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While the standard Bhatnagar–Gross–Krook~BGK! model leads to the wrong Prandtl number, the
BGK model with velocity dependent collision frequency as well as the ellipsoidal statistical BGK
~ES-BGK! model can be adjusted to give its proper value of 2/3. In this paper, the BGK model with
velocity dependent collision frequency is considered in some detail. The corresponding thermal
conductivity and viscosity are computed from the Chapman–Enskog method, and several
velocity-dependent collision frequencies are introduced which all give the proper Prandtl number.
The models are tested for Couette flow, and the results are compared to solutions obtained with the
ES-BGK model, and the direct simulation Monte Carlo method. The simulations rely on a numerical
scheme that ensures positivity of solutions, conservation of moments, and dissipation of entropy.
The advantages and disadvantages of the various BGK models are discussed. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1758217#

I. INTRODUCTION

Because of its simplicity compared to the Boltzmann
equation the Bhatnagar–Gross–Krook~BGK! equation is
widely used in the kinetic theory of gases.1,2 While the BGK
equation gives qualitatively good results, it fails when one is
interested in quantitatively correct results. This fact mani-
fests itself most prominently in the computation of the
Prandtl number, i.e., the dimensionless ratio of viscosity and
thermal conductivity. While measurements and the theory of
the full Boltzmann equation give Pr. 2

3, one obtains Pr51
from the standard BGK model.3

There are two main approaches to modify the BGK
model in order to obtain the proper Prandtl number: the
Gaussian BGK model, or ellipsoidal statistical model~ES-
BGK model!,4,5 and the BGK model with velocity dependent
collision frequency.6,7

In all three approaches, standard BGK, ES-BGK,
and BGK with velocity-dependent collision frequency, the
Boltzmann collision term is replaced by a relaxation type
term of the form

SBGK52n~ f 2 f E!,

wheren is the collision frequency,f is the actual distribution
function of the microscopic velocities of the gas, andf E is a
suitable equilibrium phase density. In standard and ES-BGK
models the collision frequency is independent of the micro-
scopic velocity, and its value is obtained from fitting to vis-
cosity data. These two approaches differ in the equilibrium

function f E : in the standard BGK modelf E is the local Max-
well distribution f M , i.e., an isotropic Gaussian, while in the
ES-BGK model f E is a local anisotropic Gaussian. In the
BGK model with velocity-dependent collision frequency,n is
a function of the microscopic velocityC of the particles and
f E is a local isotropic Gaussian, albeit not the local Maxwell-
ian.

The BGK model with velocity-dependent collision fre-
quency is briefly discussed in the book of Cercignani,3 and
Bouchut and Perthame discussed it thoroughly from a math-
ematical viewpoint.6 In both references, however, the form
of the collision frequency was not discussed. To our best
knowledge, the first attempt to consider an explicit expres-
sion for n(C) can be found in a paper by Struchtrup7 who
considered the simplest possible ansatz, namelyn(C);Cn.
The proper Prandtl number is obtained forn.1.79. In the
present paper, we present some alternative functions for the
collision frequency, which lead to the proper Prandtl number,
but, however, do not agree with realistic collision frequency
of particles. We also show that the combination of BGK
model with realistic collision frequencies cannot give the
proper value of Pr.

The BGK equations for the different models are solved
for Couette flow at various Knudsen numbers, and for shock
waves. The results will be compared with solutions obtained
from the standard and the ES-BGK models, and with direct
simulation Monte Carlo computations~DSMC!.

The numerical method used for solving the various BGK
equations considered here is the method of Mieussens.8–10

The great advantage of this method compared to others is
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that it guarantees the conservation of mass, momentum, and
energy.

The main goal of this paper is to study whether BGK
models can be used to model flows over a wider range of
Knudsen numbers. The BGK models with proper Prandtl
number are constructed such that they give accurate results
for small Knudsen numbers, that is in the hydrodynamic re-
gime, where the laws of Navier–Stokes and Fourier are ap-
plicable. It is not cleara priori, whether the BGK models can
give accurate results in the transition regime, where the
Navier–Stokes–Fourier theory fails. The results presented
below indicate that BGK models can give qualitatively good
results, but have some problems to quantitatively describe
flows at larger Knudsen numbers, where the details of the
collision frequency become important. Of course, models
with proper Prandtl number can cover a wider range of
Knudsen numbers than the standard BGK model, and must
be preferred over the latter.

However, only further improvement of the models, that
would allow the use of the real collision frequencies, can
render the BGK models into a tool that gives accurate results
over a wide range of Knudsen numbers. Here it must be
mentioned that the use of BGK models allows to obtain de-
terministic results, rather than statistical results that suffer
from noise as in the DSMC method. Also, numerical solu-
tions of BGK models can be obtained faster than solutions
for the full Boltzmann equation, which is nonlinear. Note
also that the numerical scheme of this paper guarantees con-
servation of mass, momentum and energy irrespective of the
numerical accuracy.

The remainder of the paper is organized as follows: In
Sec. II we introduce various BGK models. In particular, we
show that the BGK models with velocity dependent collision
frequency have the same characteristics as the full Boltz-
mann collision term, we discuss how to obtain viscosity and
heat conductivity by means of the Chapman–Enskog
method, and we introduce several models for the collision
frequency. In Sec. III we discuss details of the numerical
method, and in Sec. IV we give and discuss numerical results
for Couette flow at Knudsen numbers between 0.012 and 1.2,
and for normal shocks with upstream Mach numbers be-
tween 1.4 and 8. The paper ends with our conclusions.

II. BGK MODELS

A. Phase density and Boltzmann equation

The state of a monatomic ideal gas is completely de-
scribed when the phase densityf (xi ,t,ci) is known3 which is
defined such thatf dc gives the number density of atoms with
velocity in (ci ,ci1dci) at placexi and timet.

The macroscopic quantities density%, velocity v i , den-
sity of internal energy%«, pressure tensorp^ i j & ,11 and heat
flux vectorqi of the gas are given by moments of the phase
density,

%5mE f dc, %v i5mE ci f dc,

%«5
3

2
%

k

m
T5

m

2 E C2f dc,

p^ i j &5mE C^ iCj & f dc, qi5
m

2 E C2Ci f dc, ~1!

wherem is the mass of one particle,k is Boltzmann’s con-
stant, andCi5ci2v i is the peculiar velocity.T is the gas
temperature, which is defined by Eq. (1)3 . The entropy of
the gas is given by

%s52kE f ln f dc.

