)1 does not agree with the proper three dimensional term in (2.5). In the heat flux

contribution q(a) the factor ( 11567) is replaced by a factor with a different sign ( ) This factor goes back to the

super-Burnett calculations of Wang-Chang [15], but finds no support in newer calculatlons of the super-Burnett
coefficients [3,4,9,5].

3 Couette flow with Burnett models

We consider the steady state Couette flow problem: two infinite, parallel plates move in the {x2, x5 }-plane with
different speeds in x5 direction. The plate distance is L = 1 in dimensionless units, and the plates have different
temperatures. In this setting, we expect that all variables will depend only on the coordinate x; = z. Since matter
cannot pass the plates, we will have v; = 0. Moreover, for symmetry reasons, there will be no fluxes in the z3
direction, so that

v; ={0,v(z),0} and g3 = 013 = 023 = 0.

Under these assumptions, the mass balance is identically fulfilled, and the conservation laws reduce to

Op 0T | Oon do12 Iq

=0 =0, —=0. 3.1
ox o Oz + oz T Oz T Oz G-
The last two equations yield that 015 and ¢; are constants of integration,

o12 = const. , q1 = const .

The conservation laws must be furnished with the expressions for o;1, 012, and ¢; and boundary conditions
according to the different theories.
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3.1 Navier-Stokes-Fourier equations

For the NSF equations (2.3), we obtain

v 15_ 9T
=0, = —-Kn— = -——Kn—, =0.
011 012 n@x » 41 1 n@x a2
Insertion into the balance laws and integration yields
x 4 T 4 T
=v—019— , I'=Ty— —q1— =po— Q>
v =19 leKn ) 0 15Q1Kn » P = Po 15Q1Kn7

where vg, Ty, po are constants of integration. Accordingly, all profiles are linear, and the variation in density is
due solely to heat transfer.

Inparticular we note that 11 = g2 = 0 for the NSF equations. Non-zero values for the anisotropic contribution
to pressure 011 and the heat flux parallel to the wall g2 appear only in higher order theories. DSMC calculations
show non-zero values for these quantities at larger Knudsen numbers (above ~0.05), and this agrees with the
expectation that the NSF equations are limited to small Knudsen numbers.

3.2 Burnett equations

Now, the conservation laws (3.1) are furnished with the Burnett expressions

0%p o*T ov
= —7K 2 K 2 = —Kn—
o 922 T3 B e
15 oT 3 28%
=——Kn— = -Kn*"— .
n 4 BTN g2
This implies right away that
T 4
- - T T == T —_ = = 0 s
v(z) = vo — Tr2q~ @) =To- oy, » @

where vg, 012,10, q1 are constants of integration. That is the Burnett equations do not predict boundary layers
for velocity and temperature, and no heat flux parallel to the wall. Note that this statement refers only to the

linearized Burnett equations Indeed, it is well known that the full Burnett equations predict the heat flux parallel

to the wall as qp = “T 1g5 g;’k (,;977;

The equations for p and 017 lead to Knudsen layer solutions for density and stress 011, viz

_ 4 ¢ V3z—3 V3z—3
p_po-q-gK—x—}—Asmh - T + Bcosh 5 Ko |
\/333—7 V3z—1

011 = —Asinh Ka — B cosh - Kn

Thus, in comparison to the NSF equations, the linear Burnett equations do only lead to smaller changes in the
prediction of Couette flow. In particular we point out their failure to predict a heat flux parallel to the wall
(g2 = 0), and to predict boundary layers for temperature and velocity. Indeed, these appear only at the next order
of approximation, which is studied now.

3.3 Super-Burnett and augmented Burnett equations

For linear Couette flow, the super-Burnett equations reduce to

9?p o*r v v

2 2 3

o011 = — K oz el —+ K (91‘ , 012 = 7KII% — gK 87 (34)
T 1 3T 3 2

q1:,7 0 57K Sa——éKn?’@ q2:§K 287

i M 0% 8 9g3 922
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Fig. 1. Boundary layer functions sinh[Az/Kn] and cosh [Az/Kn] for various Knudsen numbers

