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Prandtl number

Luc Mieussens®
UFR MIG, Universite Paul Sabatier Toulouse 3, 118 Route de Narbonne, 31062 Toulouse Cedex 4, France

Henning Struchtrup®
Department of Mechanical Engineering, University of Victoria, P.O. Box STN CSC 3055,
Victoria, British Columbia V8W 3P6, Canada

(Received 10 October 2003; accepted 26 March 2004; published online 11 June 2004

While the standard Bhatnagar—Gross—KrdBIGK) model leads to the wrong Prandtl number, the
BGK model with velocity dependent collision frequency as well as the ellipsoidal statistical BGK
(ES-BGK) model can be adjusted to give its proper value of 2/3. In this paper, the BGK model with
velocity dependent collision frequency is considered in some detail. The corresponding thermal
conductivity and viscosity are computed from the Chapman—Enskog method, and several
velocity-dependent collision frequencies are introduced which all give the proper Prandtl number.
The models are tested for Couette flow, and the results are compared to solutions obtained with the
ES-BGK model, and the direct simulation Monte Carlo method. The simulations rely on a numerical
scheme that ensures positivity of solutions, conservation of moments, and dissipation of entropy.
The advantages and disadvantages of the various BGK models are discus2€@4 @merican
Institute of Physics.[DOI: 10.1063/1.1758217

I. INTRODUCTION functionfg: in the standard BGK modét is the local Max-

Because of its simplicity compared to the Boltzmannwe” distributionf,, , i.e., an isotropic Gaussian, while in the

equation the Bhatnagar—Gross—KrotBGK) equation is ES-BGK modelfg is a local anisotropic Gaussian. In the
widely used in the kinetic theory of gase¥While the BGK ~ BGK model with velocity-dependent collision frequeneys
equation gives qualitatively good results, it fails when one isa function of the microscopic velocit§ of the particles and
interested in quantitatively correct results. This fact mani-f¢ is a local isotropic Gaussian, albeit not the local Maxwell-
fests itself most prominently in the computation of theian.

Prandtl number, i.e., the dimensionless ratio of viscosity and  The BGK model with velocity-dependent collision fre-
thermal conductivity. While measurements and the theory ofjuency is briefly discussed in the book of Cercigriaand

the full Boltzmann equation give Pr3, one obtains Pr1  goychut and Perthame discussed it thoroughly from a math-

fromTLhe standa}[rd BGK_ modél. hes t difv th BGKematical viewpoinf’. In both references, however, the form
modelei:we o&:(rjir V;I(;) (;?J?zlari]n atflzr%e:gpif PoraT(;)tl Ifrzlumt;aer: the(l:f the collision f_requency was not (_:iiscussed. TO. our best
Gaussian BGK model, or ellipsoidal statistical modgs- _nowledge, the first attempt_ to consider an explicit expres-
BGK mode),*5 and the BGK model with velocity dependent Sion for »(C) can be found in a paper by Struchtfupho
collision frequency:” considered the simplest possible ansatz, namég)~C".
In all three approaches, standard BGK, ES-BGK, The proper Prandtl number is obtained fo=1.79. In the

and BGK with velocity-dependent collision frequency, the present paper, we present some alternative functions for the
Boltzmann collision term is replaced by a relaxation typecollision frequency, which lead to the proper Prandtl number,
term of the form but, however, do not agree with realistic collision frequency
L f_ of particles. We also show that the combination of BGK
Spek= —v(f—=fg), . - . . .
model with realistic collision frequencies cannot give the

wherev is the collision frequencyf, is the actual distribution proper value of Pr.

fuqct|on of th? MICTOSCOpIC velop|t|es of the gas, dids a The BGK equations for the different models are solved
suitable equilibrium phase density. In standard and ES_BG|§0r Couette flow at various Knudsen numbers, and for shock
models the collision frequency is independent of the micro- h | il b d with sol . btained
scopic velocity, and its value is obtained from fitting to vis- waves. The results will be compared with so u'uonsp ta.me
cosity data. These two approaches differ in the equilibriunf’om the standard and the ES-BGK models, and with direct
simulation Monte Carlo computatiof®SMC).
dTelephone: ++33-5-61-55-76-43; fax:++33-5-61-55-83-85; electronic The numerlc?al method u;ed for solving the V<.’:1I’IOU§ BGK
mail: mieussens@mip.ups-tlse.fr equations considered here is the method of Mieus$efis.

PTelephone:+ +1-250-721-8916; fax:++1-250-721-6051; electronic mail:  The great advantage of this method compared to others is
struchtr@me.uvic.ca
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that it guarantees the conservation of mass, momentum, and
energy.

The main goal of this paper is to study whether BGK
models can be used to model flows over a wider range of
Knudsen numbers. The BGK models with proper Prandtl
number are constructed such that they give accurate results
for small Knudsen numbers, that is in the hydrodynamic re-
gime, where the laws of Navier—Stokes and Fourier are ap-
plicable. It is not cleaa priori, whether the BGK models can wherem is the mass of one particl&, is Boltzmann’s con-
give accurate results in the transition regime, where thétant, andC;=c;—v; is the peculiar velocityT is the gas
Navier—Stokes—Fourier theory fails. The results presentetemperature, which is defined by Eq. g1)The entropy of

szffdc, Qvisz c;fdc,

_3 kT—mfczfol
ee=se T2 G

m
p(ij>:mf C;Cjfdc, QiIEICZCifdc, (1)

below indicate that BGK models can give qualitatively goodthe gas is given by

results, but have some problems to quantitatively describe
flows at larger Knudsen numbers, where the details of the
collision frequency become important. Of course, models
with proper Prandtl number can cover a wider range o
Knudsen numbers than the standard BGK model, and mu
be preferred over the latter.

However, only further improvement of the models, that
would allow the use of the real collision frequencies, can
render the BGK models into a tool that gives accurate result
over a wide range of Knudsen numbers. Here it must bé
mentioned that the use of BGK models allows to obtain de<i)
terministic results, rather than statistical results that suffer
from noise as in the DSMC method. Also, numerical solu-
tions of BGK models can be obtained faster than solutions
for the full Boltzmann equation, which is nonlinear. Note
also that the numerical scheme of this paper guarantees co(ii)
servation of mass, momentum and energy irrespective of the
numerical accuracy.

