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An approach is presented to derive transport equations for rarefied gases from the Boltzmann
equation within higher orders of the Knudsen number. The method focuses on the order of
magnitude of the moments of the phase density, and the order of accuracy of the transport equations,
both measured in powers of the Knudsen number. The method is developed up to the third order, and
it is shown that it yields the Euler equations at zeroth order, the Navier—Stokes—Fourier equations at
first order, Grad’'s 13 moment equatiofvgith omission of a nonlinear teryat second order, and a
regularization of these at third order. The method is discussed in detail, and compared with the
classical methods of kinetic theory, i.e., Chapman—Enskog expansion and Grad moment method.
The advantages of this method above the classical approaches are discussed conclusively. An
important feature of the method presented is that the equations of any order are stable, other than in
the Chapman-Enskog method, where the second and third approximation—Burnett and
super-Burnett equations—are unstable2@4 American Institute of Physics
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I. INTRODUCTION set of moments considered as the basic variables of the
. . _theory. There are two major points of criticism against
In this paper we present a method_ to develop equatlonérad,s method, namely, that Grad’s equations fail to describe
fqr the flow of ra_refled gases by _studylng the order of Ma%5mooth shock structures for Mach numbers above a critical
nitude of terms in the equation in powers of the Knudsen

. Valuel® and that the equations are not relagegriori to the
numbere (the ratio between the mean free path and a mean; q d

. . . . "Kn n number malln rameter. The last point
ingful macroscopic lengdth This approach is based on the udsen number as a smaliness paramete € 1ast po

) makes it difficult to develop criteria for the choice of mo-
complete set of moment equations of the Boltzmann : . .
ments that must be considered. While there is general agree-

equations—an infinite set of equations—which is reduced to . mid
sets of only few equations, when the desired agreement wit ent t_hat larger Knudsen _numbgrs require more mo nts,
S N ere is no argument available in the present literature that
the Boltzmann equation is of the ord@(s"). . :
links the Knudsen number to the choice of moments re-
quired.
The methods of Chapman-Enskog and Grad are com-
The usual expansion procedure for the Boltzmann equapletely independent of each other, since they are derived
tion is the Chapman—Enskog methtidwhich gives the Eu-  from different premises. However, in a series of papers Rei-
ler equations in zeroth order and the Navier—Stokes—Fouriatiecke and Kremer were able to show that NSF and Burnett
(NSF) equations in first order. The second and third orderequations can be derived from certain sets of Grad’s moment
equations according to the Chapman-Enskog method are tkgjuations®*’ For this, they used the method of Maxwellian
Burnetf and super-Burnett equatiohdVhile the Euler and iteration which is essentially equivalent to a Chapman-—
NSF equations are accepted and widely used, the higher oEnskog expansion of the moment equati5h®©ne may con-
der Chapman—Enskog expansions suffer from instabflitiesclude that the Grad equations are richer than the Burnett
and unphysical behavior in steady state proceSsesl can-  equations, and that the latter fail stability tests due to the
not be considered to be useful tools for the description obmission of terms that are present in the stable Grad equa-
rarefied gas flowS.Recent attempts to stabilize the Burnett tions. Nevertheless, this observation does not provide a link
equations either by adding some super-Burnett tef@g-  between Grad equations and Knudsen number arguments.
mented Burnett equatiO)“Jg9 or by entropy based Only recently Struchtrup and Torrilhon introduced a
regularizatior’,” ! lack a rational derivation from the Boltz- regularization for Grad’s 13 moment equations which is
mann equatiort,and some results of the augmented Burnetthased on a Chapman-Enskog expansion around a nonequi-
equations are unphysical. librium state”***’termed as the R13 equations. Struchtrup
The other well-known method for obtaining equationsand Torrilhon showed that the R13 equations are linearly
for rarefied gas flows is Grad’s method of momefit¥  stable for all wavelengths and/or frequencies, show phase
which provides stable equations at any level, that is, for angpeeds and damping coefficients that match experiments bet-
ter than those for the Navier—Stokes—Fourier equations or the
dElectronic mail: struchtr@me.uvic.ca original Grad 13 moments system, exhibit Knudsen bound-

A. Background
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ary layers, and lead to smooth shock structures for all Macl€. Short outline of the method

numbers. Moreover they showed that a Chapman-Enskog  ag the COET method, our method is based on consider-
expansion of their equations yields the Burnett and supefing not the Boltzmann equation, but the infinite system of
Burnett equations for Maxwell mOleCUlé%Wh”e the prop- moment equationS, and one can say that the pr0b|em of ex-
erties of the R13 equations are highly desirable, their derivapanding the Boltzmann equation is moved from the phase
tion by a method which stands between the methods of Gragpace to moment space.

and Chapman—Enskog did not convince all readers. The method of finding the proper equations watider of
accuracy\q in the Knudsen number consists of the following
B. Summary of main results three steps.
(1) Determination of theorder of magnitudex of the

In this paper we use a different way of accounting for themoments.

order of magnitude of moments, and terms in moment equa- (2) Construction of a moment set with minimum number
tions, in order to derive transport equations up to third ordegt joments at ordex.

in the Knudsen number. This procedure erIdS the Euler and 3 Deletion of all terms in all equations that would lead
NSF equations in zeroth and first order, a set of equationgnly to contributions of ordera. >\, in the conservation
very similar to Grad’s 13 moment equations in second orderiaws for energy and momentum.

and a variation of Struchtrup and Torrilhon’s R13 equations  Step(1) is based on a Chapman—Enskog-like expansion
in third order. Higher order approximatioff®urth order and where a momeni is expanded according to

highep will be discussed only briefly, but it seems that the

fourth order approximation is equivalent to a 26 moment = ¢+ ey + 2y + 33 + - -+,

system of Grad type, and the fifth order to its regularization.

Since the method is based on accounting orders in thgq the leading order of is determined by inserting this
Knudsen numbers, it provides a direct link between Gradhnsatz into the complete set of moment equations. A moment
type equations, and the Knudsen number. Moreover, it reprgs said to be of leading ordexr if $=0 for all B<N\. It must
duces the zeroth and first order results—Euler and NSF—dbe emphasized that we are interested only in the leading
the Chapman-Enskog method, but not the unstable higherder of the moments, and that we shall not be interested in
order Chapman—Enskog results, that is, the Burnett andetermining the coefficient®, in the expansion. Indeed, the
super-Burnett equations. latter is the approach of the Chapman-Enskog method,

In other words, this method provides a common um-Which aims at computing the coefficients; in terms of

brella for sets of equations that up to now were thought t@radients of mass density, velocity, and temperature. This

stem from very different arguments. Moreover, all sets of 'St Step agrees with the ideas of COETwhere, however,

equations derived are stable for disturbances of all wavet-he authors use a Maxwell-type iteratidninstead of a

lenaths and frequencies Chapman—Enskog expansion.
g q ' . . In step(2), new variables are introduced by linear com-
How close the second and third order equations agreg; |