For the augmented Burnett equations, the expressions for o711 and ¢ remain unchanged, while the expressions
for 012 and ¢; read

ov 1 0%v or 11, 30T &3p
uB = —Kn— K3 a K —K ——ng . 35
T12]aB no—+ 953 0 QlaB = N T g Y 5 N3 (3.5)
Due to the simple structure of the llnear equations, the velocny can be computed separately as
U|SB:v0—012Ki+Acos {\/g }Jerln{ %mlz%] , (3.6)
n
VjgB = Vo — 012% + A cosh {\/6 ] + Bsinh [\/6 Kn;] , (3.7
n

for super-Burnett and augmented Burnett equations, respectively. The constants of integration vg, 012, A, B
must be related to boundary conditions, a problem that we shall ignore here. What is important to us is the
general structure of the solutions: Both sets of equations yield the linear Navier-Stokes solution vy — 0123
plus a correction. However, the correction is periodic in space for the super-Burnett equations (3.6), but relates
to Knudsen boundary layers for the augmented Burnett equations (3.7). Thus the change in sign at the third
order derivative in 015 between (3.4) and (3.5) has severe impact on the solution behavior - the super-Burnett
equations yield results that are unphysical, but the solution of the augmented Burnett equations might have
support in physics.

Figure 1 shows the functions cosh [XEI;—? } for a variety of Knudsen numbers, in order to

emphasize the boundary layer structure of the solution (3.7). Indeed, these functions have the typical shape of a
boundary layer, their largest values are found at the walls, and the curves decrease to zero within several mean free
paths away from the walls. As Kn grows, the width of the boundary layers is growing as well. For Knudsen num-

bers above ~0.05 one cannot speak of boundary layers anymore, since the functions cosh {)\%} ,sinh {A m}zn% }

are non-zero anywhere in the region between the plates. In this case boundary effects have an important influence
on the flow pattern. Note that we consider linear boundary layers, as solutions of linearized equations. These
depend only on the Knudsen number, but, as a consequence of linearization, not on the Mach number.

For temperature, we find similar behavior: From the super-Burnett equations, we find

Tisp=To— — —|—C’cos{)\1 Kn}—f—Dsm{ }—i—Fcosh[ }—i—Gsmh[/\g Kn]

4
15" Kn
with A = |/2Y58I29=201 — (635, ), = /3331294201 — 857
where the constants Ty, q1, C, D, F, G must be obtained from boundary conditions. This solution correspond to
the linear Fourier solution 7y — %ql &5 blus corrections, of which one is again periodic in space, while the other
is of boundary layer type.
From the augmented Burnett equations, one finds

4
T="T,— 15q1K +C’cosh[’yl KI}}+Dsmh[ i|+FCOSh|:’}/2K }+Gsmh{ 1}
with vy = |/ 3V308LE303 — 9009, 4y = /303533081 — 0.835
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so that both corrections are of boundary layer type.

At this point of our arguments we can draw the following conclusions: (1) The super-Burnett equations lead
to unphysical periodic solutions in steady state flows, and should not be considered for steady state problems.
(2) The augmented Burnett equations seem to describe Knudsen boundary layers for velocity and temperature,
and might be useful. The main point against them is that the terms of super—Burnett order that were used to
augment the Burnett equations are not based on rational arguments: the coefﬁ01ent 1nstead of — 157 m the

equation for g;|p, (3.5)2 stems from an erroneous computation in [15], and the coefﬁment 2 1nstead of —§ in

the equation for 012/, B, (3.5)1, results from a wrong guess of the three dimensional structure of O' i ) in (2.6),
with a result that is not in agreement with the real super-Burnett equations (2.5). Polemically one could say that
in the augmented Burnett equations the signs of those coefficients “’that cause the trouble” are inverted, which
results in good behavior of the equations, but is difficult if not impossible to justify by an argument based in
physics. Another point against the augmented Burnett equations is that they, as we have said already above, are
unstable with respect to local fluctuations at high frequencies [12].

4 Regularized 13 moment equations

The R13 equations were presented recently in [5,12], and [14]. Their original derivation in [5] is based on a
regularization of Grad’s 13 moment equations, where the regularizing terms result from a Chapman-Enskog
expansion of moment equations for higher moments.

Only recently, Struchtrup was able to derive the R13 equations by a new argument, which is independent of
Grad’s method, but uses a careful analysis of the order of magnitude of the moments, and the influence of all
terms in all moment equations on the conservation law [14].

Thus, the R13 equations have a rational background, in particular they contain no unknown coefficients and
they are known in their full non-linear three dimensional form. They could be shown to include the Navier-Stokes,
Burnett, and super-Burnett equations in their respective limit of the Knudsen number. However, as the discussion
in [5,12] makes clear, they contain terms of arbitrary order in the Knudsen number, and these have a distinct
influence on the solution behavior, in particular no instabilities occur. See the discussions in [5,12], and [14] for
a thorough comparison of the methods of derivation for Grad equations, Burnett models, and the R13 equations.

