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A new closure for Grad’s 13 moment equations is presented that adds terms of Super-Burnett order
to the balances of pressure deviator and heat flux vector. The additional terms are derived from
equations for higher moments by means of the distribution function for 13 moments. The resulting
system of equations contains the Burnett and Super-Burnett equations when expanded in a series in
the Knudsen number. However, other than the Burnett and Super-Burnett equations, the new set of
equations is linearly stable fatl wavelengths and frequencies. Dispersion relation and damping for
the new equations agree better with experimental data than those for the Navier—Stokes—Fourier
equations, or the original 13 moments system. The new equations also allow the description of
Knudsen boundary layers. @003 American Institute of Physic§DOI: 10.1063/1.1597472

I. INTRODUCTION Burnett order(but not the actual Super-Burnett tents sta-
bilize the equation>'*or derived regularizations of hyper-

Processes in rarefied gases are well described by thsolic equations that reproduce the Burnett equations when
Boltzmann equatioh? The numerical solution of the Boltz- expanded in K57
mann equation, either direcfiyor via the direct simulation In the method of moments of Grdd, the Boltzmann
Monte Carlo(DSMC) method’ is very time expensive in equation is replaced by a set of moment equations—first-
certain regimes, particularly at low Mach numbers in theorder partial differential equations for the moments of the
transition regimé. Since this regime is important for the distribution function. Which and how many moments are
simulation of microscale flows, e.g., in microelectromechanineeded depends on the particular process, but experience
cal systems, there is a strong desire for accurate modekhows that the number of moments must be increased with
which allow the calculation of processes in rarefied gases ahcreasing Knudsen numb&t®=2! For the closure of the
lower computational cost. equations, the phase density is approximated by an expan-

There are two well-known approaches towards this goalsion in Hermite polynomials about the equilibrium distribu-
the Chapman—Enskog mettdd® and the method of mo- tion (the local Maxwelliai, where the coefficients are re-
ments of Grad™® lated to the moments.

In the Chapman—Enskog method, the phase density is Only few moments have an intuitive physical meaning,
expanded in powers of the Knudsen number Kn, defined ase., densitye, momentum densitpv;, energy densitye,
the ratio between the mean free path of the molecules and theeat flux q;, and pressure tensop;;. This set of 13
relevant macroscopic length scale. To zeroth-order the exnomenté? forms the basis of Grad’s well-known 13 moment
pansion yields the Euler equations, the first-order correctiorquation5 which are commonly discussed in textbodRs.
results in the equations of Navier—Stokes and Fourier, thejowever, the 13 moment set does not allow the computation
second-order expansion yields the Burnett equafiérend  of boundary layer$?*2and, since the equations are sym-
the third-order expansion yields the so-called Super-Burnethetric hyperbolic, leads to shock structures with discontinui-
equations>'* The equations of Navier—Stokes and Fourierties (sub-shocksfor Mach numbers above 1.65°With in-
cease to be accurate for Knudsen numbers above 0.05, aggkasing number of moments, one can compute Knudsen
one is led to think that Burnett and Super-Burnett equationgoundary layer$?’ and smooth shock structures up to
are valid for larger Knudsen numbers. Unfortunately, how-higher Mach number®?® As becomes evident from the
ever, the higher order equations become linearly unstable fagited literature, for some problems, in particular for large
processes involving small wavelengths, or high frequenciesviach or Knudsen numbers, one has to face hundreds of mo-
and thus cannot be used in numerical simulatidri$in re-  ment equations.

cent years, several authors presented augmented forms of the |n most of the available literature, both methods—
Burnett equations that contain additional terms of Supermoment method and Chapman—Enskog expansion—are
treated as being completely unrelated. However, using a

aElectronic mail: struchtr@me.uvic.ca method akin to the Maxwellian iteration of Truesdell and
bElectronic mail: manuel@math.ethz.ch Ikenberry?®2° Reinecke and Kremer could extract the Bur-
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nett equation from Grad’s 13 moment syst&te2In Ref. 25 by the 13 moments. This idea was also presented by Karlin

it was shown that their iteration method is equivalent to theet al3® for the linearized Boltzmann equation. The main dif-

Chapman-Enskog expansion of the moment equations. lierence between our approach and the one of Kalial.

the course of the present paper it will become clear that thées in the fact that we base the derivation of the equations on

Super-Burnett equations cannot be extracted from a set of 1tBe nonlinear moment equations, instead of the linearized

moment equations, but from a set with 26 moments. Boltzmann equation, so that we obtain a set of nonlinear
In this paper we shall derive and discuss a set of equagquations. Also, the use of moment equations allows for a

tions for the 13 moment®, ov;, @€, q;, pg;, which is  much faster derivation of the equations, and yields explicit

based on Grad’s theory for 13 moments, and the correspondgumerical expressions for coefficients that were not specified

ing distribution function, but differs from the established in Ref. 35. Thus, the Karliet al. equations follow from our

method in the closure relations. Our method adds some tern@$juations by linearization. Karliet al. do not discuss the

of Super-Burnett order to the usual 13 equations. The addielation between their equations and the Burnett and Super-

tional terms, which are obtained from the moment equation8urnett equations.