. i - ) X ation of the moments originally chosen. The new vari-
with Grad's original equations, or the R13 equations, de'ables are constructed such that the number of moments at a

pends on the interaction model chosen. In this paper we Shaﬂ;‘iven order\ is minimal. This step does not only simplify
focus on Maxwell interaction potentials and the Bhatnagarthe |ater discussion, but gives an unambiguous set of mo-

Gross—Krook(BGK) model, where the second order equa-ments at ordei. This ensures that the final result will be
tions are exactly Grad’s 13 moment equatibh§l with the  independent of the initial choice of moments.

omission of a nonlinear term, and the third order equations  Step(3) follows from the definition of the order of ac-
are the original R13 equations, again under omission of sewveuracy\, that we chose to adopt: A set of equations is said to
eral higher order nonlinear terms. The changes that can bee accurate of ordex,, when the pressure deviatoy; and
expected when other interaction models are considered afge heat fluxg, are known within the orde®(&*).

only sketched, detailed accounts shall be published later. The evaluation of this condition is based on the fact that
Thus, the equations derived in this paper are not entirelﬁ” moment equations are strongly coupled. This implies that
new, but the method to derive them is. each term in any of the moment equations has some influ-

The first attempt to derive Grad equations by means 0fence on aII. other equations, in particular, on the conservation
. . aws. The influence of each term can be weighted by some
arguments on the Knudsen number is due to Midieal., : :
termed “consistent order extended thermodvnami S[;)ower in the Knudsen number, and is related, but not equal
erme 2?5 consistent - orde .e ende . .e. odynamiCS, the order of magnitude of the moments appearing in the
(COET).“” These authors considered the infinite system o

X P erm. A theory of ordeig will consider only those terms in
coupled moment equations of the BGK equaliorOur 4 equations whose leading order of influence in the conser-

method shares some similarity with the COET method, but ig,ation laws iS\ < \,. Luckily, in order to evaluate this con-
dlStlnCtly different in detail. These differences will be dis- dition, we can start with the conservation IaWS, and Step by
cussed below, and in Sec. V, which will also give a morestep, order by order, add the relevant terms that are required:
detailed discussion of our method in relation to the method§Ve start with theO(£°) equationgEulen, then add the rel-

of Chapman-Enskog, Grad, and Struchtrup and Torrilhon. evant terms to obtain th®(e') equationgNSF), and so on.
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The accounting for the order of accuracy is the mainprocedure below. Reinserting of the dimensions would then
difference between our method, and the COET, which asremove the Knudsen number—this corresponds to setting
sumes thatall terms in all moment equations that are of =1 at the end of the computations. Thus the use @moves
leading ordern=<\, or smaller must be retained. This is the necessity of introducing dimensionless quantities.
quite different, e.g., in order to compute the heat flux with  S(f) is the collision term that accounts for the change of
third order accuracy, as is necessary in a third order theory, due to collisions, and has the following propertiés.
our method requires other moments only with second orde
accuracy, while others can be ignored completely. COET, o
the other hand, would require higher order accuracy for these
moments, and a larger number of moments. Our approach mf {1,c,C%S(f)dc=0. 2
leads to smaller systems of equations for a given order, and
can be performed for the full three-dimensional and time(2) In equilibrium, the phase density is the Maxwellian,

dependent equatioriRef. 21 presents the equations only for 5

one-dimensional steady state procegses S(f)=00 f=fy= P /ia exp{— E] (3)
At first glance, the reader might feel overwhelmed by the m ¥ 270 20

amount of equations in this paper, and their length. This,

unfortunately, is unavoidable due to the complexity of the

problem. The reader is invited to focus first on the structure

of the proceedings, as outlined above, rather than on the

details of the equations, and | hope that the presentation b(@

low puts enough emphasis on the structure to allow that. It

should not be forgotten that a nonlinear three-dimensionatys |ast point will not be discussed further within this paper.

third order theory is derived, which competes with the super-

Burnett equations—the derivation of the latter is by far moreg poments

complicated, and was never performed for the full nonlinear,

three-dimensional cage. We define the general irreducible moments of the phase
The remainder of the paper is organized as follows: Indensity as

Sec. Il we define the moments as basic irreducible tensors,

and derive the infinite set of moment equations. The mo-  u? . :mJ CzaC<i1C

ments of the collision term of the Boltzmann equation are !

presented for Maxwell molecules and the BGK model. Inyyhere indices in angular brackets denote the symmetric and

Sec. Ill the order of magnitude of the moments is detery,ce free part of a tensor, e.g.,

mined, as described above. The results are then used in Sec.

IV to develop the proper sets of equations for zeroth to third A=A,

order accuracy. Section V contains a detailed discussion of

the results, in particular, a comparison to other ideas avail- R N N 3

able in the literature. The paper ends with conclusions. Aip = 24 + 2% ~ i,

1) Conservation of mass, momentum, and energy, so that

wherep is the mass densityy=(k/m)T is the tempera-
ture in energy units, whergis the temperaturen is the
particle mass, anl denotes Boltzmann’s constant.

The Boltzmann equation leads to a positive entropy
production.

e Cin>de, (4)

i2

IIl. BASIC EQUATIONS A=A = 5LAGm) i+ Aer) Sic + A 3.
A. Boltzmann equation Here, Ajc) denotes the symmetric part of the tenggg.

Our starting point is the Boltzmann equaﬁ&rwhich we Some of the moments have a particular interpretation,
write as g

Df af 1 W=p, uw=0, ul=2pe=3ph=3p,

a + Ckgk = ;S(f), (1) ®)

uﬁ=crij, ui1=2qi.
where f denotes the phase density,=c,—v, denotes the
peculiar velocity withc, as the velocity of a particle ang, ~ Here we introduced the specific internal eneegy(3/2) ¢ of
as the center of mass velocity of the flol/Dt=(d/dt) the ideal gas, the pressupethe irreducible part of the pres-
+v,d/ 9%, denotes the material time derivative. sure tensow;;, and the heat flux.

¢ is a formal smallness parameter which stands for the  The values of the moments in equilibriuf®), when the
Knudsen number. This parameter will be used for monitoringohase density is a Maxwellian, are given by
the order of magnitude of the moments, and the order of
magnitude of terms within equations. At the end of all cal-
culations,e will be set equal to unity.