The R13 method adds balance laws for stress and heat flux which read in linear, dimensionless form

Ooij | 404 0 0 9ou; oy

: DR U} il AL | 4.1
ot 5oz oz, 0w 0y  Kn’ 1)
O¢; 50T Doy, 12 ni dq6 0 Oqp _ 2 g
ot 20x; Oz 5 Oz, Oy 3x7 drr,  3Kn'

See [5,12] for the full non-linear system in three dimensions. A similar set of linear equations is presented by
Karlin et al. [16], who, however, did not give explicit numerical expressions for the coefficients. For the steady
Couette flow considered above, the linearized R13 equations (4.1,3.1) reduce to

ov  20qo 12 2 0%
— - =—— = t fK
Oz + 5 Ox Kn Ot @7 5B e
50T O 2 0?
o _ 4 _ const 11 = K 2d 90

20z 9z  3Kn ’ 5 ox? ’
so that velocity and temperature are obtained as
T 2 . 1
v(x) =v9— T123e- gqg (x) with ¢ () = Asinh [\/; i } + B cosh [\/; an} ,
o1
T(z)=To— %, ~ 501 (x) with 011 (x) = C'sinh [\/> } + D cosh [[ KHQ} ,

where vg, 012, A, B and Tj, ¢q1, C, D are constants of integration. We can identify —%qg (z) and —%011 (z) as
the Knudsen boundary layers for velocity and temperature according to the R13 equations, and they are of the
same form as those discussed above, and depicted in Fig. 1.

4.2)
4 x 2
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5 The heat flux parallel to the flow

A closer inspection of the last equations shows that the R13 equations predict the heat flux parallel to the flow
as

9 ,0%
3 =——Kn“"— 5.1
92|R13 TR (5.1
while the corresponding expression from the Burnett equations reads
3 ,0%
= -Kn"— . 52
©p = FEn =5 (5.2)

Note that the augmented Burnett equations and the super-Burnett equations agree with the Burnett equation up
to the order of Kn?, so that they also predict the result (5.2). Thus, we find different signs for ¢, between the
R13 equations, and the Burnett equations.

In order to answer the question which sign relates heat flux and the second gradient of velocities in a rarefied
gas, we use the results of a DSMC simulation for Couette flow, performed with the free code supplied by Bird
[1]. For the interaction model in the DSMC simulation we considered the variable soft sphere model with the
parameters for Maxwell molecules. We consider Couette flow at Kn = 0.1 with dimensionless wall velocities
v(0) =0, v (1) = 0.84, and dimensionless wall temperatures 7' (0) = 7" (1) = 1. Bird’s code requires physical
data input (not dimensionless), and we used the following data: T (0) = T (L) = Ty = 273K, v (0) = 0,
v (L) = 200m/s, 11 (Tp) = 1.955 x 10~°Ns/m?, pg = 9.288 x 10~ %kg/m3, R = 0.208kJ/kgK (Argon), and
L = 0.08833m. Note that this data gives Kn = 0.1 according to our definition in Eqn. (2.1), which differs from
the definition given in [1].

The strong scatter in the DSMC results does not allow to compute the derivatives of the velocities, and
therefore we base our argument on (4.2),. Solving for ¢, yields

x—0.5} 7 53)

5

q2(R13 (T) = ) [U () —v(0.5) + 012
where we have used the point z = 0.5 to determine the constant vg; note also that o1 is a constant. We could write
a similar equation for the super-Burnett equations by integrating (3.4)s, but refrain from that since the super-
Burnett equations, as we showed, yield periodic solutions, and are unphysical. Integrating the corresponding
equation of the augmented Burnett equations (3.5); yields with (5.2)

z—0.5

Kn ’

421aB =9 [U () —v(0.5) + 01218 (5.4
that is a similar curve, albeit with different sign and amplitude.

In Fig. 2, we show the heat flux g5 as computed directly in the simulation, and as computed from (5.3), where
we used the DSMC data for the evaluation of the right hand side. While g2 13 as given in (5.3) differs from the
simulation value g2psmc;, it is clear that the relation (5.3) yields the proper direction of gz, while (5.4) would
yield the opposite — wrong — direction. Note that our analysis is based on the linearized equations so that the
difference between gz r13 and gopsyc might be due to non-linear effects. The figure also shows the function

9 Kn
the R13 prediction (4.2);.

Asinh {\/g m_%} with fitted amplitude A, and one can see that the heat flux gz psyic indeed agrees well with

6 Conclusions

We summarize our discussion of the Burnett, super-Burnett, and augmented Burnett equations by stating that
neither of these theories should be considered for the description of transient or steady state processes in rarefied
gases. All sets of equations exhibit instabilities in transient processes, while their predictions of steady state
Couette flow lead to unphysical periodic solutions (super-Burnett), and the wrong sign of the heat flux parallel
to the wall (all three).