The remainder of the paper is organized as follows: In
Sec. Il we introduce various BGK models. In particular, we ...
show that the BGK models with velocity dependent coIIision('")
frequency have the same characteristics as the full Boltz-
mann collision term, we discuss how to obtain viscosity and
heat conductivity by means of the Chapman—Enskog
method, and we introduce several models for the collisionjy
frequency. In Sec. Il we discuss details of the numerical
method, and in Sec. IV we give and discuss numerical results
for Couette flow at Knudsen numbers between 0.012 and 1.2,
and for normal shocks with upstream Mach numbers be-
tween 1.4 and 8. The paper ends with our conclusions.

—+ci—=
at  Thox;

Qs=—kf finfdc.

fThe phase densitf(x; ,t,c;) is governed by the Boltzmann
§\tquatior13;'12

of
S, @

gvhereS is the collision term which has the following four
roperties®

It guarantees the conservation of mass, momentum
and energy, which may be written as

m
fdec=o, fqudc=o, f7c25dc=o. ©)
The production of entropy is always positivél-
theoren),

—kf In fSdc=0.

Due to the specific form o the phase density in
equilibrium is a Maxwellian, i.e.,

e m 3 m 2
SZO:f:fMZE KT exp—%_c.

The Prandtl number is close t for all physically
meaningful collision factorsr, i.e.,

where u and « denote viscosity and thermal conduc-
tivity, respectively.

B. The BGK equation

Il. BGK MODELS

A. Phase density and Boltzmann equation

Because of its complex nonlinearity, the Boltzmann col-
lision term S is difficult to handle. Therefore one is inter-
ested in model equations which are easier to handle than the

Boltzmann equation but which should also have the proper-

The state of a monatomic ideal gas is completely de
scribed when the phase density; ,t,c;) is knowr? which is
defined such thdtdc gives the number density of atoms with

ties (i)—(iv). The most used model is the BGK equation, see
Refs. 13 and 7 for motivation. The BGK collision term reads

velocity in (c;,c;+dc;) at placex; and timet. Sy=—v(f-1)), (4)
The macroscopic quantities densgy velocity v;, den- wheref , is a Gaussian

sity of internal energye, pressure tensqp;;, 1! and heat B 5

flux vectorq; of the gas are given by moments of the phase fy=aexp(—I'C™+ %Gy, ®)

density,

and v denotes the collision frequency which is given by
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of of
v(xi,t,C)zf fiagsinadedsdcl. (6) R =—v(f—1,). (7)
I

Here, g=[c—c| is the relative velocity of colliding par- e proceed by calculating the phase densifyom Eq. (7)
ticles, o is the scattering factor and ¢ are the angles of by means of the Chapman—Enskog methddhe first order
collision. The collision frequency is a function of the micro- Chapman—Enskog expansion relies on the assumption
scopic velocityC (througho andg) which is evaluated for that the phase density is close to a Maxwellian, i.e.,
the case of hard spheres and equilibrium in Ref. 14, we shafi=f,,(1+ ¢), where¢<1. In this case, the equilibrium dis-
discuss it in Sec. Il E below. tribution f, will be close to equilibrium as well, so that

The coefficientsa, I, y; for the distribution(5) follow  f =f,(1+¢,) with ¢, <1. In fact, we can write
from the conservation condition8), whereS must be re-

placed byS, . Note, thatf,, is only a Maxwellian if» does e m . m )

not depend on the peculiar velocig . fy=m Vot (1-aexn - m—l“ C+ %G
It should be emphasized that—because of the conditions )

(3)—the BGK equation, i.e., the Boltzmann equation with =fy[1-a+I'C%+y,C],

the collision term(4), is a nonlinear integrodifferential equa-

tion, just like the Boltzmann equation. So one will not expectwhere the coefficientd, y;, I' measure the deviation from
analytical solutions. But as we will show, the standard prothe Maxwellian and are assumed to be small.

cedures of the Chapman—Enskog expansion are much easier We insert the Maxwell phase density on the left hand
to perform for the BGK equation than for the Boltzmann side of(7) and eliminate all time derivatives by means of the
equation. It is straightforward to show that the BGK equationEuler equations for monatomic gases,

shares the propertie$i), (i), (iii) with the Boltzmann

equatior®’ The calculation of the Prandtl numbfgroperty wa-l- e
(iv)] will be performed in the next sections of the paper. But , %—O - 1 m ~0 T_ _o
one may conjecture easily that the extension of the ordinary ere axe vi o ax o e

BGK model to the case whereis a function ofC offers an _ _ _
additional degree of freedom which may be used to adjugf\fter some rearrangement of the resulting equation we find
both, viscosity and thermal conductivity, to their measuredor the phase density

values. g Lo movg 1T m o, 5
C. ES-BGK model Ty M k_TW,) (DT ax; | 2kT 2/

In order to obtain the proper Prandtl number, Holway
suggested the so-called ellipsoidal statistical BGK modelt is remarkable that this approximate solution fulfills the
(ES-BGK model, where the Maxwellian of the standard conservation condition&) for anydistributionf . Thus, the

BGK model is replaced by an anisotropic Gausbismthat  coefficientsa, vi, I' cannot be determined from these con-
the collision term reads ditions. However, the phase densi must reproduce the

S=—v(f—fg), first moments (1)_; and it follows thata=1"=0 and

wheref g denotes the anisotropic Gaussian 8 14T [ P(PP-D
= | ey,
3y T X v(7)

where 7= (m/2kT)C. Pressure deviatqy;, and heat flux
vectorq; follow from evaluating their definitionél) with the

1

P 1.1
fo=r ———exg — =\ 1C,C |,
¢ m Jdef2mh; ] p[ 270

and the matrix\;; is given by Chapman—Enskog phase dengBy. This yields the laws of
Navier—Stokes and Fourier with explicit expressions for vis-
A, =RTS, +(1_ pr> D;)m; cosity u and thermal conductivity,
32 k 7® 7 v
\j;' denotes the inverse matrix. While it is relatively PGy~ _mgz j W 77) Tdn ax’
stralghtforward to show that this model fulfills the conditions
(i), (iii), and (iv) of Sec. Il A, the proof of conditior(ii) 2p
(H-theoren), is nontrivial, and was only recently presented 3 2 774(772_ 52 ,  JT
by Andrieset al® The ES-BGK model assumes that the col- q;=-— f ——e¢ Tdn—. ©
lision frequency is independent of the microscopic velocity. 3w m v(n) o%i

D. Chapman—-Enskog method

The BGK equation follows froni2) after replacement of As expected, the Prandtl number depends on the collision
ShyS, as frequency
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FIG. 1. The dimensionless and normalized collision frequeneg a func-
tion of dimensionless microscopic velocityfor a variety of power poten-
tials with exponent.