The phase densityf (xi ,t,ci) is governed by the Boltzmann
equation,3,12

] f

]t
1ci

] f

]xi
5S, ~2!

whereS is the collision term which has the following four
properties:3

~i! It guarantees the conservation of mass, momentum
and energy, which may be written as

E mSdc50, E mciSdc50, E m

2
c2Sdc50. ~3!

~ii ! The production of entropy is always positive~H-
theorem!,

2kE ln fSdc>0.

~iii ! Due to the specific form ofS the phase density in
equilibrium is a Maxwellian, i.e.,

S50⇒ f 5 f M5
%

m
A m

2pkT
3 exp2

m

2kT
C2.

~iv! The Prandtl number is close to23 for all physically
meaningful collision factorss, i.e.,

Pr5
5

2

k

m

m

k
.

2

3
,

wherem andk denote viscosity and thermal conduc-
tivity, respectively.

B. The BGK equation

Because of its complex nonlinearity, the Boltzmann col-
lision term S is difficult to handle. Therefore one is inter-
ested in model equations which are easier to handle than the
Boltzmann equation but which should also have the proper-
ties ~i!–~iv!. The most used model is the BGK equation, see
Refs. 13 and 7 for motivation. The BGK collision term reads

Sg52n~ f 2 f g!, ~4!

where f g is a Gaussian

f g5a exp~2GC21g iCi !, ~5!

andn denotes the collision frequency which is given by
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n~xi ,t,C!5E f g
1sg sinudud«dc1 . ~6!

Here, g5uc2c1u is the relative velocity of colliding par-
ticles, s is the scattering factor,« and u are the angles of
collision. The collision frequency is a function of the micro-
scopic velocityC ~throughs andg) which is evaluated for
the case of hard spheres and equilibrium in Ref. 14, we shall
discuss it in Sec. II E below.

The coefficientsa,G,g i for the distribution~5! follow
from the conservation conditions~3!, whereS must be re-
placed bySg . Note, thatf g is only a Maxwellian ifn does
not depend on the peculiar velocityCi .

It should be emphasized that—because of the conditions
~3!—the BGK equation, i.e., the Boltzmann equation with
the collision term~4!, is a nonlinear integrodifferential equa-
tion, just like the Boltzmann equation. So one will not expect
analytical solutions. But as we will show, the standard pro-
cedures of the Chapman–Enskog expansion are much easier
to perform for the BGK equation than for the Boltzmann
equation. It is straightforward to show that the BGK equation
shares the properties~i!, ~ii !, ~iii ! with the Boltzmann
equation.3,7 The calculation of the Prandtl number@property
~iv!# will be performed in the next sections of the paper. But
one may conjecture easily that the extension of the ordinary
BGK model to the case wheren is a function ofC offers an
additional degree of freedom which may be used to adjust
both, viscosity and thermal conductivity, to their measured
values.

C. ES-BGK model

In order to obtain the proper Prandtl number, Holway
suggested the so-called ellipsoidal statistical BGK model
~ES-BGK model!, where the Maxwellian of the standard
BGK model is replaced by an anisotropic Gaussian4 so that
the collision term reads

S52n~ f 2 f G!,

where f G denotes the anisotropic Gaussian

f G5
r

m

1

Adet@2pl i j #
expF2

1

2
l i j

21CiCj G ,
and the matrixl i j is given by

l i j 5RTd i j 1S 12
1

PrD p^ i j &

r
;

l i j
21 denotes the inverse matrix. While it is relatively

straightforward to show that this model fulfills the conditions
~i!, ~iii !, and ~iv! of Sec. II A, the proof of condition~ii !
~H-theorem!, is nontrivial, and was only recently presented
by Andrieset al.5 The ES-BGK model assumes that the col-
lision frequency is independent of the microscopic velocity.

D. Chapman–Enskog method

The BGK equation follows from~2! after replacement of
S by Sg as

] f

]t
1ci

] f

]xi
52n~ f 2 f g!. ~7!

We proceed by calculating the phase densityf from Eq. ~7!
by means of the Chapman–Enskog method.3 The first order
Chapman–Enskog expansion relies on the assumption
that the phase density is close to a Maxwellian, i.e.,
f . f M(11f), wheref!1. In this case, the equilibrium dis-
tribution f g will be close to equilibrium as well, so that
f g5 f M(11fg) with fg!1. In fact, we can write

f g5
%

m
A m

2pkT
3 ~12â!expF2S m

2kT
2Ĝ DC21g iCi G

. f M@12â1ĜC21g iCi #,

where the coefficientsâ, g i , Ĝ measure the deviation from
the Maxwellian and are assumed to be small.

We insert the Maxwell phase density on the left hand
side of~7! and eliminate all time derivatives by means of the
Euler equations for monatomic gases,

%̇1%
]vk

]xk
50, v̇ i1

1

%

]%
k

m
T

]xi
50, S T3/2

% D d

50.

After some rearrangement of the resulting equation we find
for the phase density

f 5 f g2
1

n
f MH m

kT

]v ^ i

]xj &
C^ iCj &1

1

T

]T

]xi
S m

2kT
C22

5

2DCi J .

~8!

It is remarkable that this approximate solution fulfills the
conservation conditions~3! for anydistribution f g . Thus, the

coefficientsâ, g i , Ĝ cannot be determined from these con-
ditions. However, the phase density~8! must reproduce the
first moments (1)1 – 3 and it follows thatâ5Ĝ50 and

g i5
8

3Ap

1

T

]T

]xi
E h4~h22 5

2!

n~h!
e2h2

dh,

whereh5A(m/2kT)C. Pressure deviatorp^ i j & and heat flux
vectorqi follow from evaluating their definitions~1! with the
Chapman–Enskog phase density~8!. This yields the laws of
Navier–Stokes and Fourier with explicit expressions for vis-
cosity m and thermal conductivityk,

~9!