In fact, if proper dimensionless quantities were intro
duced, the dimensionless Boltzmann equation would read
Eqg. (1) with the Knudsen number instead gfand the Knud-
sen number could be used as smallness parameter for the Pi"'in:mf CzaC<ilCi2---Cin>S(f)dc. (7)

U =(a+ DpP, W =0, n=1, ©

i ..|n|

_where(2a+1)!!=112 ,(2s+1). The moments of the collision
Jerm of the Boltzmann equatiaii) are
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C. Generic moment equation 3 Do ok IO o
. o Sp b T gy T, (10
Multiplication of the Boltzmann equation with 2" Dt My X 2
- . . .
mc C<'1Ci2---cin> and subsequent integration over velocity For the choicea=1,n=1 we obtain the balance of momen-

space yields, after some rearrangement, the general equatigfy,
for the momentg4),

Duv; J 060  do;
- iy g2y )y Dk g, (11)
i iy N Zana_li k% Dt (7Xi (7Xi (?Xk
D to Dt There are no further moment equations with vanishing pro-
n Dujy Ul ., duction terms.
+ (Qa+2n+ DU . T+ ——"
2n+1 Dt 2 E. Scalar moments
at+l
N n o oui 4 D! vk For scalar moment&=0), the general equatiof8) re-
2n+1 ax, ik oy duces to
n
Du? ,Du, v, 2a+3 _du, 1
PALLEI Y P, 2a AL +2af K 2l e e = TR
on + 3%z in e on+ 1 Kiring % Dt Dt ox X 3 X¢ €
n

Next, we introduce the difference between the scalar vari-

a; . e
N Wy we Pk ables and their equilibrium values as
K(igin-g o 71 o,
WA= Ut - U (12
n(n—-1) atl Wiy _1
+ 4nz_1(2""+2”+1)U<il---in_2 o _;Pial-~-in' (8)  and rewrite the scalar equations for these new variables,
"n

where all time derivatives of, 8,v; are replaced by means
Note that all moments are trace free, and additional trace fre@f the conservation laws. This yields

tensors are made explicit by means of angular brackets. Thgy2 24 L,
derivation of the equation above requires multiple use of they.~ ~ €(2a+ D& "
relatiorf* k
2a (S’l)k _ 0"Uk ., 00
2 N — + 1)1 -1 il a-1"YK _ 19
C aC(il Cizl"Cin)Ck_C 3C<i1 Ciz"'cick> 3 (2a 1)061 (o P 2auk| P 2auﬁ %
n a-1 a
+ 2a+2C' C - C ) _ -1 &Inp_ U, doy %
n+1 <|1 ) |n_1(2n>k 2al¢ 6 an 2a o aXI + an
The set of infinitely many moment equatiofa—co,n 2a+3 v 1
; ; : : + —=-P
— o) is equivalent to the Boltzmann equation. We are inter- 3 X €

ested in limits of the Boltzmann equation given by orders of ) ) .
the Knudsen numbet, and due to this equivalence we can Of course, fora=0 anda=1, the equations are identically

perform the limiting process on the moment equations, ratheiUlfilled, so that the above equation makes sense onlyafor
than on the Boltzmann equation itself. =2 ] )
The production term will be of the form

D. Conservation laws 1 .

2= - =3 9w

First, we consider the conservation laws, that is, those P T% Cab ’
equations which, by Eq(2), have no production. Foa

=0,n=0 we obtain the mass balance wherecg is a dimensionless matrix, andis the mean free
. time. Mean free time and matri&g(g [a,b=2] will be dis-
bu . L0k _ 0. cussed in Sec. Il | below.
Dt (9Xk

F. Vector moments

and fora=1,n=0 we find the balance of internal energy as .
%y For vectors, the general equati®) reduces to

1 1

bu, M, 2u(|2|% + 200 Pk g Duf 4+ 9ae1PV 28+ 3 Dui i + Lo

Dt dx X3 X Dt Dt 3 Dt dx 3
Note that by means of Ed5) these two equations can be v da L vy 2a v
brought into their usual textbook form +2auy U

9 ax 5 " X 3 o

D v ov; duy 1

LapTho, (9) HU U= PR

Dt " ox, X M €
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We introduce the quantitieg? in the vector equation, Du? u?;1<ﬁgkl egp 39)

. . . . . —_ ) + S
and replace the time derivatives of the velocity to obtain Dt o\ ax X po’ixk
Du? a(2a+3)!! 90 2a+3 _J
_'+(—)p0a_0__wa_0 2 ﬂ dop  dp 30
Dt 3 X 3 0% -—(2a+5) ——+6—+p
I ) 2 I 5 p Xy (?Xj) (?Xj)
aln p_2a+ Jdinp
- - _ 1y )
2auﬁ‘< 2a Lﬁ( P 3 wae x L ik c?Ui 2 U<| ‘o ua—lavk 6_a a %
a-1 2 5 %) 7 ax,
UL% _2a+3widoy _ (2a+3 ,doi
p (7X| 3 p (9Xk 3 (?Xk 4a a &vk a &LD a ﬁvk 2 +1
R v PR
i, Low + ZaLjia—lﬂ 2a+ SUa% K ‘
M 3 X K ox 5 X 2 i 1
K i | K +o(2ar Bl port— = =pA, (15)
2a+5 _ov; 2a jov 1, My e
Uk— + —Uk— = _Pi . (13)
5 O"Xk 5 0Xi £

This equation is relevant f@= 1. Note thaw'=0. Here, the This equation is relevant fa=0. Again, the expression for
expression for the collision production is similar as for thethe collision production has the form
scalar quantities,

1 _ -
Pr==—2 Cpeu (14) =- —E Cia et (16)
b

with a dimensionless matri@élg [a,b=1] that will be dis-
cussed in Sec. Il | below. with a dimensionless matri&ézg [a,b=0].
G. Rank-2 tensor moments H. General equation

After replacing the time derivatives of velocity by Eq. For moments of order higher than 2, the general equation
(11), the equations for tensors of rank 2 read reads

-1
Duial...in _Zauial"'ink(m @ 0’;9) ~

ug.. dai Kk ik
Dt p (?X| an an 2n+1 p (?Xk ax,n> a)qn> an
at+l

n L n+1 v n v i I

e 2aua ikl —x +2a Z i ) +2a k(| i nuﬁo i . +uia---i —-

Ton+1 P ax o2n+3 i g T SPona 1 Kivtin gy ) voinn gy gy
D o, L 17
an? - ( a n )u<|1 ip-1 P ) _8 i i ( )

This equation is relevant fa=0. Again, the expression for computation of the production terms requires the knowledge
the collision production is similar as for the scalar quantitiespf the distribution functionf in terms of the moments.
There are only few exceptions, where the production
terms can be computed without detailed knowledgef,of
i=- —E cl by |bl i and these are Maxwell molecules, and BGK mod&f&.in
order to keep the presentation in this paper as simple
as possible, we shall consider only these cases in detail, and
with dimensionless matrice@gg [a,b=0]. the corresponding matrlceégz) will be presented below.
Nevertheless, we shall introduce specific values:t@ronly
later in our calculations, in order to give the reader some
The production terms are computed from the collisionflavor of what can be expected for other models of
term S(f) by Eg. (7) and it follows that the matriceggg interaction.
depend on the specific form of the collision term. The  We shall assume that the mean free time is of the form

I. The matrices on the right-hand side

Downloaded 05 Oct 2004 to 142.104.250.115. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



3926 Phys. Fluids, Vol. 16, No. 11, November 2004 Henning Struchtrup

1 1 3
—:—pﬁl_s, (18) - 0 -+ 0
T T 2
. . ¥ = (a,b=0)
wherer, ands are constants which follow from the details of ab ' ’
the microscopic interactio(s=1 for Maxwell moleculess 0
=1/2 for hard spheres but can also be considered as mea- ’

surable quantities which can be obtained from viscosity data
(e.g.,s=0.8 for argon.
First we consider the matricey for the BGK modef?