6
n _ 2
I fV(n)end"
K-, (o
J e e

E. Collision frequencies

Now we discuss the collision frequency as a function of
the microscopic velocity. Due to the severe simplifications in
the derivation of the BGK equation, we cannot expect that
the collision frequency6) will give us the proper Prandtl
number. While we shall adopt ad hoc models for the collision.
frequency later, it is instructive to study the original collision
frequency(6) first. We consider close to equilibrium situa-

tions, where we can replacf@; by the Maxwellianf,, so that

V(C)zf fhogsingdededc; .
For power interaction potentials between
¢~r~ ("1 one can sho¥ that

ogsingdg=g" >~ Vsds,,

where sp=sy(#) and n gives the order of the potentiah
=5 represents the so-called Maxwell molecules while
— oo describes hard spheres.

The above integral can be reduced to

2
n—1 (» ¢e ¢
= (3n=7)/(n—1)
vn(7) 2771/03“_7L_0 . [(£+7)
_|§_ 77|(3n77)/(n71)]d§' (11)

where

o [2kT _
Vo= 732 ?(n S)(n l)jsodsod%li

§i=Ci1/\/2kT/m, 7,=C;/\J2kT/m are dimensionless ve-

locities. For Maxwell moleculesn=5) the collision fre-
guency is independent of the particle velocity,

L. Mieussens and H. Struchtrup

_ = S V7!
VMaxweII_47TV0J' e ¢ Edé= 1"y,

=0

and for hard spheresE& =) one find$?

vus(C) = 771/0[ e 7+ ﬁ i4—277 erf 77} .

2 \n
For other values ohf, the collision frequency must be inte-
grated numerically, and Fig. 1 shows the normalized dimen-
sionless collision frequency as function of the dimensionless
velocity n=C/y2kT/m for a variety of values oh.

It can be seen thatis a monotonous increasing function
of speed. This indeed meets the expectations: fast particles
should collide more often and should therefore have a larger
collision frequency. The constant collision frequency of
Maxwell molecules corresponds to the standard BGK model
with constant.

The Prandtl numbe(10) for various power potentials
can be obtained from further analytical or numerical integra-
tion. For Maxwell moleculesconstantr) we find the usual
result of the BGK model Rf,wen= 1. For increasing values
of n, the Prandtl number increases slightly to a maximum of
1.01615 ain=13 and is then decreasing to 1.0126 for hard
spheres. Since the proper Prandtl number is 2/3, it follows
that the collision frequencies for power potentials give the
wrong Prandtl number and therefore do not improve the
BGK model.

There is an infinite number of possible functionsy)
which give the proper Prandtl number. Since the true colli-
sion frequency is an increasing function # we consider

nonIy increasing functions. We introduce the following nota-

k
emT 16 f 7
157 J ¥(n)

e 7d n=1,
(12)

v(n)= v(7n) with

particlessee the definition of viscosit{9). In (7) we presented the

simple power law
1(7)=0.4315871 791288

which yields Pr=2/3. While v,( %) is the flattest polynomial
we could find, it is unphysical as it states that a particle at
rest (p=0) would not undergo collisions and stay at rest
forever. However, these particles will collide with particles
of nonzero velocity, and thereforg »=0) should be non-
zero. Three simple functions which fulfill this requirement
and give P& 2/3 are

7,(77)=0.02683511+ 14.2724;%),
73(17)=0.03656481 + 107%8175§,
74(77)=0.15039911 + 0.92897%*).

A simple discontinuous function which gives the proper
Prandtl number is

[ 02590894, y=1.2,
s(1)=10.8288236), 7>1.2.

Downloaded 09 Sep 2004 to 128.174.23.7. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



Phys. Fluids, Vol. 16, No. 8, August 2004 Numerical comparison of BGK models 2801

For hard sphere molecules, we fingig(0)=0.557608 for Evaluating in equilibrium wheré is a Maxwellian, we find
molecules at rest antlyg( 7>1)=0.4941673, for fast par- 5
ticles. Thus, in comparison to hard sphere molecules, all of — wx [2kT 4 /A
: . =—\/——=| =—¢e "dng. (14
our models underestimate the collision frequency for slower p m JzJ v(n)
particles (7=1.5) and overestimate that of faster particles
(p=1.5). The Knudsen number Kn is defined as the ratio between the
mean free pathh of a particle, and a characteristic macro-
F. Viscosity, mean free path, and Knudsen number scopic lengthL of the problem under consideration, that is
As can be seen from Eq12), data for the viscosity Kn=\/L. With the mean free path as above, the Knudsen
are required to completely define the collision frequemcy NUMber depends on microscopic details of the particle inter-
For ideal gases the viscosity is a function of temperature"‘Ct'On’ in particular the collision frequency. However, it is

alone, and for our calculation we assume that customary in kinetic theory to define a Knudsen number that
Tie depends only on macroscopic parameters by
,LL(T)I,LL()(—) ) (13 m KT
To Kn= > /222 (15)
pL V2 m

wherepu is the viscosity at the reference temperafligeand
o is a positive number of order unity. For details, see theThis definition allows to compare results obtained with dif-

book by Bird® where values fop, andw are tabulated.  ferent microscopic modeléin our case different functions
The mean free path of a particle with velociys given (%)), but with the same macroscopic propertips,T, u.
by From the definition of the mean free patt¥) follows
c the Knudsen numbefn as
ANC)=—— _
( ) v(C) 2 8 7]3 )
= — = = — JE—-
and accordingly the mean free path of all particles is Kn L xKn, - where x wf ( n)e dz. (16
o I\ (c)fdc The values of the numbey for the different models are
Jfdc given below:
|
Vbsmc VBGK VES-BGK V1 V2 V3 Vg Vs

X, 0.77177 1.27324 1.90986 2.80147 2.78725 2.79262 3.00385 2.64

The value forypsuc was obtained from Ref. 15—the Knud- A. Explicit scheme
sen number given there corresponds tolkonr The value for
the ES-BGK model follows since in the ES-BGK model vis- senteq in one spatial dimension, but three dimensions in mi-
coglty and constant collision frequency are relatedvas croscopic velocity; see Refs. 9 and 10 for a complete de-
=35(p/p). . . scription.