As expected, the Prandtl number depends on the collision
frequency
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Pr5
5

2

k

m

m

k
5

E h6

n~h!
e2h2

dh

E h4~h22 5
2!

2

n~h!
e2h2

dh

. ~10!

E. Collision frequencies

Now we discuss the collision frequency as a function of
the microscopic velocity. Due to the severe simplifications in
the derivation of the BGK equation, we cannot expect that
the collision frequency~6! will give us the proper Prandtl
number. While we shall adopt ad hoc models for the collision
frequency later, it is instructive to study the original collision
frequency~6! first. We consider close to equilibrium situa-
tions, where we can replacef g

1 by the Maxwellianf M so that

n~C!5E f M
1 sg sinudud«dc1 .

For power interaction potentials between particles
f;r 2(n21), one can show12 that

sg sinudu5g~n25!/~n21!s0ds0 ,

where s05s0(u) and n gives the order of the potential.n
55 represents the so-called Maxwell molecules whilen
→` describes hard spheres.

The above integral can be reduced to

nn~h!52pn0

n21

3n27 Ej50

` je2j2

h
@~j1h!~3n27!/~n21!

2uj2hu~3n27!/~n21!#dj, ~11!

where

n05
%

mp3/2A2kT

m
~n25!/~n21! E s0ds0d«;

j i5Ci
1/A2kT/m, h i5Ci /A2kT/m are dimensionless ve-

locities. For Maxwell molecules (n55) the collision fre-
quency is independent of the particle velocity,

nMaxwell54pn0E
j50

`

e2j2
j2dj5p3/2n0 ,

and for hard spheres (n5`) one finds14

nHS~C!5pn0H e2h2
1

Ap

2 S 1

h
12h DerfhJ .

For other values ofn, the collision frequency must be inte-
grated numerically, and Fig. 1 shows the normalized dimen-
sionless collision frequency as function of the dimensionless
velocity h5C/A2kT/m for a variety of values ofn.

It can be seen thatn is a monotonous increasing function
of speed. This indeed meets the expectations: fast particles
should collide more often and should therefore have a larger
collision frequency. The constant collision frequency of
Maxwell molecules corresponds to the standard BGK model
with constantn.

The Prandtl number~10! for various power potentials
can be obtained from further analytical or numerical integra-
tion. For Maxwell molecules~constantn! we find the usual
result of the BGK model PrMaxwell51. For increasing values
of n, the Prandtl number increases slightly to a maximum of
1.01615 atn.13 and is then decreasing to 1.0126 for hard
spheres. Since the proper Prandtl number is 2/3, it follows
that the collision frequencies for power potentials give the
wrong Prandtl number and therefore do not improve the
BGK model.

There is an infinite number of possible functionsn~h!
which give the proper Prandtl number. Since the true colli-
sion frequency is an increasing function inh, we consider
only increasing functions. We introduce the following nota-
tion:

n~h!5

%
k

m
T

m
n̂~h! with

16

15Ap
E h6

n̂~h!
e2h2

dh51,

~12!

see the definition of viscosity~9!. In ~7! we presented the
simple power law

n̂1~h!50.431587h1.791288

which yields Pr52/3. Whilen1(h) is the flattest polynomial
we could find, it is unphysical as it states that a particle at
rest (h50) would not undergo collisions and stay at rest
forever. However, these particles will collide with particles
of nonzero velocity, and thereforen(h50) should be non-
zero. Three simple functions which fulfill this requirement
and give Pr52/3 are

n̂2~h!50.0268351~1114.2724h2!,

n̂3~h!50.0365643~1110h2.081754!,

n̂4~h!50.1503991~110.92897h4!.

A simple discontinuous function which gives the proper
Prandtl number is

n̂5~h!5 H 0.2590894, h<1.2,
0.8288236h, h.1.2.

FIG. 1. The dimensionless and normalized collision frequencyn as a func-
tion of dimensionless microscopic velocityh for a variety of power poten-
tials with exponentn.
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For hard sphere molecules, we findn̂HS(0)50.557608 for
molecules at rest andn̂HS(h@1)50.4941673h for fast par-
ticles. Thus, in comparison to hard sphere molecules, all of
our models underestimate the collision frequency for slower
particles (h&1.5) and overestimate that of faster particles
(h*1.5).

F. Viscosity, mean free path, and Knudsen number

As can be seen from Eq.~12!, data for the viscositym
are required to completely define the collision frequencyn.
For ideal gases the viscosity is a function of temperature
alone, and for our calculation we assume that

m~T!5m0S T

T0
D v

, ~13!

wherem0 is the viscosity at the reference temperatureT0 and
v is a positive number of order unity. For details, see the
book by Bird,15 where values form0 andv are tabulated.

The mean free path of a particle with velocityc is given
by

l~c!5
c

n~c!

and accordingly the mean free path of all particles is

l̄5
*l~c! f dc

* f dc
.

Evaluating in equilibrium wheref is a Maxwellian, we find

l̄5
m

p
A2kT

m

4

Ap
E h3

n̂~h!
e2h2

dh. ~14!

The Knudsen number Kn is defined as the ratio between the
mean free pathl̄ of a particle, and a characteristic macro-
scopic lengthL of the problem under consideration, that is
Kn5l̄/L. With the mean free path as above, the Knudsen
number depends on microscopic details of the particle inter-
action, in particular the collision frequency. However, it is
customary in kinetic theory to define a Knudsen number that
depends only on macroscopic parameters by3

Kn5
m

pL
Ap

2

kT

m
. ~15!

This definition allows to compare results obtained with dif-
ferent microscopic models~in our case different functions
n̂(h)), but with the same macroscopic properties,p, T, m.

From the definition of the mean free path~14! follows
the Knudsen numberKn as

Kn5
l̄

L
5x Kn, where x5

8

p E h3

n̂~h!
e2h2

dh. ~16!