For general interaction potentials the situation is more
difficult, and will be discussed in a future paper, where we
shall suggest the Reinecke—Kremer—Grad metfidl Es-

where sentially, this method uses the Grad method to compute the
1 phase density as a function of the moments and the micro-
S=- ;(f = fw)- scopic velocityc;. That phase density is then used to com-

pute the production term@). This procedure adds consider-
able complexity, which we wish to avoid in this first paper on
the method. The reader familiar with the Chapman—Enskog

1 expansion will see that there is some analogy: the Chapman—
Proi, =~ mj c*cg, G, Ci,,>‘T(f — fw)dc Enskog expansion can be performed easily for Maxwell mol-
ecules and BGK model, while for other interaction potentials
one has to solve integral equations by expansions in Sonine
polynomials’ The Reinecke—Kremer—Grad method must be
considered as the equivalent of this when one operates with
With the equilibrium valueg6), and the definition of the moment equations instead of the Boltzmann equation.

It follows that

1
=—(ud . -u® .
- T(u'l“"n u'1“"n\E)'

variablesw® (12), the production terms result as For now we shall just assume that the matrices are
invertible—in particular, that will be the case for the trian-

Pa= lwa 0 ng =8y (@b=2), gular matrices of the Maxwell molecules, and the unit matri-

T ces of the BGK model. However, we shall introduce the

matrices given above only towards the end of the computa-

1 W tion, so that we can present more general results for future
Pr=- ;Uia O Cap=9%p (ab=1), reference.
PR =- Euial_”in 0cW=5, (n=2ab=0). Ill. THE ORDER OF MAGNITUDE OF MOMENTS
-

) We shall now assign orders of magnitude to the mo-
~ For Maxwell molecules, the matricey are of lower  ments; and then construct new sets of moments, such that at
triangular form, see Refs. 23 and 25. Here we just give thosg,cn order of magnitude we have the minimal number of

entries that we shall need later, viz., variables.
'2 We base the discussion on a Chapman—Enskog-like ex-
-~ 0 -0 pansion of the moments, with as smallness parameter. All
3 moments are expanded according to
cO=: .. .. | (@b=2),
: : o a  _ By @ - .02 1,
- 2 3
B b te uial”'in‘2 te ui'“inl?’ te
g 0 - 0 (19
14 and a similar series for the?.
ng | -= 1 - (ab=1), We shall say thauf‘l,.‘in is of leading orden if ui""l...in\ﬁ
3 =0 for all B<\. We emphasize that we are not interested in
0 computing the expansion coefficiemﬁl,_,in‘ﬁ, but only in
finding the leading order.
1 0 0 A. Zeroth and first order expansion
7 7 For the evaluation of the order of magnitude, it is impor-
c2-|1 "5 & Lo (a.b=0) tant to note that the production_ terms are muIFipIied by the
ab ' ' factor 1/. If the above expansion is inserted into the mo-
0 ment equations for the nonconserved quantities, it becomes
: immediately clear that
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—_a —
W‘ao = uil"'in|0 =0 (20) 2 C(n)ea_b b i |2, n=>5.

for all moments. This follows from balancing the factors of ol hat th i £ th |

1/& on both sides of the equations—there are none of thesd follows that the nonequilibrium parts of the scalar mo-
on the left-hand side, and thus the above result. In oth rmentswa and the tensors of ranks 3 and 4 are second order
words, all quantities that are not conserved are at least of firguantities. All higher moments age leastof third order. We

will not go further, but it is evident that tensors of ranks 5
and 6 are third order, tensors of ranks 7 and 8 are fourth

In the next step, we balance the factors &8fin the
order, etc.

equations, and find
C. Minimal number of moments of order  O(g)

0=- 2 CRe bW|1, From our first order result for the scalar and two-tensors,
Egs.(21), we see that the first order term$; andup), are
related to the gradients of temperature and velocity, respec-

a(2a+ 3)” (9_0 . tively, and thus they are linearly dependent. We obtain

- C(l) l
s S, 3 o
(21) ba 01-3-[) (9Xi
2 vy
—((2a+ 5)!!p03+1 EC(Z) Ij|l’ =~ K o (9_9
15 P PSP gx
(24)
. b _ (27-1 o2
0=-1S cigenp dia=- S IeT a5
T
_ ) aU(i
It follows that the leading order of vectors and rank-2 ten- - M ys-b?\n’

sors,u’ and uj, is the first order, while the nonequilibrium

parts of the scalar momentaf, and the higher moments wherex, andu, are pure numbers due to our assumptions on

uial,,,in (n=3) are at least of second order. the matricegjgg, given as

3

a(2a+3)! 2
B. Second order Kp= D [C(l) 1% wy= > [C2 ‘11—5(2a+ 51,

Next, we have a look at the second order quantities. a1
Since the vectors and rank-2 tensors are already known to be (25
of first order ine, we have to consider only the other mo- _ o
ments. We make the equations for tensors of ranks 3 and Ehe first few values of these coefficients are
explicit. Keeping only factors ot! in the equationgnote _ _ _ _
that, e.g.u? is aO(e) contributiorj yields K1 =152, 1p=105 and po=2, p,=14, (26

for Maxwell molecules, and

2a 17
- —(2 + DU O _ 3 (a+ 1 W‘lak,axik k=5, k=70 and po=2, py=14 (27)
k |
for the BGK model.
v _1 06 dln T . . :
+2auy 1—" - 2au} 1—_2a u lo—= Py In particular, pressure deviator and heat flux are given to
P ‘?Xk first order as
:——Zc Wi, (22) g o Lm0 99
Gl = 5% =7 o s T T
(28)
P 9 To VG v
“Barnug 6202, 20| 32 Tt = Vi = Rogs g ST ARG
7 ) &Xk) (?Xk) 7 (?Xk> i)

where we have introduced heat conductivity and viscosity as

x and u, respectively. Thus, in first order we obtain the laws

of Fourier and Navier—Stokes. Note that the computation of
(23 p and k involves the inverses of the matricégg,cfg. For
12(2a+ 9)u ?Ifl Pk _ EC |k|\2' their computation for more general interaction models we
63 . refer the reader to Refs. 16 and 17.

