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Macroscopic models for rarefied gas flows
HENNING STRUCHTRUP

This talk presents an overview on classical and recent methods to derive macro-
scopic transport equations to model rarefied gas flows, and a critical examination
of the resulting models.

It is well known that the Navier-Stokes-Fourier equations cannot describe rar-
efaction effects in gases, which appear in processes with Knudsen numbers Kn >
0.05 (say). A variety of extended models can be derived from the Boltzmann
equation—the basic equation to accurately describe rarefied gases—which aim at
describing rarefied gas flows at least approximately. The best known among these
are the Burnett and super-Burnett equations, derived by means of the Chapman-
Enskog method [1], and Grad’s 13 moment equations, which follow from Grad’s
moment method [2, 3].

Burnett and super-Burnett equations suffer from instabilities in transient pro-
cesses [4], and several modifications have been suggested to stabilize the equations,
including the augmented Burnett equations [5], and the regularized Burnett equa-
tions [6]. Both sets of equations improve the Burnett equations only partly, and
are difficult to justify from the Boltzmann equation.

Grad’s moment equations [2, 3] exhibit unphysical sub-shocks in shock struc-
tures at large Mach numbers [7, 8], and so far could not be related to the rarefaction
of the gas, i.e. to the Knudsen number. Since the equations can be derived for an
arbitrary number of variables, a criterion that relates the number of moments to
the Knudsen number was missing.

A technique for the regularization of Grad’s 13 moment equations was presented
recently, producing the regularized 13 moment equations (R13) which guarantee
smooth shock structures [9, 10]. However, this method can be used for any num-
ber of moments, and thus leaves the question of how many moments need to be
considered unanswered.

A recent approach within the framework of extended thermodynamics, termed
as ”consistently ordered extended thermodynamics” (COET), gave a first answer
to this question [11]. However, COET yields certain sets of Grad-type equa-
tions, and thus does not remove the problem of discontinuous shocks. Moreover,
the method was only applied to simple molecular interaction models—Maxwell
molecules or the BGK model—and it is not clear how the method should be gen-
eralized to more realistic interaction models.

Elements of the COET method were blended with some new ideas to design
a method for deriving transport equations for rarefied gases from the Boltzmann
equation within higher orders of the Knudsen number [12, 13]. The method focuses
on the order of magnitude of the moments of the phase density, and the order of
accuracy of the transport equations, both measured in powers of the Knudsen
number. This ”order of magnitude method” was developed up to the third order
for the special case of Maxwell molecules [12], and it yields the Euler equations
at zeroth order, the Navier-Stokes-Fourier equations at second order, Grad’s 13
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moment equations (with omission of a non-linear term) at second order, and the
regularization of these (R13) at third order.

The order of magnitude method was also used to derive a set of 13 moment
equations for arbitrary molecular interaction potentials [13]. It was shown that
the new set of equations is accurate to second order, while Grad’s original 13
moment equations are of second order accuracy only for Maxwell molecules and
BGK models.

An important feature of the order of magnitude method is that the equations
of any order are stable, other than in the Chapman-Enskog method, where the
second and third order approximations—Burnett and super-Burnett equations—
are unstable. The latter can be extracted from the derived equations by means of
the Chapman-Enskog method. It follows that the new method includes Burnett
type and Grad type equations and the regularization of the latter, and thus forms
a common umbrella for all known theories for macroscopic transport equations in
rarefied gases.

A difficult issue in the theory of macroscopic transport equations is the problem
to ascribe boundary conditions for higher moments, which are not controlled in
experiments [14]. For better understanding of this issue, the Couette flow prob-
lem was split into two sub-problems, which concern the solution in the bulk and
Knudsen boundary layers.

The bulk solution requires only jump and slip boundary conditions for tem-
perature and velocity, which are well-known, and thus the bulk solution can be
obtained readily.

The ability of macroscopic equations to provide Knudsen layer solutions was
discussed in Refs. [9, 15], where it was also shown that additional boundary con-
ditions are required. Alternatively, one can fit the amplitudes of the Knudsen
layer solutions to accurate numerical solutions of the Boltzmann equation. Su-
perpositions of the bulk solutions with fitted Knudsen layer solutions can then be
compared to the Boltzmann solutions. The results presented here indicate that
only the R13 equations can quantitatively describe Knudsen boundary layers, while
the Burnett and super-Burnett equations fail.
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Riemann problem in Extended Thermodynamics
ToMMASO RUGGERI

The Riemann problem for a system of balance laws is still an often question.
We study the problem with particular attention to the asymptotic behaviour.
Moreover we study also the solutions when the initial data are a ”perturbation”
of the Riemann data proving results similar to the one of T. P. Liu obtained in
the case of conservation laws. Applications are presented in the core of Extended
Thermodynamics for rarefied gases and in the case of a binary mixture of Euler
fluids.

Thermodynamics of Elastic Solids up to the Melting Point
MASARU SUGIYAMA

Thermodynamic quantities of linear isotropic elastic solids, that is, elastic con-
stants, specific heats, coefficients of thermal expansion and Griineisen parameters
are estimated and discussed on the basis of the linearized macroscopic basic equa-
tions proposed recently by the author’s group [1-4]. The equations were derived
from a nonequilibrium statistical-mechanical model for crystalline lattices with a
continuum approximation. The equations take microscopic thermal vibration of
constituent atoms into account explicitly, and they are valid in a wide temperature
range including the melting point as a limiting case. Some new coeflicients relat-
ing thermal vibrations of constituent atoms to temperature variation and strain
are also studied in detail in both isothermal and adiabatic processes. Peculiar
temperature dependences of these quantities near the melting point are found.
With these analytical results, Helmholtz free energy for elastic solids is formulated
explicitly up to the melting point. The present model can be applied to many
nonequilibrium phenomena in solids near the melting point, for an example, wave
propagation phenomena [3,5].