The values of the numberx for the different models are
given below:

nDSMC nBGK nES-BGK n1 n2 n3 n4 n5

xa 0.77177 1.27324 1.90986 2.80147 2.78725 2.79262 3.00385 2.64

The value forxDSMC was obtained from Ref. 15—the Knud-
sen number given there corresponds to ourKn. The value for
the ES-BGK model follows since in the ES-BGK model vis-
cosity and constant collision frequency are related asn
5 2

3(p/m).
It follows that gases with the same macroscopic proper-

ties, and therefore the same Knudsen number Kn, have dif-
ferent values of the mean free path based Knudsen number
Kn. From the table we see that that the Knudsen numbersKn
for the ad hoc models n1 to n5 are more than twice the
Knudsen numberKn for DSMC calculations.

III. NUMERICAL METHOD

Many works have been devoted to numerical solutions
of BGK models~e.g., see Ref. 16, and references therein!.
However, in our new BGK models, the collision frequency
can reach very large values and this can lead to numerical
difficulties ~lack of robustness, slow convergence!. We be-
lieve that an alternative method proposed by one of the au-
thors in Ref. 10 is better adapted to such problems. We
briefly recall the main ideas of this method in this section.

A. Explicit scheme

For the sake of simplicity, our numerical method is pre-
sented in one spatial dimension, but three dimensions in mi-
croscopic velocity; see Refs. 9 and 10 for a complete de-
scription.

The equation to be approximated is

] f

]t
1cx

] f

]x
52n~ f 2 f g!, 0<x<L. ~17!

The space variablex is discretized on a uniform grid
defined by nodesxi5 iDx with x050 andxI5L. The veloc-
ity cx is discretized by nodescx

( j 1)
5cx,min1j1Dcx , with cx

(0)

5cx,min and cx
(J1)

5cx,max. The velocitiescy and cz are dis-

cretized accordingly; a discrete velocity (cx
( j 1) ,cy

( j 2) ,cz
( j 3)) of

the grid will be denoted bycj , wherej 5( j 1 , j 2 , j 3). Finally,
we also choose a time discretization withtn5nDt.

Equation~17! is classically approximated by a finite vol-
ume scheme,
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f i , j
n115 f i , j

n 2
Dt

Dx
~F i 1 ~1/2! , j

n 2F i 2 ~1/2! , j
n !

2Dtn i , j
n ~ f i , j

n 2 f g,i , j
n !,

where the above quantities are defined as follows:

~1! f i , j
n is an approximation off (xi ,tn ,cj ).

~2! Numerical fluxes are defined by

Fi 1 ~1/2! , j
n 5

1

2
~cx

( j 1)
~ f i 11,j

n 1 f i , j
n !

2ucx
( j 1)u~D f i 1 ~1/2! , j

n 2F i 1 ~1/2! , j
n !!,

with the notationD f i 1(1/2),j
n 5 f i 11,j

n 2 f i , j
n . The flux lim-

iter functionF i 1(1/2),j
n allows us to obtain a second order

scheme, e.g.,F i 1(1/2),j
n 50 for first order, andF i 1(1/2),j

n

5minmod(D f i 2(1/2),j
n ,D f i 1(1/2),j

n ,D f i 1(3/2),j
n ) for second

order.
~3! The collision frequency is defined by@see Eq.~12!#

ni,j
n 5

ri
n k

m
Ti

n

m~Ti
n!

n̂~hi,j
n !, with

h i , j
n 5

~~cx
( j 1)

2v i
n!21~cy

( j 2)
!21~cz

( j 3)
!2!1/2

A2
k

m
Ti

n

.

~4! Macroscopic quantities are defined as in Eq.~1! where
now continuous integrals are replaced by discrete sums
on the velocity grid

Sri
n ,ri

nvi
n ,

3

2
ri

n k

m
Ti

nD
5m (

j5(0,0,0)

(J1 ,J2 ,J3)

~1,cx
( j 1) ,C( j 1 , j 2 , j 3)

2 ! f i , j
n Dc,

with C( j 1 , j 2 , j 3)
2 5((cx

( j 1)
2v i

n)21(cy
( j 2))21(cz

( j 3))2) and

Dc5DcxDcyDcz .
~5! The approximation off g(xi ,tn ,cj ) is defined by

fg,i,j
n 5ai

n exp@2Gi
nC(j1,j2,j3)

2 1gi
n~cx

(j1)
2vi

n!#,

where the three coefficientsai ,G i
n ,g i

n are solutions of
the discrete version of Eq.~3!,

(
j

ni,j
n m~fi,j

n 2fg,i,j
n !Dc50,

(
j

n i , j
n mcx

( j 1)
~ f i , j

n 2 f g,i , j
n !Dc50,

(
j

n i , j
n m

2
cj

2~ f i , j
n 2 f g,i , j

n !Dc50.

These equations are solved by a Newton algorithm. This
approximation has already been used by Frezzotti in Ref.
17, and has been mathematically investigated by one of
the authors in Ref. 10.

Owing to this last approximation, our scheme is per-
fectly conservative for density, momentum, and total energy.

Moreover, the total~physical! entropy is increasing. The
positivity of the phase density is preserved if at each iteration
the time step follows the condition

DtS max
i , j

n i , j
n 1max

j

ucx
( j 1)u

Dx D ,1. ~18!

B. Implicit scheme

The condition~18! poses a problem for computing dense
or rapid regimes with the above numerical scheme, since for
theseDt must be small and the convergence is very slow.

A classical way to overcome this difficulty is to use a
linearized implicit scheme that can be viewed as relaxed-
Newton algorithm for the steady equation,

f i , j
n111

Dt

Dx
~Fi 1 ~1/2! , j

n11 2Fi 2 ~1/2! , j
n11 !

1Dt n i , j
n ~ f i , j

n112 f g,i , j
n11!5 f i , j

n .

Sincef g,i , j
n11 is a nonlinear function off i , j

n11 , it is linearized as
follows:

f g,i , j
n11' f g,i , j

n 1@D i
n~ f i

n112 f i
n!# j ,

whereD i
n is the Jacobian of the mappingg° f g@g# evalu-

ated at f i
n . For the second order scheme, the flux limiters

~nondifferentiable! are kept explicit. The followingd matrix-
form of the scheme is more adapted to computations:

S I

Dt
1T1RnD d f n5RHSn, ~19!

whered f n5 f n112 f n, I is the unit matrix,T is a matrix such
that (T fn) i , j5(1/Dx) (Fi 1(1/2),j

n 2Fi 2(1/2),j
n ) with only the

first order fluxes,Rn is defined such that (Rnf n) i , j5n i , j
n ( f i , j

n

2@D i
nf i

n# j ), and

RHSi , j
n 52

1

Dx
~Fi 1 ~1/2! , j

n 2Fi 2 ~1/2! , j
n !