_ It follows that gases with the same macroscopic PrOPer-  The equation to be approximated is

ties, and therefore the same Knudsen number Kn, have dif-
ferent values of the mean free path based Knudsen number
Kn. From the table we see that that the Knudsen numi§ers

For the sake of simplicity, our numerical method is pre-

of

for the ad hoc models v, to vs are more than twice the —+c—=—wn(f-f,), O=x=<L. (17)
Knudsen numbeKn for DSMC calculations. gt "X
ll. NUMERICAL METHOD The space variable is discretized on a uniform grid

Many works have been devoted to numerical solutiong Sned by nodes; =iax with )((-0):0 andx, =L. The veloc-
X

of BGK models(e.g., see Ref. 16, and references therein ity Cx IS dlscrgu)zed by nodes,* = Cx,mint11ACx, with C§<O)
However, in our new BGK models, the collision frequency = Cx,min @Nd ;™" = Cy max. The velocitiesc, andc, are dis-
can reach very large values and this can lead to numericaretized accordingly; a discrete velocityi'(l) ,Cyz) ,ch)) of
difficulties (lack of robustness, slow convergenc#/e be-  the grid will be denoted bg;, wherej=(j1,j,,j3). Finally,
lieve that an alternative method proposed by one of the auwne also choose a time discretization with=nAt.

thors in Ref. 10 is better adapted to such problems. We Equation(17) is classically approximated by a finite vol-
briefly recall the main ideas of this method in this section. ume scheme,
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n+l n . . Moreover, the total(physica) entropy is increasing. The
iy =~ axFivan i~ Fi- @ j) positivity of the phase density is preserved if at each iteration
the time step follows the condition
— Aty ](f“ —f“ i)

(11)
At( maXV +max— <1. (18
i ] AX
where the above quantities are defined as follows:
B. Implicit scheme
(1) fﬂj is an approximation of (x; ,t,,c;). N )
(2) Numerical quxes are defined by The con_d|t|on(1_8) poses a problem for computing (_1ense
or rapid regimes with the above numerical scheme, since for
. W = (c Jl)(f.+11+fn ) theseAt mu_st be small and the convergence is very slow.
A classical way to overcome this difficulty is to use a
|C(J1 |(AfD — N ) linearized implicit scheme that can be viewed as relaxed-
_ i+ (12).] (172).] _ Newton algorithm for the steady equation,
with the notationA fl, 1, . =fl' 1;—f{;. The flux lim-
iter function®, /) ; allows us to obtain a second order T ( — At )
schgme, e.g.cr11>{1+(1,2)‘j=(r)] for first czrder, andb, 1 ; BT AX 1/2) g (12,
:r;né?mOd(Afi—(llz),j AT (1) 1A i+ 3i2,) for second FAL (I gL g
(3) The collision frequency is defined lhgee Eq(12)] Slncefrf,} is a nonlinear function ofn+l it is linearized as
ETH follows:
'm ) f”+1~fn +D! fn+1 M7
Wi=——-u7;), with v~ i TP 3
M(T5) . . where D] is the Jacobian of the mappirgy—>f,[g] evalu-
((Cijl)—vin)z-l—(C§]2))2+(C§]3))2)1/2 ated atf{'. For the second order scheme, the flux limiters
r;ﬂj = . (nondifferentiable are kept explicit. The followingd matrix-
ZETT‘ form of the scheme is more adapted to computations:
m I
|
(4) Macroscopic quantities are defined as in En. where (E+T+ R"| 6f"=RHS', (19
now continuous integrals are replaced by discrete sums
on the velocity grid wheredf"= f”+l f", 1 is the unit matrixT is a matrix such
PLPIU S P ET{1 first order quxesRn is defmed such thaIR”f )ii=Vi J(f
—[D]f and
(J1.92.33) i [ ]) 1
— Ja n
mj:((%,o) (Le, C(Jll 13))]c jAC RHS‘!J':_R(‘?{L (1/2),1'_7'—?7(1/2) i)
: _ (U0 (i2) (i)
with G2 =((c!?—oD)2+(cl?)2+(cl9)?) and SR, (20)
Ac=Ac,AcyAc,. ] A
(5) The approximation of ,(x; ,t,,c;) is defined by which contains the limiters for the second order scheme.
The scheme now reads as a linear system to be solved at
ylj ai eXF{ FnC(J 1213)_’_');1((:(]1)_1) )] y

. each iteration. This can be done efficiently, and this method
where the three coefficients ,I'!,y' are solutions of has been proved to be very fast for computing steady flows.

the discrete version of Eq3), A similar scheme has been proposed by Frez2bttijt
S _ the main difference is that in his method, the equilibrium
1imfi— fy)Ac=0, distribution is not implicit. It has been shown in Ref. 10 that

’ the convergence of such a scheme is slower than ours.
C. Remark on the velocity grid
2 N c (fn _fn )Ac=0. The velocity grid is appropriately chosen for each case.
2 o Since the same grid is used in each space point, it should be
These equations are solved by a Newton algorithm. Thigarge and precise enough to correctly describe the ficav,
approximation has already been used by Frezzotti in Retthe distributions everywhere in the space domalimen the

17, and has been mathematically investigated by one dpounds are given by a combination between the maximum
the authors in Ref. 10. macroscopic velocity and temperature of the flow (i@ax
+ay/(k/m) T), where we takea=4). The step of the grid
Owing to this last approximation, our scheme is per-is given by the smallest temperaturdi.e., Ac
fectly conservative for density, momentum, and total energy=min,/(k/m) T). These quantities can be estimated by the

Downloaded 09 Sep 2004 to 128.174.23.7. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



Phys. Fluids, Vol. 16, No. 8, August 2004

data, e.g., velocity and temperature at infinity and wall tem- 9.8e-06 .

perature(see Ref. 9 for other estimajedn the numerical \ ]

tests of this article, the bounds of the grid are chosen as \ . gél\élc I/
. C : \ ——- y

explained above, but _the step of the grid is computed differ- 0.66-06 \\‘ ES /

ently. In order to obtain very accurate comparisons betweer BGK v(n)=cn®

the models, the difference due to velocity discretization had

Numerical comparison of BGK models
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——- BGKv(m=c(1 +an2)
---- BGK v()=c(1+10n%)

to be eliminated. Consequently, the number of discrete ve<—
locities is taken so that an increase of this number by 10;
points in each direction does not affect the results to a mag- =
nitude greater than 1%.