for higher moments, place the new equations in between the A thorough discussion of the orders of magnitude of mo-

Super-Burnett and Grad's 13 moment equations in as muchients(in the Chapman—Enskog seitead Muler et al* to

as the new equations keep the desirable features of botR,N€W view on moment equations. In particular, they consid-

while discarding the unwelcome features. In particular, the2red higher order iterations in the set of all moment equa-
new equations: tions in order to find the proper variables corresponding to a

_ _ . given orderO(Kn"). In their work they suggest a “possible
(i)  Contain the Burnett and Super-Burnett equations aparabolization” that is different in spirit, but very similar in
can be seen by means of a Chapman—Enskog expafgct to our method of regularization. Since the aim of that

sion in the Knudsen number; work lies in the discussion of orders of magnitude, the au-
(it)  are linearly stable for all wavelengths, and/or frequen-thors only considered special cases, i.e., one-dimensional
cles; flows! or even a one-dimensional gas, and Bhatnagar—

(i) show phase speeds and damping coefficients thatross—Krook BGK) production terms, that allowed them to
match experiments better than those for the Navier-explicitly expand up to high orders. Due to these simplifica-
Stokes—Fourier equations, or the original 13 momentsions, it is not possible to compare their results with ours.
system; Jin and Slemrod presented a set of regularized Burnett

(iv)  exhibit Knudsen boundary layers; equation$®'’ which bear some resemblance to our set of

(v)  lead to smooth shock structures for all Mach numbersequations. Their equations are constructed to guarantee the

positivity of the entropy production, and contain several un-
In the present paper we shall derive the new equationgqnown parameters. At present, the relation between these
and discuss the first three points above for the linearize@quations and our new regularized equations is not clear. The
equations in detail. Also, we shall show the existence ofadvantage of our method is that it shows a rational path how
boundary layers, but shall not discuss how to obtain propefo obtain regularizations for Grad moment systems with any
jump and slip boundary conditions for the equations. Thisnumber of moments. Additionally we recall that our equa-
problem, and the computation and discussion of the shocKons contain no free parameters.

structure will be discussed in future papers. The remainder of the paper is organized as follows. In

Hyperbolic partial differential equations imply finite the next section we discuss moment equations in general,
wave speeds and discontinuities that make them difficult tand derive the new set of equations. Section Il deals with
handle with standard analysis. Regularization is a method tChapman—Enskog expansions. We show that the expansion
add some parabolic terms which change the character of thef the new equations yields the Burnett and Super-Burnett
equations so that no discontinuities occur, but a narrovequations(in the linear casg and discuss the relation be-
smooth transition zon&:>* We decided to adopt the notion tween Chapman—Enskog expansions, Grad’s moment equa-
of regularization for the new equations since the additionations, and the new equations. In Sec. IV we consider plane
terms indeed are smoothing out the discontinuitisgb-  wave solutions to prove the stability of the equations, and
shockg that occur in Grad’s 13 moment system for Mach show that phase velocity and damping are in good agreement
numbers above 1.65. It is important to note, though, that thevith experimental data for a large range of frequencies. The
shocks in Grad’s moment equatiofa Ma= 1.65 for 13 mo- Knudsen boundary layers as predicted from the regularized
ments, at higher Mach numbers for extended moment setspjoment equations are discussed in Sec. V. The paper ends
see Refs. 9 and 26are artefacts of the method, and thuswith our conclusions.

unphysical. The parameter that controls our regularization is

the mean time of free flight, which is a physical parameter. In|. MOMENT SYSTEMS

other words, the regularization of Grad's 13 moment system ,

removes artificial discontinuities, and replaces them by f‘ Grad’s moment method

shock structure which is based in physics. We consider monatomic ideal gases. The objective of the

Simply put, the regularized equations follow from a kinetic theory of gases is the determination of the phase den-

Chapman-Enskog like procedure, where the expansion ity f(x;,t,c;) which gives the number of particles in the

performed about a nonequilibrium state, which is describeghhase space elemettdc. Here,x; ,t denote space and time
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variables, respectively, arg is the velocity of a particle of higher order momentg,, that are not among the variables
massm. The phase density is governed by the Boltzmann3), as well as the productiorB,. The integrals of the de-

equation? rivatives of W, can be expressed in terms of the variables
pr f pa- In order to close the system for the variables, a
— 4 —=8(f), (1) closure assumption is required that allows to relate the addi-
at IXk tional moments and the productions to the variables.

where the collision terns(f ) accounts for the change of the In Grad’s moment method, the phase density is related to

phase density due to collisions among particlésiepends the moments as

on the interaction potential between particles, and in the N
present paper we shall mainly consider Maxwell molectiles, fin="fwm| 1+ E AA(PB)‘I’A) (5)
and a slight modification thereof, see Sec. Il D below. A=1

Once the phase density is known, one may calculate itg;ith
moments, for instance the mass dengitythe momentum
densityov; and the thermal energy densi¢, given by pA:f Wafde, A=1,..N,