2n i , j
n ~ f i , j

n 2 f g,i , j
n !, ~20!

which contains the limiters for the second order scheme.
The scheme now reads as a linear system to be solved at

each iteration. This can be done efficiently, and this method
has been proved to be very fast for computing steady flows.

A similar scheme has been proposed by Frezzotti,17 but
the main difference is that in his method, the equilibrium
distribution is not implicit. It has been shown in Ref. 10 that
the convergence of such a scheme is slower than ours.

C. Remark on the velocity grid

The velocity grid is appropriately chosen for each case.
Since the same grid is used in each space point, it should be
large and precise enough to correctly describe the flow~i.e.,
the distributions everywhere in the space domain!. Then the
bounds are given by a combination between the maximum
macroscopic velocity and temperature of the flow (maxx(vx

1aA(k/m) T), where we takea54). The step of the grid
is given by the smallest temperature~i.e., Dc
5minxA(k/m) T). These quantities can be estimated by the
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data, e.g., velocity and temperature at infinity and wall tem-
perature~see Ref. 9 for other estimates!. In the numerical
tests of this article, the bounds of the grid are chosen as
explained above, but the step of the grid is computed differ-
ently. In order to obtain very accurate comparisons between
the models, the difference due to velocity discretization had
to be eliminated. Consequently, the number of discrete ve-
locities is taken so that an increase of this number by 10
points in each direction does not affect the results to a mag-
nitude greater than 1%.

IV. NUMERICAL RESULTS

The linearized implicit scheme of second order is used in
most of the subsequent computations, with a CFL number of
10 000~i.e., Dt is 10 000 times the explicit time step!. The
criterion used to determine whether the flow has reached
steady state is the reduction of the quadratic global residual
(1/Dt) (( i , j uRHSi , j

n u2)(1/2) by a factor of 105. In all results of
this section gas–surface interactions are Maxwellian reflec-
tions with total accommodation, i.e., incident molecules are
supposed to be re-emitted by the wall with a Maxwellian
distribution rwM @1,uw ,Tw#, whereuw is the wall velocity,
andTw is the wall temperature. The coefficientrw is deter-
mined to ensure a zero mass flux normal to the wall. In our
numerical scheme, the Maxwellian is naturally replaced by
the discrete Maxwellian associated withuw andTw . Numeri-
cally, the boundary conditions~gas–surface, symmetry axes,
etc.! are treated by a classical ghost cell technique.

A. Couette flow at Kn Ä0.01199

We consider one-dimensional plane Couette flow and
use the same data as Bird in Ref. 15. The gas, argon, lies
between two plates maintained at a temperature ofTw5T0

5273 K. One plate is at rest while the other is moving with
the velocityuw5300 m/s in they direction, the distance be-
tween the plates isL51 m. Initially the gas is atT0 , and its
density isr059.2831026 kg/m3, corresponding to a pres-
surep05r0 (k/m) T050.528 Pa. The viscosity of the gas is
given by Eq. ~13! with m052.11731025 kg/ms and v
50.81. For this data Bird obtains the Knudsen number for
his variable hard sphere model as 0.00925, while one obtains
Kn50.01199 from Eq.~15!.

For our calculations we use a grid of 200 cells inx
direction and 40346340 discrete velocities with bounds
@2980,980#3@2952,1252#3@2980,980# ~in m/s!. With
this velocity grid, a further increase of the number of grid
points does not improve the results by a magnitude larger
than 0.05%, except at the left boundary for the velocity that
cannot be improved by more than 1%. Consequently, this
discrete velocity grid can be considered as optimal.

For the given problem the total mass is physically con-
served in time. Consequently, a conservative numerical
method is essential in order to converge towards the correct
steady state. As explained in the previous section, the choice
of an appropriate iterative solver is crucial. For instance, a
classical Gauss–Seidel method is nonconservative, and this
leads to a steady state which is correct for temperature and
velocities, but not for the density. In this paper, we use a

simple correction of the distribution function at each time
step by a factor equal to the initial total mass divided by the
current total mass. This is sufficient to recover the correct
steady state conditions.

Figures 2–6 show profiles for the following models:
DSMC with variable hard sphere model~we use the code
and data provided with the floppy disk of Ref. 15, also avail-
able on the web at http://www.gab.com.au/!, the standard
BGK model, the ES-BGK model, and the velocity-dependent
collision frequency BGK modelsn̂1(h), n̂2(h), n̂3(h) in-
troduced in Sec. II E@from now on referred to asn(C)-BGK
models#. The collision frequencyn̂4(h) is not considered,
since its maximum value is so large that the matrix of the
linear system~19! is very ill-conditioned. Our linear solver is
then not efficient enough to solve the linear system and our
method breaks down.

Moreover, we do not show any results obtained with the
discontinuous modeln̂5(h). While this model gives good

FIG. 2. Couette flow. Density profiles foruw5300 m/s and Kn50.01199.

FIG. 3. Couette flow. Temperature profiles foruw5300 m/s and Kn
50.01199.
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results at low Knudsen numbers, tests that we ran at larger
Knudsen numbers revealed unphysical steps in the curves
and we decided to not further study this particular model.

For Knudsen numbers below;0.01 we are in the con-
tinuum regime where the flow is expected to be well de-
scribed by the Navier–Stokes–Fourier equations. Here it
must be noted that all BGK models considered, but not the
standard BGK, are constructed such that they have the same
viscosity and heat conductivity in the continuum regime.
Thus, in the simulation of this problem, we expect only small
differences between the improved BGK models, but marked
differences to the results from standard BGK.