The regularized 13 moment equations of Struchtrup and Torrilhon (R13), however, are superior on all counts:
they are derived in a rational manner, are stable in time and space, and give predictions in agreement with
(DSMC) experiments (see also [5,12]), including the proper behavior of the heat flux parallel to the flow.



50 H. Struchtrup

0.02
0.015
0.01
0.005
0
-0.005 Fig. 2. Kn = 0.1, -DSMC: from DSMC
simulation, q-R13: from DSMC result for
-0.01 velocity and (5.3). The thin line is the
prediction of the R13 equations g2 = A
-0.015

_1
sinh [@ r } , see (4.2)

Moreover, when expanded in the Chapman-Enskog series, the R13 equations agree up to the super-Burnett
order with the expansion of the Boltzmann equation. But we wish to emphasize that the good quality of the R13
equations is strongly influenced by the fact that they contain contributions of all powers in the Knudsen numbers,
which, as becomes more and more obvious, are of great importance.

A full evaluation of the quality of the R13 equations will only be possible after a rational way to prescribe their
boundary conditions is found (note that also for super-Burnett and augmented Burnett the boundary conditions
are not known), and we hope to present these in the future.

Acknowledgements. This research was supported by the Natural Sciences and Engineering Research Council (NSERC). The author
wishes to thank Adam Schuetze (University of Victoria) for providing the DSMC simulations, and Manuel Torrilhon (ETH Zurich)
for stimulating discussions.

References

1. Bird, G.: Molecular gas dynamics and the direct simulation of gas flows. Clarendon Press, Oxford 1994
2. Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-Uniform Gases, Cambridge University Press 1970
3. Shavaliyev,M.Sh.: Super-Burnett Corrections to the Stress Tensor and the Heat Flux in a Gas of Maxwellian Molecules. J. Appl.
Maths. Mechs. 57(3), 573-576 (1993)
4. Bobylev, A.V.: The Chapman-Enskog and Grad methods for solving the Boltzmann equation. Sov. Phys. Dokl. 27, 29-31 (1982)
5. Struchtrup, H., Torrilhon, M.: Regularization of Grad’s 13 Moment Equations: Derivation and Linear Analysis. Phys. Fluids
15(9), 2668-2680 (2003)
6. Xue, H., Ji, H.M., Shu, C.: Analysis of micro-Couette flow using the Burnett equations. Int. J. Heat Mass Transfer 44(21),
4139-4146 (2001)
7. Lockerby, D.A., Reese, J.M.: High resolution Burnett simulation of micro Couette flow and heat transfer. J. Comp. Phys. 188,
333-347 (2003)
8. Xu, K.: Super-Burnett solutions for Poiseuille flow. Phys. Fluids 15(7), 2077-2080 (2003)
9. Fiscko, K.A., Chapman, D.R.: Comparison of Burnett, Super-Burnett and Monte Carlo Solutions for Hypersonic Shock Struc-
ture. in Proceedings of the 16th Symposium on Rarefied Gasdynamics pp.374-395, AIAA, Washington (1989)
10. Zhong, X., MacCormack, R.W., Chapman, D.R.: Stabilization of the Burnett Equations and Applications to High-Altitude
Hypersonic Flows. AIAA 91-0770 (1991)
11. Zhong, X., MacCormack, R.W., Chapman, D.R.: Stabilization of the Burnett Equations and Applications to Hypersonic Flows.
ATAA Journal 31, 1036 (1993)
12. Torrilhon, M., Struchtrup, H.: Regularized 13-Moment-Equations: Shock Structure Calculations and Comparison to Burnett
Models. J. Fluid Mech. 513, 171-198 (2004)
13. Grad, H.: On the Kinetic Theory of Rarefied Gases. Comm. Pure Appl. Math. 2, 325 (1949)
14. Struchtrup, H.: Stable transport equations for rarefied gases at high orders in the Knudsen number. Phys. Fluids 16(11), 3921-
3934 (2004)
15. Wang Chang, C.S.: On the theory of the thickness of weak shock waves. Studies in Statistical Mechanics V, 27-42, North
Holland, Amsterdam (1970)
16. Karlin, I.V., Gorban, A.N., Dukek, G., Nonnenmacher, T.F.: Dynamic correction to moment approximations. Phys. Rev. E 5§7(2),
1668-1672 (1998)