0= mf fdc, Qvisz cif dc, where the coefficients , follow from the inversion of the

(2) last equatior:® f,, denotes the local Maxwellian, given by
3 k m
— — 2
QS—EQET—EJC fdc. _g m . 7(m/2kT)CZ'

o _ = VamkT
In these definitionsk is Boltzmann’s constant,; denotes the i i o
barycentric velocity of the gasC;=c,—v; is the peculiar Equation(5) will be used to compute the constitutive func-

velocity, andT denotes the temperature, which is definedtions for higher moments and productions as

hereP. . d heat f . , 5 pak(Xi ) =pa(pe(Xi 1), Pa(Xi,t)=Palpg(X;,t)).
ressure tensq;; and heat flux vectog; are given
@i i g y The constitutive functions are local, i.e., depend only on the
_ _ _ local values of the moments, , and not on gradients or time
Pij =P i+ Paj) = P 01 = mj CiCjfde, derivatives of the moments.

qi:gf C?c;fdc. B. 13 moment equations and their regularization

Now we specify the above formalism for the 13 moment
By comparison with{2) the pressure is related to temperaturesystem. The basic equations for the 13 momepjs
and density by the ideal gas laps= (k/m) T. The pressure  —{o ov,,0e =30 (k/m) T,0i;,q;} read
deviator is denoted by;;,=o; ; here, and in the following,
the angular brackets label the traceless part of a symmetri‘%_g n @ =0

tensor. at - Ixy

In moment methods one assumes that the state of the gas
is satisfactorily described by a set Nf moments i + i P + ﬂzo (6)

@t TV Tk axe
pA:f ‘PA(Ck)de, A:].,...,N, (3) k k
L S L a v

where W,(C,) is a vector of polynomials of the peculiar ~og — 4+ = oy, A pﬂ+0ijﬂ=o'
velocity. In Grad’s 13 moment theory one ha¥, 2 2 X Ky T Ik 20
=m{1¢;,5C?CC;),5C°C;}, ie, the moments doy  doyui 4 aqp  Apgk v dvj)

. . 0. defined ab h iabl der—— +t—o—t+——"+2p— + 20—
0,0v;,0¢,pij),d; defined above are the variables under— %, 5 ax; X, X (9%,
consideration. Y i

Multiplication of the Boltzmann equatiofl) by ¥ 5 and Oy 7
subsequent integration over velocity space yields the mo- ~— ;7 (@)

ment equations

@_’_ 5qivk+1 IPrr (ik) E dprss O P Ip 5 p dojg

9Pn | A PAVH P f Wa o TWa O Ixe 2 X 6 ax, 200d%x 20
— — = i 0 dX;, 20 X
TR gt GG | TC=Pa, K k ! ' k
@ _ow P 0 doj T i 2 P, 2 ok
with 0 JIXk [ 5 OXy 5 X 5 Xy
(7l)j 2 d;
PAk= j \PACk]c dc, PA: f \PASf dc. +p<ijk>(9_Xk =— § ? (8)

Equations (4) do not form a closed system of partial differ- The first five equations, i.e., the set (6);, are the conser-
ential equations for the moments since they contain someation laws for mass, momentum and energy, while Egs.
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and (8) are the respective balance laws for the pressure devhere—again—the production terms on the right are com-
viator and the heat flux vector. For the computation of theputed for Maxwell molecules.
production terms on the right-hand sides, we have assumed For the sake of the argument, we assume that the non-
Maxwell molecules. In particulary is the collision time, equilibrium moments of the 13 field case, i.ey; andq;,
which for Maxwell molecules is given by=1/(¢«) where  change on the time scale defined fywhile all other non-
a is a constant. We shall discuss the relation betweand  equilibrium moments change on a faster time sealehere
viscosity below, in Sec. II D, where we shall present a modi-¢ is “small.” Indeed, we considee as a formal smallness
fication that allows the extension of the model to other typegparameter that will be set equal to one at the end of the
of interaction. calculations. In this case, Eq&l2) are slightly changed on
Equations(6), (7), and(8) do not form a closed set of the right hand side which now contains the parameter
equations, since they contain the additional quantjiigg, ,
Pre(ijy» @ndpyss, Which must be related to the variables via
the distribution function. For the variables at hand, the Grad 9t

IMji .
—% 1 {---space derivatives of moments

distribution (5) reads 13 my,
i
2 =T T5
m e2 T
flaa=ful 1+ 35172 7ikCiCu
IR;;
2 m 7”+{---space derivatives of moments
= 5= 0C«| 1 -z +=C°] |, 9
okT 5 kT
_ _  1T7Ry
and from this function one computes T :6 1
=0 —7 55 T A
Pjk)13= Pre(ii|as™ iy b Tijs Prrss|13™ 5? —¢ T{-space derivatives of moments
(10)
Insertion of these relations intt7) and (8) yields Grad's 124 (13
well-known system for 13 momenfsThis system is sym- e3 7’

metric hyperbolic for a wide range of values of the . . . . :
Similar equations can be written for all higher moments.