Indeed, for density and temperature profiles, Figs. 2 and
3, we observe that the results obtained with the standard
BGK model are quite different from the others. All modified
BGK models are very close to each other, and very close to
the DSMC results. The strong differences between standard
BGK and the improved ones are related to the Prandtl num-

ber while the smaller differences between DSMC, ES-BGK,
andn(C)-BGK, are due to Knudsen number effects and non-
linearities. However, the velocity is independent of the
Prandtl number, and all models give the expected straight
line, see Fig. 4. For heat flux and shear stress curves, there is
a significant statistical scatter in the DSMC results, and we
can just note that the all models are quite close~Figs. 5 and
6!.

Following Bird15 further, we next consider the same case
with a higher wall velocity of 1000 m/s. The results are
plotted in Figs. 7–11. Now the statistical scatter of the
DSMC results is very small. Again we note that the standard
BGK model does not agree with the DSMC calculations due
to the wrong Prandtl number, while the results obtained with
the ES-BGK andn(C)-BGK models are very close to
DSMC. Indeed, no marked differences between the results
can be observed. The DSMC results for heat flux and shear
stress are more affected by statistical noise, and the results

FIG. 4. Couette flow. Velocity profile foruw5300 m/s and Kn50.01199.

FIG. 5. Couette flow. Heat flux profiles foruw5300 m/s and Kn
50.01199.

FIG. 6. Couette flow. Shear stress profiles foruw5300 m/s and Kn
50.01199.

FIG. 7. Couette flow. Density profiles foruw51000 m/s and Kn
50.01199.
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from ES-BGK andn(C)-BGK models lie within the error
margin.

At this small Knudsen number, the BGK results should
agree well with solutions of the Navier–Stokes–Fourier
equations, and this allows us to compute viscosity, heat con-
ductivity and the Prandtl number from our results. Viscosity
and heat conductivity are computed from Eq.~9! as the ratios
between viscous stress and velocity gradient, and heat flux
and temperature gradient, respectively. The results for the
various BGK models are shown in Figs. 12 and 13; the
DSMC results exhibit too much noise, so that no meaningful
data are obtained for the velocity gradient. From the pictures,
it becomes clear that all BGK models with correct Prandtl
number yield identical results, while the original BGK model
exhibits different results. The curves are best understood by
recalling Eq.~13!, which gives the temperature dependence
of the viscosity. The spatial variation of the viscosity is due

to the variation in temperature, and the higher viscosity val-
ues for the BGK model reflect the higher temperatures for
that model. These, in fact, are observed since the standard
BGK model underestimates the heat conductivity (5 larger
Prandtl number!, so that the heat of friction is not removed
as efficient as for a gas with proper Prandtl number. The low
value of heat conductivity can also be seen in Fig. 13, where
all BGK models with correct Prandtl number give the same
values. The computation of the Prandtl number from viscos-
ity and heat conductivity yields only marginal variation over
the space variable, and the following mean values were
found: BGK: Pr51.02811, ES-BGK: Pr50.67641, BGK-
n1 : Pr50.67960, BGK-n2 : Pr50.67538, BGK-n3 : Pr
50.67535. The Prandtl number is sufficiently close to its
proper value of 2/3 for all but the standard BGK model. The
small deviations from the proper value are likely due to
Knudsen number effects, which also are reflected in the

FIG. 8. Couette flow. Temperature profiles foruw51000 m/s and Kn
50.01199.

FIG. 9. Couette flow. Velocity profile foruw51000 m/s and Kn
50.01199.

FIG. 10. Couette flow. Heat flux profiles foruw51000 m/s and Kn
50.01199.

FIG. 11. Couette flow. Shear stress profiles foruw51000 m/s and Kn
50.01199.
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boundary layers and jumps at the boundaries~in order to
exclude Knudsen layer effects, we averaged only over the
inner 80% of the curves!.

B. Couette flow at Kn Ä0.1199

Next we consider slow and fast Couette flow with a den-
sity of 9.2831027 kg/m3, corresponding to a Knudsen num-
ber of Kn50.1199, so that the Knudsen number is ten times
larger as for the first test. For the calculation we use 50
356350 discrete velocities with bounds@2990,990#
3@2950,1267#3@2990,990# for the low-speed case, and
50359350 discrete velocities with bounds@21300,1300#
3@21040,2028#3@21300,1300# for the high-speed case.
For the same reasons as above, these grids can be considered
to be optimal.

The results are plotted in Figs. 14–19 for the wall ve-

locity uw5300 m/s and in Figs. 20–25 for the wall velocity
uw51000 m/s.

For Knudsen numbers between 10 and 0.01 we are in the
transition regime, where Knudsen number effects are ex-
pected to be clearly visible. These include, but are not lim-
ited to, jumps in temperature and velocity at the walls, and
Knudsen boundary layers.

For the low-speed flow, Figs. 14–19, it appears that the
standard BGK model gives marked deviations again, while
the ES-BGK model gives results very close to the DSMC
calculations. Then(C)-BGK models exhibit visible devia-
tions in the profiles for density, and temperature. In particu-
lar, the temperature jumps at the boundaries are met best by
the standard BGK, and the ES-BGK model. The same behav-
ior is observed for velocity slip, see Fig. 17 for a close-up.

While all models agree on the heat flux~Fig. 18!, some
differences can be seen in the shear stress~Fig. 19!, where

FIG. 12. Viscosity for the various models computed from the numerical
solutions of the BGK models via the Navier–Stokes law, Kn50.1199,uw

51000 m/s.

FIG. 13. Heat conductivity for the various models computed from the nu-
merical solutions of the BGK models via Fourier’s law, at Kn50.1199,
uw51000 m/s.

FIG. 14. Couette flow. Density profiles foruw5300 m/s and Kn50.1199.

FIG. 15. Couette flow. Temperature profiles foruw5300 m/s and Kn
50.1199.
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the two lastn(C)-BGK models give the best agreement with
DSMC.

For the high-speed flow, Figs. 20–25, we observe just
the same: The ES-BGK model yields results in close agree-
ment to the DSMC calculations, while then(C)-BGK mod-
els show marked deviations, which are, in some cases~e.g.,
density! of the same order as the deviations of the standard
BGK model.