9.46-06

9.26-06
IV. NUMERICAL RESULTS

~ -

The linearized implicit scheme of second order is used in
most of the subsequent computations, with a CFL number of
10000(i.e., At is 10000 times the explicit time stgprhe
criterion used to determine whether the flow has reachea
steady state is the reduction of the quadratic global residuatiG. 2. Couette flow. Density profiles far, =300 m/s and Kr=0.01199.
(1/AY) (2 ;|RHS;|%) ¥ by a factor of 16. In all results of
this section gas—surface interactions are Maxwellian reflec- ) o ) )
tions with total accommodation, i.e., incident molecules aresimple correction of the distribution function at each time

supposed to be re-emitted by the wall with a MaxwellianStep by a factor equal to the initial total mass divided by the
distribution p,M[1,u,,, T, ], Whereu, is the wall velocity current total mass. This is sufficient to recover the correct

andT,, is the wall temperature. The coefficieny, is deter- ~ Steady state conditions. ,

mined to ensure a zero mass flux normal to the wall. In our _ Figures 2—6 show profiles for the following models:
numerical scheme, the Maxwellian is naturally replaced byPSMC with variable hard sphere modete use the code

the discrete Maxwellian associated with andT,, . Numeri- and data provided with the floppy disk of Ref. 15, also avail-

cally, the boundary conditiongas—surface, symmetry axes, a0le on the web at http://www.gab.compuhe standard
etc) are treated by a classical ghost cell technique. BGK model, the ES-BGK model, and the velocity-dependent

collision frequency BGK model$( %), v,(7n), v3(n) in-

troduced in Sec. Il Efrom now on referred to as(C)-BGK

) ) ) modeld. The collision frequencyy,(7) is not considered,
We consider one-dimensional plane Couette flow andince its maximum value is so large that the matrix of the

use the same data as Bird in Ref. 15. The gas, argon, ligtear systeni19) is very ill-conditioned. Our linear solver is

between two plates maintained at a temperatur pf To  then not efficient enough to solve the linear system and our

=273 K. One plate is at rest while the other is moving with j,ethod breaks down.

the velocityu,,= 300 m/s in they direction, the distance be- Moreover, we do not show any results obtained with the

tween the plates is=1m. Initially the gas is alo, and its  gjiscontinuous modebs(5). While this model gives good
density ispy=9.28x 10" ° kg/m®, corresponding to a pres-

surepy=pg (k/m) Ty=0.528 Pa. The viscosity of the gas is
given by Eq. (13 with ue=2.117X10 ° kg/ms and o
=0.81. For this data Bird obtains the Knudsen number for
his variable hard sphere model as 0.00925, while one obtain
Kn=0.01199 from Eq(15).

For our calculations we use a grid of 200 cellsxn
direction and 4&46x40 discrete velocities with bounds
[ —980,980 X[ —952,1252X[ —980,980 (in m/s). With
this velocity grid, a further increase of the number of grid &
points does not improve the results by a magnitude larger
than 0.05%, except at the left boundary for the velocity that
cannot be improved by more than 1%. Consequently, this
discrete velocity grid can be considered as optimal.

For the given problem the total mass is physically con-
served in time. Consequently, a conservative numerical
method is essential in order to converge towards the correc
steady state. As explained in the previous section, the choict 57, . ‘ ‘ ‘
of an appropriate iterative solver is crucial. For instance, a 0
classical Gauss—Seidel method is nonconservative, and this
leads to a steady state which is correct for temperature anglg. 3. couette flow. Temperature profiles for,=300 m/s and Kn
velocities, but not for the density. In this paper, we use a=0.01199.

9e—06 L I I I
0

X (m)

A. Couette flow at Kn =0.01199

300 T

290

280

Downloaded 09 Sep 2004 to 128.174.23.7. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



2804 Phys. Fluids, Vol. 16, No. 8, August 2004 L. Mieussens and H. Struchtrup
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FIG. 6. Couette flow. Shear stress profiles faf=300 m/s and Kn
FIG. 4. Couette flow. Velocity profile fon,,=300 m/s and Kr0.01199. =0.01199.

results at low Knudsen numbers, tests that we ran at larger

Knudsen numbers revealed unphysical steps in the curv r while the smaller differences between DSMC, ES-BGK,

and we decided to not further study this particular model. qnd V(.c)'BGK’ are due to Knud;en r.‘””.‘ber effects and non-
For Knudsen numbers below 0.01 we are in the con- linearities. However, the velocr[y' is independent of the

tinuum regime where the flow is expected to be well de_ErandtI nu_mber, and all models give the expected S”a'ghF

scribed by the Navier—Stokes—Fourier equations. Here iIfne, see Fig. 4. For heat flux and shear stress curves, there is

must be noted that all BGK models considered. but not thé& significant statistical scatter in the DSMC results, and we
gn just note that the all models are quite cl@Sigs. 5 and

standard BGK, are constructed such that they have the sanj
viscosity and heat conductivity in the continuum regime.6' . . a5 .
Thus, in the simulation of this problem, we expect only small FoIonvmg Bird furthgr, we next consider the same case
differences between the improved BGK models, but marke(yv'th a h|ghe_r wall velocity of 1000 r_n/;. The results are
differences to the results from standard BGK. plotted in Figs. 7—-11. Now the statistical scatter of the
Indeed, for density and temperature profiles, Figs. 2 an('PSMC results is very small. Again we note that the §tandard
3, we observe that the results obtained with the standarﬁGK model does not agree with f[he DSMC calcula’qons d_ue
BGK model are quite different from the others. All modified to the wrong Prandtl number, while the results obtained with
BGK models are very close to each other, and very close t.ge ES-BGK andy(C)-BGK _models are very close to
the DSMC results. The strong differences between standa SMC. Indeed, no marked differences between the results

BGK and the improved ones are related to the Prandtl numc@n be observed. The DSMC results for heat flux and shear

stress are more affected by statistical noise, and the results

1 T ¥ T
- DSMC 1.66-05 ;
---- BGK
— ES . - DSMC
|| —-— BGK v(m)= c¢n ---- BGK
0% [l -—-BGK vmp= c(isa [n%) % 14005 4 —Es .| ]
vap= c(1+10| 7%) Dell ! —-— BGK v(n)= ¢n ) !
o \ ——-BGK v(m)= c(l+a ) !
- | ---- BGK v(m= c(1+10; n° ]
o ~12e05 A\ W= cfi+10; ) '
E 0 I .
= 3
= g
o o 1e05 | 1
0.5 1
8606 1
0 0.2 04 0.6 038 1 be-08 02 04 06 08 1
x (m) x (m)