variables’ and develops discontinuous shocks for MaChTh i ded in t fth ¢
numbers above 1.65. aesse equations are now expanded in terms of the parameter
&

In order to regularize this system, we define the devia-
tions of pgijky, Prrijy, @andpyss from their values obtained mijk:mi(ﬁ()+8mi(jlk)+... . R; =Ri(jo)+8Ri(jl)+"' ,
with the Grad closuré10) as (14)
A=AO 4+ A0 4. .. ’
Mijk = Pijk)y — Pijk)| 137 Plijk) »
where we only account for terms up to ordée). This
(11) procedure is a Chapman—Enskog like expansion withs

k
Ri = Pregiy = Pregipaa= Py ™ I T iy smallness parameter

p? The constitutive laws fom;;, R, andA result from
A= prrss— Prrss|13= Prrss— 15— inserting the ansat4) into Egs.(13), and balancing terms
e of the same order im. It is straightforward to see that the

For the Grad closure we thus hawej,=Rj=A=0. We zeroth-order approximatiotbalancing terms with the factor
proceed by computing nonzero approximations for thesd/e) just gives Grad's 13 moment case, corresponding to
quantities that follow_ from the_ moment equat_ions Bofy mO=RO= A0

Pregiky» @andprss, Which are given in Appendix A. In these kT '
equations, the quantitiesy;, , R, and A are introduced The first-order corrections result from balancing terms of or-
according to Egs(11) and all time derivatives of the 13 dere® and can be written as
variables {¢,0v;,0e=3¢ (k/m) T,oy; ,0;} are eliminated

by means of their corresponding balance lawks (7), and Lﬂmijk +{---space derivatives of moments

(8). After some algebra, one obtains equations that can be dt 1
written in short as
3 .(,1k)

&mijk . . 3 I"nijk :__L,
T+{~-space derivatives of moments = — 5, 2 7

IRy 7 Ry u+{---s ace derivatives of moments
— +{---space derivatives of moment§=— =~ —, ot P

at 6 7 If13
oA derivatives of Me=- 22 (12 7Ry
_ _|_ e = — — — = — —_- —

o {---space derivatives of moments 3, (12 6 .
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dA
W+{---space derivatives of moments

If13
2 AW

3 77

where the notatiorﬁ~]|f13 indicates thatall moments inall

H. Struchtrup and M. Torrilhon

With these equations, we have derived the complete set of

regularized equations for the 13 variabled ,v; ,ojj ,q; that

consists of Eqs(6), (16), (17), and(15). In the next section,

we shall discuss some of the background of the derivation.
In the following, we shall refer to these equations as the

R13 equations, where “R” stands for “regularized,” and 13

denotes the number of variables. In Sec. I D, we shall show

terms inside the square brackets must be evaluated with ttiBat the Navier—Stokes—Fourier equations might be denoted

phase density|,3 as given in Eq(9), that is by

P(iik)[13= P(ijki)[13= Prriik)[13= 0 Preijyjis= 7 T,

2
p
Prrss|13= 15 ? and  Mji13= Rijj13=A13=0.

The result can be summarized as follows.
The corrections to Grad’s 13 moment equations i(@éd
ter settinge =1)

dinp

k (?U(ij k
T—— U<”—(9Xk>

My =mf)=—27

24 [k _aq, k aT
Ry~ == 5 7 Ty~ m% ey
i Xi)
_ k q(?lng 1q(90’l>k EET - %
m Caxy op Nax, 7 mo | T g,
&Uk 2 &Uk 50’ij &qk
O L
So-ij (9Uk 15
6 0 "M |’ (15)
k _dq¢ 5k T Kk dlng
A= _ T —4+—-——qg,— — —
a=4 127 mTan 2mqk(9Xk mqu Xy
1 {90'Jk+k_|_ (9Ui
oWt g |

as the R5 equations.

C. A closer look on the derivation of Grad'’s
equations and the R13 equations

It is well known that the relaxation times for moments
grow only slowly>® so that the relaxation times of the first 26
moments are of the same magnituddhis becomes obvious
by a glance at the right hand sides of E¢k2) where the
factors{3/2 1/r,7/6 1/,2/3 1/} define the respective time
scales for the moments. Accordingly, the parametes not
small, but of order unity. Thus, the basic assumption in our
derivation—the smallness ef—is not well justified. Never-
theless, the argument shows that the assumption behind the
R13 equations, which requigeas “small,” is less restrictive
than the the assumption behind Grad’s 13 moment system
which requiress =0.

The great advantage of our method is that it is based on
a Chapman—Enskog expansion of ofifgt orderto obtain a
set of equations which agrees with the Boltzmann equation
to a higher order as we shall show in Sec. Ill. It is well-
known that the first order Chapman—Enskog expansion
yields stable equations, while expansions to higher order
yield unstable equations, see Refs. 10 and 40 and Sec. IV B.