v
+ _(2a+ 7)ua+l_L = - E Cab 08.— ”k‘z 1l
M
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It follows from Egs.(24) and(28) that we can write Dp vy
— + —
2k
b _ b - b _ Mb
Uiz =—¢ 1Qi\1a Uj = _93%‘\1-
K1 Mo
While these equations relate the first order contributions of p = +p0—— =0, (31
the vector and two-tensor moments, it is now straightforward
to introduce new moments?,w{ that are of second order
only, 4+ g v e—k =,
Ppt P X K X
These equations are not a closed set of equations, for 6,

(29) but contain pressure deviater; and heat fluxg; as addi-
tional quantities, and equations for these are required to ob-

2
wa=ud - ﬁ‘492’1‘1qi (a=2) and
Ky

Wi = uf - —496‘0,J (a=1) tain a closed set of equations.
We shall speak of a theory afth order accuracy, when
so that both, oy; andg;, are known within the orde®(s").
The equations of orde®(°) result from Eqgs(20) by
WA= mf (Cza—z_ Z_Kaea—l>C2Cide (a=2), settingo;;=q;=0, that is, by ignoring the terms with the fac-
K1 tor ¢ in the balance laws. This yields the Euler equations for
(30 ideal gases,
w/f}:mf(CZa‘z—@ﬁa)C« Cpyfdc (a=1). %4_ @(: 3 D_0 6%—0
Ko bt Pax. > 2°Dt P
This means that we can formulate a set of moments, where (32)
only oj; andg; are of first order, while all other moments are Du; ap kY]
at least of second ordéexcluding the conserved moments, Pot + % + P =0.
of course. ! !

Itis in principle possible to go to higher order with this: For higher order accuracy, i.e., first order and higher, we
the second order terms of* (say), when expanded, will be shall need the moment equations for pressure deviator and
linearly dependent, and again one can use that to obtain leeat flux.
minimal set of moments of second order, while the remain-
ing ones can be constructed to be of third order, etc. This i8. Equations for pressure deviator and heat flux
not necessary for the levels of accuracy that are important in

. . We consider Eq(15) with a=0 where we introduce the
this paper, and so we shall not pursue this idea further. ac1s)

momentg29) and obtain, after assigning the proper order of
magnitude to the various terms,

IV. THE TRANSPORT EQUATIONS WITH Ath ORDER | Doy 4% v v _2 @b
ACCURACY Dt 5 ay,> M

In the preceding section we have established the order of )
magnitude of the various moments upQ¢s?). Now we ask +g2—ilk = _ p9|:ﬂl 2— ] (33
what equations we need in order to describe a flow process in 0
a rarefied _ideal gas yvith an accuracyQii). We empha}size Here we have used that
that our interpretation differs from the interpretation of
Mdiller et al.in Ref. 21, who postulate that a theory of order @
O(&) requires all terms with orders less or equahto > Copup = > C

In this section, we shall use the smallness parameter
a slightly different manner, namely, as an indicator for the
leading order of a quantity. Thus, in any equation we shall
replaceu1 iy by e u ..;_when g denotes the leading order
of uia . This will allow for a proper bookkeeping of the and
order of magnitude of all terms in an equation. 1

(2a+ 5
a,b=0

2
=2, Opa—=(2a+H)N=2
g) Oa15( )

L _pt

A. The conservation laws and the definition of  Ath THo 2

order accuracy where u is the viscosity. The last two equations follow di-

We start the argument by repeating the conservation laweectly from Eqs.(25) and(28).

for mass, momentum, and energy, E(®, (11), and (10), The underlined term of orde®(e), (1/7)Sp-1Coe 07w,
which read, when we assign the factorto the first order appears only when the matrﬁé1|D is not of triangular form.
quantitieso;; anddj, We shall ignore this term for what follows, in order to re-
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move some additional complexity from the argument, that isequations deviate from those obtained by the Chapman—

we shall restrict ourselves to triangular matriqé% from Enskog method, that is, from the Burnett and super-Burnett

now on. equations. This is welcome, since the higher order
The equation for the heat flux results from settargl ~ Chapman—Enskog expansion yields unstable equations, and

in (13) where we introduce the second order momé&g®,  cannot be used.

and assign the proper order of magnitude to ob(emem-

ber thatw!=0), D. Second order accuracy: Grad’'s 13 moment theory
(slightly linearized )
in 1 M1 00 dln p 1 My 5 (90'"( . )
€ Dt + P 1 Gik& ~ Ok X + 5. o 93 In the next order, we have to consider all terms in Egs.
#o K K Ko K (33) and (34) which have the factorg! and £° to obtain
7 e 7 v 2 v, 11 ) (after setting the formal parameter1)
F g+ = + —— + =~ >, C Vgt
ai Ok Ok 1 07 "W
S X 5T 5T 2Tpo Do; 499 iy Ay i po
+—-——+ ZUk(i — + a-ij_ + 2p(9_ == _O'ij,
1 2 Dt 5 &XD 0-'Xk é’Xk (9XJ “
1 ow;; 1 ow al)k Oik (90'k|
+e?| S Sy - (35
2 (?Xk 6 (?Xi : (9X| P 0"X|
2 %, 9 Dg (1 99 dinp (1lp 5\ do
__Epa{;+&}' 34 j-'_(_ﬂ_l)o'ik__o'ik P+(_,U«_1__>0ﬂ
| Dt 2,LLO 0"Xk &Xk 2/.L0 2 &Xk
Here we have used that 7 e 7 vy 2 v, 5 90 5p
2a+ 3! "% 5% 5% T2 T T2k ™
S W= S cwpewd2at I K k X i K
b Kb~ 1bLbba 3
b=1 ab=1 (36)
=S s a(2a+3! _ 5N _5 Together with the conservation law81) these equations
=™ 3 3 form a closed set of 13 equations for the 13 variables
p,vi, T, 0,0 which are the variables that Grad considered in
and his famous 13 moment theo1'§/.13And indeed, the only dif-
1 1 11 ference to Grad’s equations is that we had to drop the term
T—Kl = Epﬁl_s= 5’—<p6, (ol p)(dayl d%) in the equation for heat flux since it is of

orderO(g?), and we have the general expressijof u,. For
wherex is the heat conductivity. The last two equations fol- the BGK model and Maxwell molecules, we find from Egs.
low directly from Eqs.(25) and(28). (27) and (26) that wq/ue=7 which vyields[(1/2)(uq/ o)
The underlined term of order O(e), (1/2) —1]=3, [(1/2)(uy/pme)-2]1=1, which are just the coeffi-
x(l/r)Ebzzc(lﬂel‘b\Nib, appears only when the matrﬁélb) is  cients in Grad’s original equations.
not of triangular form. This term corresponds to the similar ~ Thus, with the omission of the second order term,
one in the equation fow;;, and will be ignored for most of —(oi/p)(do/3x), Grad's 13 moment equations are the
the paper as well. proper equations of second order accuracy for the description
We close this section by pointing out thatand « are  of rarefied gas flows for Maxwell molecules, or the BGK
O(e), as areoy; andg;, so that their respective ratieg;/u, ~ model.