C. Couette flow at Kn Ä1.199

We now consider fast and slow Couette flow at an even
higher Knudsen number of Kn51.199 ~density of 9.28
31028 kg/m3), so that the Knudsen number is hundred
times larger as for the first test. Now, we use 50354350
discrete velocities with bounds @21009,1009#
3@2928,1251#3@21009,1009# for the low-speed case, and
60367360 discrete velocities with bounds@21463,1463#

3@21121,2145#3@21463,1463# for the high-speed case.
Again, these grids can be considered to be optimal. Note that
the large number of points is necessary due to the rarefied
regime: The collisions are not numerous enough to prevent
the half-space Maxwellians at the walls from propagating
into the domain. Consequently, the distribution has very
strong gradients that must be captured by the grid. If this is
not taken into account, macroscopic quantities can be seri-
ously affected, see Ref. 18.

The results are plotted in Figs. 26–28 foruw5300 m/s
and in Figs. 29–32 foruw51000 m/s. For both cases, we
present only the profiles for density, temperature, and veloc-
ity.

It is obvious that all models fail to match the DSMC
simulations at this large Knudsen number. Still the best
agreement can be found from the ES-BGK model, but also
here the deviations are obvious. The curves obtained with the

FIG. 16. Couette flow. Velocity profile foruw5300 m/s and Kn50.1199.

FIG. 17. Couette flow. Velocity profile zoom foruw5300 m/s and Kn
50.1199.

FIG. 18. Couette flow. Heat flux profiles foruw5300 m/s and Kn
50.1199.

FIG. 19. Couette flow. Shear stress profiles foruw5300 m/s and Kn
50.1199.
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n(C)-BGK models are very flat, and the density profiles are
even inverted for the fast flow case, see Figs. 29 and 30.

Also we observe that the standard BGK model can com-
pete with the other models at this flow conditions. Indeed,
the standard BGK matches the DSMC temperature and ve-
locity curves best of all models.

D. A remark on Knudsen numbers

We believe that the above results can be understood as
follows: Under the given flow conditions the mean free path
is of the order of the wall distance. Hence, Knudsen number
effects become important, if not dominant. Since the Knud-
sen number of the standard BGK model agrees well with the
Knudsen number of the DSMC calculations, the approximate
agreement between both should not be a surprise. A similar
argument holds for the ES-BGK model. Note that all models
were constructed such that they have the same Knudsen

number Kn as defined in Eq.~15!. However, their mean free
paths l̄ and the corresponding Knudsen numbersKn as
given in Eq.~16! differ. Thus the Knudsen numberKn of the
standard BGK and the ES-BGK model are by factors
xBGK /xDSMC51.65 andxES-BGK/xDSMC52.475 larger than
that of the DSMC simulations. Thus, it needs to be checked,
whether this difference accounts for some of the disagree-
ment observed in the curves.

One might also guess, that the marked deviation of the
n(C)-BGK models could be explained through the differ-
ences in the Knudsen numbers as well. Indeed, the Knudsen
numberKn of these models is by a factorx1 /xDSMC53.63
larger than the Knudsen number of the DSMC calculations.
Larger Knudsen numbers correspond to flatter profiles, and
this explains why then(C)-BGK models give the flattest
profiles, while BGK and ES-BGK models give profiles that
are less flat than the DSMC calculations.

FIG. 20. Couette flow. Density profiles foruw51000 m/s and Kn
50.1199.

FIG. 21. Couette flow. Temperature profiles foruw51000 m/s and Kn
50.1199.

FIG. 22. Couette flow. Velocity profile foruw51000 m/s and Kn
50.1199.

FIG. 23. Couette flow. Velocity profile zoom foruw51000 m/s and Kn
50.1199.
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In order to learn more about the influence of the Knud-
sen number, we run a test where we used the same Knudsen
numbersKn for all models in the low velocity case. For this,
we chose the Knudsen numbers as

Kna5
1

xa
Kn5

xDSMC

xa
KnDSMC,

where KnDSMC51.199 is the Knudsen number for the DSMC
calculations, and the values forxa can be found in the table
below Eq.~16!. Thus, for this test, all models have the same
mean free path based Knudsen numberKn50.925, corre-
sponding to

KnBGK50.72677, KnES-BGK50.48451,

Knn1
50.330309, Knn2

50.331995, Knn2
50.331356.

Figures 33–35 show the corresponding profiles for density
and temperature. Here, we see the interesting result that the
shape of the profiles is quite similar for all models, while the
jumps in temperature and velocity~slip! differ notably be-
tween DSMC, standard BGK, ES-BGK, and then(C)-BGK
models. This stands in contrast to the results shown in Figs.
26–28, where all models exhibit jumps of similar size, but
quite different shapes of the profiles.

These findings indicate that neither of the two Knudsen
numbers—Eqs.~15! and ~16!—is sufficient to characterize
the flow. Indeed, the mean free path of an individual particle
depends on the velocity, and it should not be surprising that
this dependence cannot be captured by one mean value
alone. As a direct conclusion follows that the simulation of
gas flows at high Knudsen number with a kinetic model, e.g.,
variants of the BGK model, will be in better agreement with
solutions of the Boltzmann equation~e.g., DSMC! when the

FIG. 24. Couette flow. Heat flux profiles foruw51000 m/s and Kn
50.1199.

FIG. 25. Couette flow. Shear stress profiles foruw51000 m/s and Kn
50.1199.

FIG. 26. Couette flow. Density profiles foruw5300 m/s and Kn51.199.

FIG. 27. Couette flow. Temperature profiles foruw5300 m/s and Kn
51.199.
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collision frequency used in the kinetic models mimics the
velocity dependence of the actual collision frequency.

E. Stationary shock wave

As a second test case we consider the shock structure for
a one-dimensional steady shock with upstream Mach num-
bers 1.4, 3, and 8 in argon, another of the reference problems
in Ref. 15. The details of the shock structure depend strongly
on the details of the microscopic interaction, which are re-
flected in the velocity dependence of the collision frequency.

Because there is no fixed coordinate label for the shock
profile inherent to the problem, it is possible that each com-
putation yields a different shock position. In order to make a
fair comparison, we therefore choose a new coordinate label
x8 such thatx850 corresponds to the ‘‘equal area point’’x*
for density. It is defined by the following relation between
total mass and densitiesrL ,rR at left and right boundaries
xL ,xR of the computational domain

E
xL

x*
~r~x!2rL!dx5E

x*

xR
~rR2r~x!!dx.