Nevertheless, a full Chapman—Enskog expansion in Kn
of the infinite moment system reveals more information
about the order of magnitude of the moments. In Ref. 36 a
high order expansioitagain, termed as Maxwell iteratipn
showed indeed that higher momerthat is moments of
higher powers in velocityare of higher order in the Knudsen
number in the Chapman—Enskog sense. For one-dimensional
geometries, and for BGK production terms, the authors of
that study were able to state which set of moments is appro-
priate for a given order of accurac9(Kn®).

These must be inserted into the equations for pressure devia- ThUS, a h|gh order of accuracy requires more moments.

tor and heat flux vector which read

(90'”' &O’ijvk 4 &q<| (91)<i &UJ &m”k
—_—t——t = —+ —+ —+
ot axe 5 oxj 2 Ix;) 201 X Xy
o
== (16)
T
kT kT
&qi &qivk 5 (95 5 &E k (?O'ik
—+ +sp—tso—+t=T—
at X 20 9 2 Xk Mo IXy
k (9'”9 Tij (90'“( 7 av; 2 vy
i e e 5%, 5%,
+2 (9Uk 1&Rik+laA+ &vj_ 2q| 1
5% 9x, 2 x| 6 ax Mk gx 3, 1D

Since equations obtained from the Chapman—Enskog expan-
sion are unstable if orders higher than one are accounted for,
the expansion can only give hints which moments to use, but
not which equations. Grad’s sets of moment equations are a
better choice, since they are linearly stable, and well-posed.
However, their hyperbolicity implies finite speeds leading to
unphysical sub-shocks for larger Mach numbers, and one
must conclude that they are restricted in validity as well. The
R13 equations seem to be the best choice, as they combine
the desirable features of both approaches.

In the same paper, Ref. 36, a possible regularization of
moment equations is presented. While the spirit of that work
seems quite different from the present approach, the idea of
regularization is very similar. The results are not easy to
compare, since in Ref. 36 the authors do not consider mo-
ments, but Hermite polynomials, have BGK production
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terms instead of those for Maxwell molecules, and do nof yq; o
relate their systems of equations to sets of moment equa= *1{'*-space derivatives of moments
tions, nor higher order Chapman—Enskog expansions. Ifs

D. Euler and Navier—Stokes equations -

In this section, we use the same method of regularization
in order to derive the equations of Navier—Stokes and Fouwhere all moments in the square brackets must be replaced
rier which can be considered as the regularization of théy their values computed with the Maxwellidg=f), , that
Euler equations. This section is intended to show the readés from the Grad function for the case under consideration.
that the very same idea that resulted in the R13 equations calhese values are easily computed as
be used to derive a familiar result. Besides, the Navier—
Stokes equations allow us to relate the microscopic param- p
etera=1/(o7) to viscosity data. 7ij]5= di|5= P(ijiols= Prr¢ijls=0  and PrrSSISZE’E’

Indeed, the first member of the meaningful sets of Grad
type moment equations is the 5 moments case, better knowand it follows that the two equations simply reduce to the
as Euler equations, whee,=m{1c;,3C?}, corresponding Navier—Stokes law for the stress tensor, and the Fourier law
to the five variablespa={p,0v;,0e=30 (k/m)T} or for the heat flux
{o,v;,T}. Accordingly, the relevant moment equations are
the conservation laws for mass, momentum and enépy U D I ) aT (19
Of course, these five equations are not a closed set for the i~ % Foxy, A4 K&xi'
five variables{o,v;,T} since they contain the pressure de-
viator oy; and the heat flux vectar; . Straightforward appli- Here,x and« denote viscosity and heat conductivity, respec-
cation of the Grad closuré) reveals that the corresponding tively, and are given as
distribution function for the closure is the Maxwelliahg
=f,,, which yields p_kT 15 k 15k

LT T ma T E Pm T A m

2

O'i”5:0 and qi|5=O. (18)
While the viscosity is linear i for Maxwell molecules, one

The resulting equations are the well-known Euler equationgings for more realistic interaction potentials a relation of the
for an ideal gas. In particular, the Euler equations are ofgrm

hyperbolic nature and exhibit discontinuous shocks in super-

sonic flow problems. T
For the regularization we introduce the smallness param- &= /-Lo( T.

etere in the right-hand sides of the balances &gy andq;, 0

S

Egs.(7) and(18), which then read where u, is a reference value measuredTaf ands is a
P 1 constant in the intervdl0.5,1]. In particular, one finds=1
ﬂ+{---space derivatives of moments}z——ﬂ, for Maxwell molecules, and=0.5 for hard spheres. See
ot € T Ref. 4 for more details and tables for the appropriate values
1o of uo ands for various gases. While we use the production
Ja; . . )
ﬂ+{---space derivatives of moments = — - = ﬂ terms for Maxwell molecules_ throughout this paper, we gen
at e3 T eralize the approach by setting
Next, we make the ansatz k T /[To\S
= — — | —
m Mo T

gj=oP+e0l, q=qV+eq®,
in order to have a more accurate description of the gas. For
Maxwell molecules one has=1, hencea = const, while for
argons=0.8 gives good agreement with experimental data.
G_i(jO): (0=, A§ is well known, the. Navier—Stokes—FoqriéNSF)
equations are not hyperbolic, and do not allow discontinuous

so that the zeroth-order expansion results in the Euler equ&hocks. Thus, the NSF equations can be considered as the

and equate terms of equal powerseinAs can be expected,
we find

tions. The first-order expansion yields regularization of the Euler equations.
do o E. Linearized equations
7+{-~~space derivatives of momentg In the remainder of this hall di
I paper, we shall discuss the R13
equations only for small deviations from an equilibrium state
1 ﬁ given by 04, To,v; 0=0. Dimensionless variableg, T, o;,
e T &y, g are introduced as
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Q:Qo(1+é), T=To(1+:|'), IIl. CHAPMAN—-ENSKOG EXPANSIONS