FIG. 5. Couette flow. Heat flux profiles fou,=300m/s and Kn FIG. 7. Couette flow. Density profiles fou,=1000 m/s and Kn
=0.01199. =0.01199.
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600 T T T 20 T T T T
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---- BGKv(m)=c(1+10n%)
&
<400 s O b
- =
a
300 -10 i
e
200 L Il 1 1 _20 Il 1 1 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
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FIG. 8. Couette flow. Temperature profiles fap=1000 m/s and Kn  FIG. 10. Couette flow. Heat flux profiles fou,=1000 m/s and Kn
=0.01199. =0.01199.

from ES-BGK andv(C)-BGK models lie within the error to the variation in temperature, and the higher viscosity val-
margin. ues for the BGK model reflect the higher temperatures for
At this small Knudsen number, the BGK results shouldthat model. These, in fact, are observed since the standard
agree well with solutions of the Navier—Stokes—FourierBGK model underestimates the heat conductivitylgrger
equations, and this allows us to compute viscosity, heat corRPrandtl number so that the heat of friction is not removed
ductivity and the Prandtl number from our results. Viscosityas efficient as for a gas with proper Prandtl number. The low
and heat conductivity are computed from [E®).as the ratios value of heat conductivity can also be seen in Fig. 13, where
between viscous stress and velocity gradient, and heat fluall BGK models with correct Prandtl number give the same
and temperature gradient, respectively. The results for thealues. The computation of the Prandtl number from viscos-
various BGK models are shown in Figs. 12 and 13; theity and heat conductivity yields only marginal variation over
DSMC results exhibit too much noise, so that no meaningfuthe space variable, and the following mean values were
data are obtained for the velocity gradient. From the picturesound: BGK: Pr=1.02811, ES-BGK: Pr0.67641, BGK-
it becomes clear that all BGK models with correct Prandtlv,: Pr=0.67960, BGKw,: Pr=0.67538, BGKw;: Pr
number yield identical results, while the original BGK model =0.67535. The Prandtl number is sufficiently close to its
exhibits different results. The curves are best understood bgroper value of 2/3 for all but the standard BGK model. The
recalling Eq.(13), which gives the temperature dependencesmall deviations from the proper value are likely due to
of the viscosity. The spatial variation of the viscosity is dueKnudsen number effects, which also are reflected in the

1000 : | : 0.04 . . .
- DSMC
---- BGK 0.035 | 1
800  |—— ES . .
—-— BGK v{n)= ¢n )
——-BGK vm= c(i+a m") 7 e mmm————
---- BGK v(p)= ¢{1+10| 0% 0.03 |- -~
600 1 ' \
< § qus\-‘.-.‘.-.w.wvav AR St N N 0a
E \zE, 0.025
400 - ] ©
0.02
200 | ]
0.015 ]
0 I 1 1 1 0.01 1 1 1 L
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
x (m) x (m)

FIG. 9. Couette flow. Velocity profile foru,=1000 m/s and Kn FIG. 11. Couette flow. Shear stress profiles fgf=1000 m/s and Kn
=0.01199. =0.01199.
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30-05 | i \ BG /
9.50-07 %, —-— BGKvam=on® ;
\ —— - BGK v(n)=c(1+an’) !
P - \ -~ BGK v(m)=c(1+10%%) '/
) ---- BGK c !
e 2e-05 — ES . ® ;
2 —-— BGKv(mp=en” | =~
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9.1e-07 L . \ )
0 ‘ . . . 0 0.2 0.4 0.6 0.8 1
0 0.2 0.4 0.6 0.8 1 ‘)
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) . ) . FIG. 14. Couette flow. Density profiles for, =300 m/s and Kr0.1199.
FIG. 12. Viscosity for the various models computed from the numerical

solutions of the BGK models via the Navier—Stokes law=n1199, u,,
=1000 m/s.

locity u,,=300 m/s and in Figs. 20—25 for the wall velocity
boundary layers and jumps at the boundafiesorder to  Uw=1000 m/s. _
exclude Knudsen layer effects, we averaged only over the For Knudsen numbers between 10 and 0.01 we are in the

inner 80% of the curves transition regime, where Knudsen number effects are ex-
pected to be clearly visible. These include, but are not lim-
B. Couette flow at Kn =0.1199 ited to, jumps in temperature and velocity at the walls, and

, ) Knudsen boundary layers.

Next we consider slow and fast Couette flow with aden- £, the low-speed flow, Figs. 14—19, it appears that the
- 77 . L . 1

sity of 9.28<10" 7 kg/n®, corresponding to a Knudsen num- giandard BGK model gives marked deviations again, while

ber of Kn=0.1199, so that the Knudsen number is ten timéshe ES-BGK model gives results very close to the DSMC

larger as for the first test. For the calculation we use 5Q|cylations. Thew(C)-BGK models exhibit visible devia-
X56x50 discrete velocities with bound$—990,99Q  jons in the profiles for density, and temperature. In particu-
X[ —950,1267%[ 990,999 for the low-speed case, and |5¢ the temperature jumps at the boundaries are met best by

50X 59X 50 discrete velocities with bounds-1300,1300  he standard BGK, and the ES-BGK model. The same behav-
X[ —1040,2028x [ —1300,1300 for the high-speed case. jq is ghserved for velocity slip, see Fig. 17 for a close-up.
For the same reasons as above, these grids can be considered \ynhije all models agree on the heat fi(iig. 18, some

to be optimal. ’

o differences can be seen in the shear st(égs. 19, where
The results are plotted in Figs. 14—-19 for the wall ve-

0.025 T T T 300 T T T T
0.02 295
Zx 0.015 <
e v < 290
3 -
¥
0.01
285
0.005 : : : !
0 0 2 0 4 0.6 O 8 1 280 1 1 L 1
x (m) 0 0.2 0.4 0.6 0.8 1
x (m)
FIG. 13. Heat conductivity for the various models computed from the nu-
merical solutions of the BGK models via Fourier’'s law, at=K0.1199, FIG. 15. Couette flow. Temperature profiles fap=300 m/s and Kn
u,,=1000 m/s. =0.1199.