i/ k areO(&%). Also 7 is O(g) andw}’, Wﬁ areO(&?) so that Application of the Chapman—Enskog method to the

their respective ratio i©(e). Boltzmann equation suggests that the second order equations
are the Burnett equatiorts. However, it is well known by

C. First order accuracy: Navier—Stokes—Fourier now that these are unstalflend lead to unphysical results.

equations It is also known that the Burnett equations can be derived by

We recall that our goal is to provide the equations forperforming a Chapman—Enskog expansion on the 13 moment

pressure deviatos;; and heat fluxg, with an accuracy of a equc'(i;tlrgr;,ss, ig(?ntgrﬁlitri Cf;{?i::gr\év'mgv\fﬁzéze stable. and
given order. If we are satisfied with first order accuracy, we d '

. . . that alone should be a reason to prefer them. However, they
need to consider only the leading terms in E§8) and(34), L )
which yield the laws of Navier—Stokes—Fourier, exhibit subshocks for Mach numbers above 1.65, which are

unphysicalt®*® It is quite difficult to assign a smallness pa-
ot 76 rameter to shocks, and one must conclude that the failure of
0ij ‘_ZMX’ qi:_"&' describing smooth shocks is an indicator for the limit of
y ' applicability of the equations. Note, however, that the com-
where viscosityu and heat conductivitx are given by Egs. putation of shock structures with the Burnett or super-
(25) and(28). Burnett equations is difficult as well, due to their unstable
The equations of first order accuracy obtained here coeharactef:’
incide with the first order Chapman—Enskog expansion. As  The next order of our expansion yields a natural regular-
will become clear in the following section, the higher orderization for Grad’s 13 moment equations.
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E. Third order accuracy: Regularized 13 moment A4k, i) 0% A K, 960 28 alnp
equations of Struchtrup and Torrilhon —(— - —) — + —(— - )q<i —— = —0q;
(slightly linearized ) S\ky  po/ ) S\Kky ) 5 %)

To obtain the pressure deviator and the heat flux with lug\( oy ot
. : A +14pP|1-== +—
third order accuracy, we have to consider also @) Tupo/\2m 9%,
terms in Eqs(33) and(34) so that the equations far;; and

. read(after settinge=1 4, aj) e 2 dug 1
G ( & ) +-—40 Oii _+a-k<i___0-ij_ :__CgLZ]?Wi]]:'
7/.1,0 X 5Xj> 3 Xy T
Do , 494 ap vy i (41)

—— tloy — toj
Dt 5 (7)(]> an an (9Xk
The last three equations yield the proper closure of E2]8.
Y 9ij 2% 37) and(38) with third order accuracy, when all matricég)) are
' of triangular form. Below we shall make the coefficients ex-
plicit for Maxwell molecules and the BGK model.

For both, Maxwell molecules and the BGK model, we

Dgi (1wmg a0 dnp (Llug 5\ doy have w1/ u,=7 andk,/ k;=14 and can use the matrices of
ot T 20 1 Tkaxe T o * 2u0 2] ax Sec. Il so that the above equations for Maxwell molecules
5 N e reduce to
7 dvg T v v, low; 1 170
R R e« e ol TR
S X 5T 5T 2% 6 2 Ik v, 5 96 dlnp
W2 =—127| 6— + 60’k|_ + - OQ— — qk0 ,
Tik (90’k| 5 (or 00 &Xk O7X| 2 (9Xk (?Xk
-——=——pf| —+—|. (38

P aX| 2 K aXi

. . . . do, dinp 4 v,
In addition to the 13 variables, these equations contain the uﬁk =- 27{ Gay—m - 0 06—’; 5q<i ;L} (42
quantitiesufy, wi;, w2, and in order to obtain a closed set of B " B
equations, we have to provide additional equations for these.
As we have seen in Sec. lll, the leading order of magnitude

. . . ;i

of uj., wii, w? is O(e?), and if we restrict ourselves to second W= - 2_4{ 9& e 99 _ o dinp
order accuracy in their computation, we compute pressure S ) %) %)
deviatoroj; and heat fluxg; within third order accuracy. If 5 o e 2
we computeufl, wi, w up to third order accuracy, we shall + —0<0k<i Sl L —a”-—k> _
have fourth order accuracy i; andg;, and so on. 7 Xy Ny 37X

In this section we are only interested in the leading order
terms, so that we obtain the proper third order theory. Thd'hese are just the regularized 13 moment equations of
relevant equation fon? at O(g?) is Eq.(22) with a=2 where  Struchtrup and Torrilhof? with the omission of some terms
we have to consider Eq&29) again, so that which are nonlinear ir;; andq,. These nonlinear terms are
not present here, since they add terms of third ordmﬁ;o

2% g o 90 wﬁ w!, which are ignored in our third order theory. How-
(—2 - 20) aﬂ‘ + (4ﬂ - 20) 0oy —~ + (2ﬁ - 8) O— ever, these terms would be present in a fourth order theory,
K1 k Mo 2 K1 2 together with additional contributions from other moments.

dlnp 1.0 For the BGK model the equations bear different factors,
- 80,6 o =- ;szwz. (39

1]

W2:—87'["'], uic;k:_ST['”]! wi=— %87.[...],

The second order equation fuﬂk is EqQ.(23) for a=0,

where the square brackets stand for their counterpa(é2)n

3 ﬂ_ o MJrl_Z o The R13 equations were discussed in great detail in

T g % g My O f Ny Refs. 7 and 19 where it is shown that they contain the Bur-

1 90 1 nett and super-Burnett equatic_ms, are linearly stable for all
+3<§E) - 1>o<ij (7)(—*) =- ;Cg%)uﬂk. (40) wavelengths and/or frequencies, show phase speeds and

damping coefficients that match experiments better than
those for the Navier—Stokes—Fourier equations or the original
The equation forvvﬁ results from Eq(15) with a=1, after ~Grad 13 moments system, exhibit Knudsen boundary layers,
replacinguﬁ by wﬁ by means 0129), and subsequent elimi- and lead to smooth shock structures for all Mach numbers.