A. Burnett and Super-Burnett limits

p=QO%T0(1+é+:I'), vi= \/%Toﬁi, We proceed by showing that the Chapman—Enskog ex-
pansion of the linearized systei@1) gives the linear Burnett

k K 3 and Super-Burnett equations. In Refs. 25 and 31 it was

Uij:QOETO&ij , qizgo( VETO ) ;. shown that the expansion of the full nonlinear 13 moment

equations yields the nonlinear Burnett equations. The addi-
Moreover, we identify a relevant length scaleof the pro-  tional quantitiesm;;, , R;, andA correspond to third-order
cess, and use it to nondimensionalize the space and ting®rrections tar;; andq;, and therefore are of Super-Burnett

variables according to order. Accordingly, the full R13 equations contain the non-
linear Burnett equations as well. The complete Super-Burnett
~ L. equations are almost never used, and hard to find in the
X=Lx, t= —kt- literature'®*! Their derivation is quite cumbersome, and that
5 /_TO is the reason why we restrict ourselves to the linear case.
m The idea of the Chapman—Enskog expansion is to ex-

and the distribution function in a series in the Knudsen

The corresponding dimensionless collision time is then g've'ﬁumber as

by the Knudsen number, which we define here as

? ” f=fO+Knf®+Kn?f @+ KnPf )+
TVpTo oV To where thef(®) are obtained from the Boltzmann equatfofi.
Kn= L = Pl (20) In our case, we operate on the level of moments and moment
equations, and thus we expand pressure deviator and heat

It must be mentioned that the definition of the Knudsen numflux in a series as
ber varies in the literature; definitions frequently used are
Kn'=\/(7/2)Kn! and Kri' = £,/(2/7r)Kn,* our definition(20) aij= o)+ Kno{)+Kn?e{P) +Kn3 P+,
was chosen for notational convenience.

Linearization in the deviations from equilibrium, T,

vi, oij, § yields the dimensionless linearized system inNote that in the Chapman—Enskog expansion, opposed to the

gi=9Y+KngM+Kn?2q@+Kn3q®+- -,

three dimensions as Hilbert expansion, the equilibrium variablgsv; ,T are not

. expanded:®” The above expressions are inserted into the
9 vk ~0 balance equations (213 and terms with equal powers in Kn
T are equated to find the|”, g .

Here, it is customary, to express the time derivatives of

~ < - (@) (@) hy ti ot - -
POt aQ+aT FEs aii”, q;* by time derivatives of the hydrodynamic variables

—+—=+—+—=0, 0,T,v;, this must be done successively as described below.
gt IXi IXi  IX¢ Considering the terms of ordé(Kn™1), we find
A (0)— 50—
3T o, b oij ' =di ' =0. (22)
2 gt IRe X - This is the zeroth-order solution that corresponds to the Euler
equations, see Eq18).
9ey 4 ag _ dby g a6 &) Equating the terms of orde&d(Kn®), we find
e Tl K T T R
IX; IX; OXy X n .
ot i) i k k) U(l):_zﬂ and q(l):—1—5£ (23)
- g ﬁXJ> ! 4 (9Xi’
a; 5JT oy 12 J r?C]<i d d9y ) ) . )
—+-——+——Kn———-2Kn—— i.e., the laws of Navier—Stokes and Fourier, Etf), which
gt 20X X 5 IR IRy IX;. X therefore, form the first-order correction to the Euler equa-
2 & tions.
__cq9 21) Before the next step, the time derivativesddf”, g™
3 Kn must be replaced by means of the balances of momentum

. . . . . d energy. With the result given in Appendix B, E(B1),
This set of equations is equivalent to the equations propose\? 1 .
. : ; - n then te terms of ord@&Kn®) t tain th
by Karlin et al,*® who—however—did not give explicit nu- e ca en squa’e terms of o ) to obta ©

. . ) linear Burnett(i.e., the second ordecorrections as
merical expressions for the factors that multiply the second

derivatives ofa;; and §;, but presented them as integrals -
over the linearized collision operator which are not further  0jj "= —
evaluated.

The hats will be omitted in the sequel. and

p . T
(9X<i(?Xj> (9X<i(9Xj>
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@_ 13 Pu 3 7,

+ .
: 4 &Xk&Xi 2 &Xkﬁxk

(24)
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Boltzmann equation is forbiddingly complicated. The deriva-
tion of moment equations is much easier, and can be per-
formed with help of computer algebra systems, see Ref. 38.