Downloaded 09 Sep 2004 to 128.174.23.7. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



Phys. Fluids, Vol. 16, No. 8, August 2004 Numerical comparison of BGK models 2807

300 T T T T 1 T T T T
- DSMC - DSMC
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—_— — ES
—-— BGKv=en* 05 | | —— BGKv(m)=cn®
——- BGK v(m)=c(1+an’) ' ——- BGK v(m=c(1+an?)
200 || ---- BGKv(m)=c(1+100%) . - --- BGK v(p=c(1+10%%)

g (Wm™)

100

FIG. 16. Couette flow. Velocity profile fan,, =300 m/s and Kr-0.1199. Elgllg% Couette flow. Heat flux profiles fon,=300 m/s and Kn

the two lasty(C)-BGK models give the best agreement with

DSMC. X[—1121,214%X[ —1463,1463 for the high-speed case.
For the high-speed flow, Figs. 20—25, we observe jusfAgain, these grids can be considered to be optimal. Note that

the same: The ES-BGK model yields results in close agreethe large number of points is necessary due to the rarefied

ment to the DSMC calculations, while th¢éC)-BGK mod-  regime: The collisions are not numerous enough to prevent

els show marked deviations, which are, in some césgs, the half-space Maxwellians at the walls from propagating

density of the same order as the deviations of the standarénto the domain. Consequently, the distribution has very

BGK model. strong gradients that must be captured by the grid. If this is
not taken into account, macroscopic quantities can be seri-
C. Couette flow at Kn =1.199 ously affected, see Ref. 18.

The results are plotted in Figs. 26—28 igy=300 m/s
hnd in Figs. 29-32 fou,,=1000 m/s. For both cases, we
present only the profiles for density, temperature, and veloc-
ity.

It is obvious that all models fail to match the DSMC
simulations at this large Knudsen number. Still the best
agreement can be found from the ES-BGK model, but also
here the deviations are obvious. The curves obtained with the

We now consider fast and slow Couette flow at an eve
higher Knudsen number of knl.199 (density of 9.28
X108 kg/m®), so that the Knudsen number is hundred
times larger as for the first test. Now, we usexd@x 50
discrete  velocities  with  bounds [—1009,1009
X[—928,125]1 X[ —1009,1009 for the low-speed case, and
60X 67X 60 discrete velocities with bounds-1463,1463
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0.00525 i
275 | .
0.0052
*.: | i~
g 2705 E  0.00515
= Z
S x
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266 | .
0.00505
261.5 ! . ‘ 0.005 . ' ‘ '
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FIG. 17. Couette flow. Velocity profile zoom fau,=300 m/s and Kn  FIG. 19. Couette flow. Shear stress profiles fgf=300 m/s and Kn
=0.1199. =0.1199.
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FIG. 20. Couette flow. Density profiles fou,=1000 m/s and Kn

=0.1199. FIG. 22. Couette flow. Velocity profile foru,=1000 m/s and Kn

=0.1199.

v(C)-BGK models are very flat, and the density profiles are ) ) )

even inverted for the fast flow case, see Figs. 29 and 30. number Kn as defined in ELS). However, their mean free
Also we observe that the standard BGK model can comPaths A and the corresponding Knudsen numbéns as

pete with the other models at this flow conditions. Indeedgiven in Eq.(16) differ. Thus the Knudsen numbén of the

the standard BGK matches the DSMC temperature and vestandard BGK and the ES-BGK model are by factors

locity curves best of all models. Xeek/ Xpsme=1.65 andxes.sek/ xpsmc=2.475 larger than
that of the DSMC simulations. Thus, it needs to be checked,
D. A remark on Knudsen numbers whether this difference accounts for some of the disagree-

We bell that the ab it b derstood ment observed in the curves.
¢ believe that Ihe above resulis can be understood as o ,q might also guess, that the marked deviation of the

follows: Under the given flow conditions the mean free pathv(C)-BGK models could be explained through the differ-
is of the order of the wall distance. Hence, Knudsen numbeg}nces in the Knudsen numbers as well. Indeed. the Knudsen
effects become important, if not dominant. Since the Knud- : '

: numberKn of these models is by a factor; / xpsmce=3.63
sen number of the standard BGK model agrees well W'Fh th?arger than the Knudsen number of the DSMC calculations.

?_arger Knudsen numbers correspond to flatter profiles, and

agreement between both should not be a surprise. A similgy . : ) .
argument holds for the ES-BGK model. Note that all model?hIS explains why thev(C)-BGK models give the flattest

were constructed such that they have the same Knudseonromes’ while BGK and ES-BGK quels give profiles that
are less flat than the DSMC calculations.

600 T T T T 950 .
- DSMC
---- BGK
— ES :
| | —-— BGKv(m)=en’ il
925 ——- BGK v(n)=c(1 +an2)
500 ---- BGK v(1)=c{1+100%) //
3 A
= £ 900
=
400
875
300 L L 1 L 850 =2 o L )
0 0.2 0.4 0.6 0.8 1 0.925 0.95 0.975 1
x (m) x (m)

FIG. 21. Couette flow. Temperature profiles fof,=1000 m/s and Kn FIG. 23. Couette flow. Velocity profile zoom far,=1000 m/s and Kn
=0.1199. =0.1199.
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FIG. 26. Couette flow. Density profiles for,=300 m/s and Kr1.199.

FIG. 24. Couette flow. Heat flux profiles fon,=21000 m/s and Kn
=0.1199.

Figures 33—-35 show the corresponding profiles for density
and temperature. Here, we see the interesting result that the
In order to learn more about the influence of the Knud-shape of the profiles is quite similar for all models, while the
sen number, we run a test where we used the same Knudsgimps in temperature and velocitglip) differ notably be-
numbersKn for all models in the low velocity case. For this, tween DSMC, standard BGK, ES-BGK, and th€C)-BGK

we chose the Knudsen numbers as models. This stands in contrast to the results shown in Figs.
1—  Yosuc 26-28, where all models exhibit jumps of similar size, but
Kn,=—Kn= KNpswmc, quite different shapes of the profiles.
Xa Xa These findings indicate that neither of the two Knudsen

where Kipsyc=1.199 is the Knudsen number for the DSMC humbers—Eqs(15) and (16)—is sufficient to characterize
calculations, and the values fg, can be found in the table the flow. Indeed, the mean free path of an individual particle
below Eq.(16). Thus, for this test, all models have the samedepends on the velocity, and it should not be surprising that
mean free path based Knudsen numier=0.925, corre- this dependence cannot be captured by one mean value
sponding to alone. As a direct conclusion follows that the simulation of
gas flows at high Knudsen number with a kinetic model, e.g.,
Kngex=0.72677, Kis.gox=0.48451, variants of the BGK model, will be in better agreement with

Kn, =0.330309, Kp =0.331995, Kp =0.331356 solutions of the Boltzmann equati(ﬁe.g., DSMQ when the
Vl . ) 2 - 1 2 . .
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FIG. 25. Couette flow. Shear stress profiles fgy=1000 m/s and Kn FIG. 27. Couette flow. Temperature profiles fay,=300 m/s and Kn
=0.1199. =1.199.
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. ) New scale for they(C)-BGK models.
FIG. 28. Couette flow. Velocity profiles far, =300 m/s and Kr1.199. W ©

collision frequency used in the kinetic models mimics the
velocity dependence of the actual collision frequency.