nation of the time derivatives af;; and 6 by means of their In short, the R13 equations form a new and meaningful
respective balance laws. Keeping only the leading ordesystem of equations for the description of rarefied gas flows
terms yields after some algebra with third order accuracy.
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V. DISCUSSION the higher order contributions are independent of the lower
order ones. Here, we mention recent work by Spiegel and
Thiffeault who use their own variant of an iterative expan-
We shall not go further with developing the equations atsion to compute transport equations up to second order of the
higher order accuracy. However, it is clear that the next leveknudsen numbe?® While they argue that their method is
of accuracy—fourth order—will contain full balance laws different from, and better than, the Chapman—Enskog
for uf., wi, w? that is, equations of the fornidg/dt)  method, they nevertheless obtain unstable equations at sec-
+[space derivativds—(1/7)¢. The resulting equations ond order. One might conclude that the independence of our
should then be equivalent to a Grad moment system with 2@igher order contributions of the lower ones is related to the
moments, as it can be found, e.g., in Ref. 14. The nextability of our equationgwhich is proven up to order 3, and
order—the fifth—should then be the regularization of the 26expected at any order
moment system, similar as the third order is the regulariza- The Chapman—-Enskog method provides terms up to a
tion of the second order 13 moment case. definite order, while the equations that we found above con-
In this context, we would like to mention that tlirst  tain higher order terms in the sense of the Chapman—Enskog
orden NSF equations are the regularization of tzeroth  expansion. This can be seen nicely in Ref. 29, where the
orden Euler equations. Altogether, the following picture guthors perform a Chapman—Enskog expansion to infinite
emerges: Equations at even or@egroth, second, fourth,.)  order of the linearized Grad equatiofuair second order et
are of the Grad moment type, and hyperbolic, while equatt seems that these higher order teriis the Chapman—
tions at odd ordere‘irst, third, ) form the regularization of Enskog SenSdn our equations are responsib|e for the stabi-
these hyperbolic equations. Hyperbolic equations of Gradization, and the better agreement with experiments, when
moment type lead to shocks or subshocks when the inflowdompared to the higher order Chapman—Enskog expansions,
velocity into the shock exceeds the largest characteristic ve:e., the Burnett and super-Burnett equations. Some discus-
locity of the systent*'5and these shocks are an artefact ofsion of this can also be found in Refs. 7 and 19.
the theory, and cannot be observed in experiments. The regu- \When this answer seems to be vague, the reason will be
larization of the hyperbolic equatioris- the odd order ap- that no definite statement on why the higher order Chapman—
proximationg smoothens these shocks, as was shown for thenskog expansions lead to unstable equations is available in
R13 equations in Ref. 7, and yields smooth shock structurege first place.
at any Mach number. The Chapman-Enskog expansion can be performed on

The complexity of the method increases substantiallythird order equations, i.e., the R13 equati{&y), (38), and
when we are not dealing with the BGK model, or Maxwell (42)], by setting

molecules. Then, the second order equati@%® and (36)

A. Higher order accuracy

contain the additional terms gj=o)) +ea) + 20l + %0V + -+,
_ 11 . © (1 2 4 o343
1S g, 52 CiR el 6 =0 +eqf” + % + %% +-
Th=1 Th=2

and then computing the expansion coefficie@ﬁ@, qfﬁ)

and, for a second order closure, we have to provida/\;-*]ﬁ,e terms of gradients op, v;, 6. As was shown in Ref. 19 for

vvib within their leading orde©O(g?). They will have a form the linear, three-dimensional case, and in Ref. 7 for the non-

similar to Eq. (42) For the third order, full balance equations linear, one-dimensional case, the resulting equations are the
for thewb w are required. For this, it will be necessary to Burnett equations at second order, and the super-Burnett
construct new varlablesﬁ, vvb such that a minimum number equations at third order of the expansion. Evidently, the R13

of these is of second order, similar to the procedure outline@quations are a more complete set of equations at third order.

in Sec. Il C. To conclude, we summarize the advantages of our
method against the Chapman—Enskog method which are as
B. Comparison with Chapman—Enskog method follows: stable equations at any order, better agreement with

The most pressing question on the method introduced jpxperiments, and a simpler derivation of the equations.

this paper is probably, where the differences are to th
Chapman-Enskog method, and why our method gives stable
and meaningful equations at each level of approximation, Let us discuss the main differences between our method,
while the Chapman—-Enskog method does not. and Grad's methotf

The Chapman-Enskog expansion aims at finding the co- In the Grad method one assumes some set of moments—
efficients in the expansiofl9) expressed solely through gra- not necessarily 13—as basic variables, and then writes the
dients(of any ordey of its basic variables, mass densjly = moment equations for these. These equations do not form a
temperatured, and velocityv;. This is done by an iterative closed set of equationa priori, since they contain some
procedure, where the result of orders used to compute the higher moments that must be related to the chosen set of
expressions at order+ 1. variables. Since all moments are defined as integrals of the

Our method considers all moments as quantities in theiphase density, this problem is solved by construction of a
own right, without aiming at expressions for the expansionphase density; which depends explicitly on the chosen set
coefficients. In particular, no iteration process occurs, so thadf variables, and the microscopic veloci®y (fg is a poly-

. Comparison with the Grad method
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nomial in C; times the local Maxwellian The Grad phase D. Co_mparison with the original derivation of the R13
density fg allows then to compute expressions ff mo-  €quations

ments in terms of the variables, and the system of equations  gome relaxation of the strong requirements of the Grad
for the variables is closed. method can be found in approximations which allow states

There is no statement on which sets of moments ongjso in the vicinity of the(assumejl nonequilibrium mani-
should use, but experience shows that more moments lead teld. Most prominently this idea is pursued by Karlin and
better results—many examples of this can be found in RefGorban, e.g., see Refs. 20 and 29, and the references therein,
14, see also Ref. 30. Nevertheless, the 13 moment case is thad just recently by Struchtrup and Torrilhon, whose regu-
preferred one, since all variables involved have a clear physiarized 13 moment equationd13) allow for deviations
cal interpretation. from Grad’s 13 moment manifolt*° In fact, their derivation

In short, the main feature of the Grad method is that itof the R13 equations can be described as a first order
provides a certain phase density, and allows only states th&hapman—Enskog expansion centered in Grad's 13 moment
can be described by such a function. With Kaginal,’°we  phase density, and not in the Maxwellian as in the standard
can say that the Grad method assumes a nonequilibriusghapman—Enskog expansion. For this, the Grad equations
manifold, and forces the gas to stay on that manifold. Therdor 26 moments are computed, and then run through a

is no argument from physics on why the gas should be reChapman—Enskog-like expansion in the Knudsen number,

stricted to that nonequilibrium manifold, although attempts""hereoonly thel equatizons for higher momentenoted as
My = Ui, Rj=w;j, A=w) are expanded, while the equations

are available, which involve entropy maximization ,
methods for pressure deviatos; and heat fluxg; are not expanded.