Again, the time derivatives of these expressions must b&hus, it is imaginable, indeed, to compute and solve R26 or

eliminated, see Eq4B2) in Appendix B, and then we find
from the O(Kn?) terms the linear Super-Burnetie., the
third ordep contributions as

R45 moment equations, while it seems almost impossible to
compute their Chapman—Enskog counterparts. Moreover, as
the discussion in the next section will show, the R13 equa-

tions are superior to the higher-order Chapman—Enskog ex-

a'.(.3):§ 9 vk 4 I v pansion, since they are stable.
g 3 (9X<i(9Xj> IX 3 IXIXK (9Xj>
and
3) 157  9°T 5 673P IV. LINEAR ANALYSIS

' 16 9% XX 8 9% XX (25 A Plane harmonic waves

These are the same equations that Shavaliyev found from the In this section we consider the stability of the linearized
Boltzmann equation for Maxwell moleculés.The corre- R13 equations, for the case of one-dimensional processes
sponding result for the one-dimensional case was also giveffhere all variables depend only on=x, and wherev;

by Bobylev*° ={v(x,t),0,0}. With =04, andq=q,, the equations re-

duce to
B. Discussion do v
: —+—=0,
From the previous paragraph follows that the R13 equa- Jt = dx

tions contain the Navier—Stokes—Fourier, Burnett, and

Super-Burnett equations when expanded in the appropriate ‘?_UJF ‘?_Q ﬂ (9_0:0,
order in Kn. gt Ix  IX  IX
The discussion of the preceding section also confirms 5 .t aq

that the newly added terms are of Super-Burnett order. Since
these are based on the moment equationpfgr,, prrij)

554—&4-&:0, (26)

andpss, we conclude that 26 moment equations are needed g0 8 99 4dv 6 Jd°c o

to produce the Super-Burnett equations. ot + Eax 3 5 na_xf =T Kn’
We therefore see that the regularization improves the

Chapman—Enskog order of accuracy: The regularization of dq 54T do 18 d°q 2 q

55T T 3k

For comparison, we shall also consider the Chapman-—
Enskog expansion to various orders, in which case we have
to replace the last two equations with the relevant terms of

the Euler equations which ax®(Kn®) adds terms of order E+ 2 (?_x+ ax
O(Kn) to yield the Navier—Stokes—Fourier equations. The
regularization of the 13 moment equations which are accu
rate up to Burnett orde®(Kn?) adds third-order terms

O(Knd).

The expansion procedure can be continued ad infinitum, 4 Jv K 9?0 2 9°T
with o{{0, q{)#0 for all a. Of course, ther(”, () for oce=—Knz - —Knlz—7-32
a=4 do not yield the correct expressions of the Chapman—

Enskog expansion to ordes since terms from othehigher N Kn3z 073_v N

moment equations will enter the proper expressions. Never- 9 ox3 '
theless, there are contributions of all ordeP§Kn®), « )
=1,...00, present in the R13 equations. It is in these higher Qog= KHEE_ nzz ‘9_”
order contributions that the R13 equations differ from the CE 4 9x 4 9x?

Burnett and Super-Burnett equations. 3 3
L . : : 1579°T 5 90
The regularization of the moment equations is a straight- —Kn¥ = =3+ —=
forward procedure that can be performed similarly on mo- 16 ox* 8 Jx
ment systems with more than 13 moments. A natural choicgve assume plane wave solutions of the form
for the next system to consider would be to add the moments ~ .
Pijky » Prr(ijy» @Ndpyrss to the list of variables, and than find ¢=pexpli(ot—kx)},

the regularized closure conditions from even higher momer\;vhere:ﬁ is the complex amplitude of the wave, is its

equations. This procedure would yield the R26 equationsfrequency anc is its wave number. The equations can be
and would need 45 moment equations to be derived. PresurWritten as,

ably, the Chapman—Enskog expansion of the R26 equations
will be accurate up toO(Kn*), corresponding to the
Supef-Burnett equations.

At this point it is worthwhile to mention that the com-
putation of high-order Chapman—Enskog expansions of the

+ ..

App(0,K)Tg=0 with Tg={p,T,7,7.,4},
and nontrivial solutions require
def Apg(w,k)]=0,
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the resulting relation betwean andk is the dispersion rela- used in this section. Alternatively, for a given wave number
tion. k, we can define the proper Knudsen number ag=Kn

If a disturbance in space is considered, the wave number
k is real, and the frequency is complexy=w,(k) B. Linear stability
+iwi(k). Phase velocity,, and dampinga of the corre-
sponding waves are given by

K
vph:$ and a=w;(k).