[ 000=podx= [ o p0xax
XL X

We use a grid of 300 cells ir-direction, while the num-
bers of discrete velocity as well as the velocity bounds vary
As a second test case we consider the shock structure fevith the chosen Mach number. In particular we chose:

a one-dimensional steady shock with upstream Mach nUMy.-h 1.4: 1< 10x 10 velocities boundg — 871,1457
bers 1.4, 3, and 8 in argon, another of the reference probler‘r5§[_ 116.0'116([)><[— 1160,1160 ’ '

in Ref. 15. The details of the shock structure depend stronglx/lach 3: 16x16x 16 velocities, bounds] —1571,2325
on the details of the microscopic interaction, which are re—><[_189'2 1892 [ - 1892,1892 ' '

flected in the velocity dependence of the collision frequencyMaCh 5. 24<24x24 velocities, bounds| —2463,3161
Because there is no fixed coordinate label for the shoclg<[_291'4 2014 [ — 2914,2912 ' '

profile inherent to the problem, it is possible that each COMMach 8 38<36x36 velocities, bounds[ — 3844,5646
putation yields a different shock position. In order to make a><[—4531,4531><[—4531,4531,

fair comparison, we therefore choose a new coordinate label
x" such thatx’ =0 corresponds to the “equal area point* )
for density. It is defined by the following relation between " Sec. IVA.
total mass and densitigs ,pr at left and right boundaries

X ,Xgr Of the computational domain

E. Stationary shock wave

These velocity grids are optimal in the sense explained
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FIG. 31. Couette flow. Temperature profiles fof,=1000 m/s and Kn

FIG. 29. Couette flow. Density profiles for,=1000 m/s and Kr 1.199. =1.199.
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>
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X (m) FIG. 34. Couette flow. Temperature profiles tgy=300 m/s and mean free

. ) path based Knudsen numhé€n=0.925.
FIG. 32. Couette flow. Velocity profiles far,=1000 m/s and Kr 1.199.

The following figures show, for the various models and
Mach numbers, the profiles of relative dengityand relative 250 ' | ' ' v 7

temperature‘T , Which are defined as | [+ psmc
= BGK
— OT-T — Es
b= PP 4 L 200 |-~ BGK v(my-on’® .
PR™ PL Tr—TL -- BGK v(n)=c(1+an’)
While all models give results of the same order of magni- POk Wnkeid=1in ) |

tude, the details of the shock profiles, as the Mach numberv‘g 150
increases, become very different in detail. These differences =
are only small at Mach number Mdl.4 (Figs. 36 and 3y
and one can say that all models agree reasonably well with
the DSMC calculations.

As the Mach number increases to Ma (Figs. 38 and s
39), and Ma=8 (Figs. 40 and 4} the different kinetic mod- 7
els behave quite differently. These differences can be seenir 50 — ra—
both, density and temperature profiles, but are more markec xm ’
in the temperature profile. Note the small slope of BGK and

FIG. 35. Couette flow. Velocity profiles far, =300 m/s and f th
ES-BGK model to the left, where the(C)-BGK models OUEtie Tlow. YElocTy profiies Tk VS and mean free pa
. . based Knudsen numb&mnr=0.925.
display almost a kink.
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FIG. 33. Couette flow. Density profiles fag,=300 m/s and mean free path
based Knudsen numb&mn=0.925. FIG. 36. Density profiles for shock at Mach number #h4.
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FIG. 37. Temperature profiles for shock at Mach number-Nai. FIG. 39. Temperature profiles for shock at Mach number\3da

] ] . While none of the models can be considered best, one
We believe that these differences can be well explameqinight argue that the ES-BGK agrees best in some smaller

with the different velocity dependence of the collision fre- features, including an overshoot in the temperature curve,

quencyv. For the standard BGK, and the ES-BGK models,iy4t is also observed in the DSMC curve.

the collision frequency is a constant, while the Vii&ard

spherg model used in the DSMC simulations assumes a ve-

locity dependent collision frequendgee Fig. 1, where fast V. CONCLUSIONS

particles co||_|de more often. _The(C)—BGK mode_ls also . From our results on Couette flow and shock structures,

have avelocny_dependent collision frgq_uency, which conmdwe can draw the following conclusions:

erably overestimates the actual collision frequency of the

hard spheres, as discussed in Sec. Il E. (@ In the continuum regime (K=0.01) all BGK models
Particles flying from the left into the shock are faster at with correct viscosity and heat conductivity, that is

higher Mach numbers, and the more collisions they have, the v(C)-BGK and ES-BGK models, give identical results

sooner they are deaccelerated. Thus, a theory with a velocity  that stand in good agreement with DSMC simulations

dependent collision frequency will lead to a steeper profile and the Navier—Stokes—Fourier equations. Here, the
on the left, since fast particles travelling into the shock col- v(C)-BGK model is in disadvantage to the ES-BGK
lide more often than the average. model, since it requires a smaller time step. This can be
This matches well with the results depicted in Figs. 36— seen from Eq(18) which relates the time step to the
41: Profiles for the models with constant collision frequency maximum value of the collision frequency. The maxi-
(BGK, ES-BGK), are flattest, while those for the models mum value v(C,,,) of the »(C)-BGK models are
with the strongest dependence on velocigy¢)-BGK mod- larger than the constant collision frequency of the ES-

els) are steepest. The steepness of the DSMC curves, which  BGK model, so that the latter allows larger time steps,
are considered as our benchmark, lies in the middle between  and therefore faster numerical calculations. This is not

those of the BGK, and(C)-BGK models. a crucial issue for steady computations if implicit
e DSMC « DSMC
= - BGK — - BGK
— ES — ES
== BGK v(n):cna == BGK v(r]):cna
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FIG. 38. Density profiles for shock at Mach number #¥2 FIG. 40. Density profiles for shock at Mach number #¥&
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DSMC

BGK

— ES

--- BGK v(m)=cn’

0,75 | - BGK v(m)=c(1+an’)

L L N S B N B N B L L B B S B B

T T T
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frequency in av(C)-ES-BGK model might give the best
results. In such a model, one could use the physical collision
frequency, e.g., Eq(11), so that the gas behavior is better
described on the microscopic level. ThgC)-ES-BGK

normalized value

(b)

(©

0,25

BGK v(m)=c(1+10n%) model will be considered in a future paper.

0,5
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