The problem is centered in the question why a certain seIhus’ the method of Struc_htrup a_nd Torrilhon ‘3'@5. the Grad
) . method for granted, and just derives a regularization by ig-
of moments should be just enough to describe the gas . . . .
. . noring certain terms that are of higher order in the Knudsen
properly—after all, the gas is not aware of our choice ofnumber
variables. ) In the present paper, however, the R13 equations re-
Only for the simplest system of Grad type, the Euler

sulted from accounting for orders of magnitude and accu-

equations, is an entropy based argument valid: the B°|tzr'acy

mann collision term forces the gas towards the local Max- I.ndeed by means of our order of magnitude argument

mann equation, and maximizes entropy. There is nQyritten ag®

intermediate nonequilibrium manifold for the Boltzmann

collision term to which the gas would relax before reaching - _ 127[____ lq_ﬁ_ffjg]
the final—Maxwellian—equilibrium. Intermediate equilibria IRe3 oV ox |’
are possible, however, in more complex systems where pro-

cesses with distinct mean free times occur, e.g., in the pho- 0 o(ij oy

non gas’ Uy ras == 27 - ol
Extended thermodynamitshas a strong relationship to © !

the Grad method, and similar arguments can be applied. o4 1 oy 5o
The method presented in this paper is quite different Wi1'|R13 :__T{..._ ~qq Tk _ 2 Tij Mk

from the Grad method, although the equations obtained bear . 5 p X 60 dX

a strong similarity to Grad’s 13 moment set, and the R13 500 v

equations. More significant are the differences: In this paper, "5 0 oy o }

we have used a thorough analysis of the orders of magnitude

of moments, and the order of accuracy of the moment equayhere the dots indicate the same terms ag4®), so that

tions. The moments that appear in the equations of chosesnly those terms are explicitly shown above that are added in

order follow from that analysis. Moreover, the Grad phasethe original R13 equations. A short glance suffices to see that

density fg was not required to obtain closed sets of equathese additions are of third order, which means they contrib-

tions. ute to the fourth order iroy; and g. However, a careful
Compared to our second order equati¢®6) and(37), analysis of the full fourth order would reveal that these are

the Grad equations for 13 moments contain the termrmot the only fourth order terms, so that the original R13

—(oyw/ p)(doyl d%) in the heat flux equation. This term is of equations stand in between third and fourth order, just as the

second order, but contributes to third order in the heat fluxoriginal Grad equations stand in between second and third

Accordingly, this term appears in our third order equationsorder.

(37) and(38), but there are additional third order terms that _ _

must be accounted for, ViZﬁuiQk/r?Xk in the equation fowr;, E. Consistent order extended thermodynamics

and (1/2)(w} /o) +(1/6) (w2 ax) + W (v, /o) in the  (COET)

equation forg;. Accordingly, the original Grad 13 equations As we said earlier, the present order of magnitude ap-

stand in between the orders of magnitude, since they contajproach owes its fundament to the ideas of Muéeal, pre-

some(in fact only one, but not all terms of third order. sented in Ref. 21. These authors recognized that the order of
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magnitude of momentgn a Chapman—Enskog sensan be  meaningful results, while the higher order Chapman—Enskog
used as the building block for a consistent hierarchy of equaexpansiongi.e., the Burnett and Super-Burnett equatjons
tions in the orders of the Knudsen number. yield unstable equations and do not contribute to a better
The ideas presented in this paper differ from COETdescription of rarefied gases. Moreover, the development of
mainly in the definition of the order of accuracy of the set ofhigher order Chapman—Enskog expansions is forbiddingly
equations. COET assumes that all terms in all moment equaomplicated, while the method presented here allows a rela-
tions up to the orde®(s*) must be taken into account for a tively easy development. We also repeat that ¢second
theory that aims to be accuratexh order. orden Burnett equations and thghird ordep super-Burnett
At first, these are the moment equations for all moment®quations can be derived from our second and third order
of order <\ under omission of higher order terms. How- equations by a Chapman-Enskog expansion, so that the
ever, these equations split into two independent subsystemsguations are more general.
and only a smaller number of equatiofend variablegre- The main advantage of this method above the Grad
main as equations of importance. method is that no doubt remains which variables one has to
In our method, we do not ask for the order of terms in allconsider when a certain order of accuracy should be
moment equations, but of the order of magnitude of theirachieved, and that it avoids the use of nonequilibrium mani-
influence in the conservations laws, i.e., on heat flux andolds that have no backing within the physics and mathemat-
stress tensor. As became clear, a third order accuracy in thes of the Boltzmann equation.
equations does not require to provide balance laws for all In particular, we have applied our method to Maxwell
moments that have third order contributions. Rather it is sufmolecules and the BGK model, and have only briefly men-
ficient to haveos;; andg; up to third order, and the moments tioned how the method could be extended to other collision
uf}k, wﬁ w! to only second order. models. The derivation of the proper second order system for
Miiller et al, however,l due to their different philosophy, arbitrary interaction terms—a set of 13 equationsgow;, 6,

require the momemq?k, Wij, w! to third order accuracy, and aij, §—is the natural next step.
need additional moments up to third order, as becomes clear The equations of second and higher order need to be
from Eq.(5.7) in Ref. 21. Accordingly, their number of vari- furnished with(jump and slip boundary conditions in order
ables is higher for the third order than in our theory. to become useful tools for simulation of rarefied gas flows,
In our interpretation of the order of accuracy of equa-and we continue to work on how these can be derived from
tions, the third order COET will have higher than third orderthe boundary conditions for the Boltzmann equation.
accuracy(but might stand in between orders of magnitude, = The method developed in this paper gives a complicated,
similar to original Grad 13 and original R13 equatipns but nevertheless straightforward method to develop stable
Miuller et al. state that their method is independent of thetransport equations up to a certain order in the Knudsen
phase density. This is right only as long as they use Maxwelhumber from the Boltzmann equation, or any other micro-
molecules or the BGK model to describe collisions. Thescopic transport equation that contains a suitable smallness
same is true for our approach, and we have made clear thparameter. Thus, the method can be applied not only to BGK
other interaction models will require a relation betweenmodel and Maxwell molecules, but to general interaction
phase density and models, in order to compute the producenodels for particles, as well as to radiative transfer, electron
tion termsPial,,,in, Eq. (7). transport in solids, etc. The application to general interaction
potentials for the Boltzmann equation was carried out al-
ready, and a paper is to appéar.
VI. CONCLUSIONS Moreover, our method gives a common background for

In the present paper we have introduced a method t€quations that so far were considered to be of completely
develop transport equations for rarefied gases up to a givegifferent origin, namely, the Navier—Stokes—Fourier equa-
order of the Knudsen number. We performed the method téions, and Grad's 13 moment equatio@@s well as the R13
find the zeroth to third order approximations which turn outéquations At the same time the method discards the Burnett
to be the Euler and Navier-Stokes equations, the slightlgquations, which are still widely discussed despite their well
linearized Grad 13 moment equations, and the slightly linknown instabilities. Indeed, these do not appear, and instead
earized R13 equations of Struchtrup and Torrilhon, respeche stable Grad13 and R13 equations are emerging as the
tively. transport equations of second and third order.

All these sets of equations are known to be stable, and to
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