We use a grid of 300 cells inx-direction, while the num-
bers of discrete velocity as well as the velocity bounds vary
with the chosen Mach number. In particular we chose:

Mach 1.4: 10310310 velocities, bounds@2871,1457#
3@21160,1160#3@21160,1160#,
Mach 3: 16316316 velocities, bounds@21571,2325#
3@21892,1892#3@21892,1892#,
Mach 5: 24324324 velocities, bounds@22463,3161#
3@22914,2914#3@22914,2914#,
Mach 8: 38336336 velocities, bounds@23844,5646#
3@24531,4531#3@24531,4531#.

These velocity grids are optimal in the sense explained
in Sec. IV A.

FIG. 28. Couette flow. Velocity profiles foruw5300 m/s and Kn51.199.

FIG. 29. Couette flow. Density profiles foruw51000 m/s and Kn51.199.

FIG. 30. Couette flow. Density profiles foruw51000 m/s and Kn51.199.
New scale for then(C)-BGK models.

FIG. 31. Couette flow. Temperature profiles foruw51000 m/s and Kn
51.199.
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The following figures show, for the various models and
Mach numbers, the profiles of relative densityr̂ and relative
temperatureT̂, which are defined as

r̂5
r2rL

rR2rL
, T̂5

T2TL

TR2TL
.

While all models give results of the same order of magni-
tude, the details of the shock profiles, as the Mach number
increases, become very different in detail. These differences
are only small at Mach number Ma51.4 ~Figs. 36 and 37!,
and one can say that all models agree reasonably well with
the DSMC calculations.

As the Mach number increases to Ma53 ~Figs. 38 and
39!, and Ma58 ~Figs. 40 and 41!, the different kinetic mod-
els behave quite differently. These differences can be seen in
both, density and temperature profiles, but are more marked
in the temperature profile. Note the small slope of BGK and
ES-BGK model to the left, where then(C)-BGK models
display almost a kink.

FIG. 32. Couette flow. Velocity profiles foruw51000 m/s and Kn51.199.

FIG. 33. Couette flow. Density profiles foruw5300 m/s and mean free path
based Knudsen numberKn50.925.

FIG. 34. Couette flow. Temperature profiles foruw5300 m/s and mean free
path based Knudsen numberKn50.925.

FIG. 35. Couette flow. Velocity profiles foruw5300 m/s and mean free path
based Knudsen numberKnr50.925.

FIG. 36. Density profiles for shock at Mach number Ma51.4.
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We believe that these differences can be well explained
with the different velocity dependence of the collision fre-
quencyn. For the standard BGK, and the ES-BGK models,
the collision frequency is a constant, while the VHS~hard
sphere! model used in the DSMC simulations assumes a ve-
locity dependent collision frequency~see Fig. 1!, where fast
particles collide more often. Then(C)-BGK models also
have a velocity dependent collision frequency, which consid-
erably overestimates the actual collision frequency of the
hard spheres, as discussed in Sec. II E.

Particles flying from the left into the shock are faster at
higher Mach numbers, and the more collisions they have, the
sooner they are deaccelerated. Thus, a theory with a velocity
dependent collision frequency will lead to a steeper profile
on the left, since fast particles travelling into the shock col-
lide more often than the average.

This matches well with the results depicted in Figs. 36–
41: Profiles for the models with constant collision frequency
~BGK, ES-BGK!, are flattest, while those for the models
with the strongest dependence on velocity (n(C)-BGK mod-
els! are steepest. The steepness of the DSMC curves, which
are considered as our benchmark, lies in the middle between
those of the BGK, andn(C)-BGK models.

While none of the models can be considered best, one
might argue that the ES-BGK agrees best in some smaller
features, including an overshoot in the temperature curve,
that is also observed in the DSMC curve.

V. CONCLUSIONS

From our results on Couette flow and shock structures,
we can draw the following conclusions:

~a! In the continuum regime (Kn&0.01) all BGK models
with correct viscosity and heat conductivity, that is
n(C)-BGK and ES-BGK models, give identical results
that stand in good agreement with DSMC simulations
and the Navier–Stokes–Fourier equations. Here, the
n(C)-BGK model is in disadvantage to the ES-BGK
model, since it requires a smaller time step. This can be
seen from Eq.~18! which relates the time step to the
maximum value of the collision frequency. The maxi-
mum value n(Cmax) of the n(C)-BGK models are
larger than the constant collision frequency of the ES-
BGK model, so that the latter allows larger time steps,
and therefore faster numerical calculations. This is not
a crucial issue for steady computations if implicit

FIG. 37. Temperature profiles for shock at Mach number Ma51.4.

FIG. 38. Density profiles for shock at Mach number Ma53.

FIG. 39. Temperature profiles for shock at Mach number Ma53.

FIG. 40. Density profiles for shock at Mach number Ma58.
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schemes are used, but this can be prohibitive for un-
steady computations in which explicit schemes are gen-
erally used.

~b! When microscale effects become important, i.e., at
Knudsen numbers above 0.01, all BGK-type models
considered in this paper lead to different results. None
of the models can be singled out as giving excellent
results, since all differ from the DSMC simulations.
The ES-BGK model is numerically cheapest, and we
can say that it gives the best overall performance of the
models considered.

~c! Altogether, our results show that improved BGK mod-
els are accurate in the continuum regime, and can give
qualitatively good results in the transition regime.
However, they are not capable of an accurate descrip-
tion of flows at large Knudsen numbers, and of shock
structures. We believe that the reason for this failure
lies in the insufficient description of the microscopic
interaction dynamics which are represented by the col-
lision frequency~or the mean free path!.

Nevertheless, our results indicate that considering the
nonisotropic Gaussian in the ES-BGK model, as well as con-
sidering velocity dependent collision frequencies in the
n(c)-BGK models lead to considerable improvement over
the standard BGK model. We expect that the combination of
an anisotropic Gaussian with a velocity dependent collision

frequency in an(C)-ES-BGK model might give the best
results. In such a model, one could use the physical collision
frequency, e.g., Eq.~11!, so that the gas behavior is better
described on the microscopic level. Then(C)-ES-BGK
model will be considered in a future paper.
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