We test the stability against local disturbances of fre-
quencyw. As we have seen, stability requires different signs
of real and imaginary part df(w). Thus, ifk(w) is plotted
in the complex plane witlw as parameter, the curves should

Stability requires damping, and thus(k)=0. It is well not touch the upper right nor the lower left quadrant.

known that the Navier—Stokes—Fourier equations are stable, Figure 1 shows the solutions for the different sets of

while the Burnett and Super-Burnett equations are unstablg(ﬂ]uat'oni conmdzfed in this paper, the.dots m;rk the gomts
for large values ok, that is for small wavelength§:'? where »=0. Grad’s 13 moment equation&rad13, an

If a disturbance in time at a given location is considered,Navier—Stokes—Fourier equatiofSH give two different
the frequencyw is real, while the wave number is complex modes each, and none of the solutions violates the condition

k=k(w) +iki(w). Phase velocity ,, and dampingx of the of stability (upper left in Fig. 1. This is different for the
corresponding waves are given by Burnett (three modes, upper righaind Super-Burnettfour
modes, lower left equations: The Burnett equations have

one unstable mode, and the Super-Burnett have two unstable

Vo= and a=-—kj(w). ' ) '
ki(w) modes. The R13 equations, shown in the lower right, have
For a wave traveling in positive direction (,>0), the three modes, all of them are stable. _ .
damping must be negativé;0), while for a wave travel- In Fig. 2 we consider the stability against a disturbance
ing in negativex direction (k,<0), the damping must be ©Of given wave length, or wave numbér Since it is well
positive ;>0). known that Burnett and Super-Burnett equations are

In this section, we chose the mean free path as the refnstablel’ we only show curves for the R13 equations. The
erence length, and the reference time is the mean free timégure shows the damping coefficient and dimensionless
Accordingly, in Egs.(26) we have to set Kr 1. It follows  phase velocitycy,=uv/Co Where co=(5/3)(k/m) Ty, or
that the wave number is measured in units of the invers€o=1+/5/3 in dimensionless units. There are three solutions
mean free path, and the wave frequency in terms of the coke(k) for the dispersion relation, the “0” mode has a phase
lision frequency 1#. Thus, the proper definition for the velocity of zero(not drawr. The damping coefficient is
Knudsen number for an oscillation with frequen€y is  positive for allk and it follows that the R13 equations are
Kno=Qr, that is Kn,= w with the dimensionless measure stable.
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The instability of the Burnett and Super-Burnett equa-ment equations approach constant values of 1.65 and 0.63,
tions is one of the major drawbacks of these theories, since this reflects the hyperbolicity of the equations. The fact that
makes accurate numerical computations impossible. The R1tBe Grad 13 equations imply finite wave speeds is related to
equations are stable for all frequencies, as well as they am#ie occurrence of sub-shocks, which occur if the inflow ve-
stable for disturbances of any wave length. Since the maitocity lies above the maximum wave speed.
difference between R13 arn&uper) Burnett lies in the oc- In all theories obtained with the Chapman—Enskog ex-
currence of higher order terms of order3, we conclude pansion, the phase speeds grow monotonously with the fre-
that these higher order terms play an important role in stabiquency, so that signals of infinite frequency travel at infinite
lizing the equations. speeds. The corresponding dampingt shown, but see Fig.

1) is infinite as well.

The R13 equations show a mixed behavior, with two

We proceed by discussing the phase speeds as functioRides giving monotonous increasing phase speeds, and one
of frequency for the various methods, as depicted in Fig. 3mode(the sound moderemaining finite. The R13 equations
which shows Oniy the positive modes. The figure shows thénCIUde infinite wave SPGEdS and this is related to the fact that
ratio between the phase Speed and the Speed of Sqiiind they give smooth shock structures for all Mach numbers, as
=0 pn/Co- will be shown in a future paper.

All theories have one mode, denoted @swith c;=1 Next we ask for comparison of phase speed and damping
for small frequencies, this mode describes the propagation ofith experiments performed by Meyer and Ses$idfigure
sound. The mode, is zero at small frequencies, and corre- 4 shows the inverse phase speed and the dantagwgw) as
sponds to diffusive transport of hefahere is no shear diffu- functions of the dimensionless inverse frequenay, Iéom-
sion in the one-dimension&l D) setting. The modes;, ¢, puted with NSF, Grad 13, and R13 equations, and experi-
in the Burnett, Super-Burnett, and R13 equations have noental data from Ref. 41. As can be seen, the R13 equations
obvious intuitive interpretations. reproduce the measured values of the damping coeffieient

At large o (note thatw=Kny=1 is already large in the for all dimensionless frequencies less than unity, while the
present dimensionless descriptipall curves behave quite NSF and Gradl3 equations fail already @t 1/4 and w
different. Most notably, the phase speeds for Grad’s 13 mo=1/2, respectively. The agreement of the R13 prediction for

C. Dispersion and damping
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Cph Vc}/ Cph / 1 /
1 ]
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P C
@ 3 e |
7 “ [
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(13)
Ca NSF / Grad13 Burnett
0.0 0.0
0.0 1.0 2.0 3.0 40 , 50 0.0 1.0 2.0 3.0 40 ( 50 FIG. 3. Phase speeu:i)h for the vari-
ous methods as function of frequency
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the phase velocity is less striking, but also the other theories X
do not match well. One reason for this might be insufficient ~ v(X)=vo~ 0121~ ~ £02(X)
accuracy of the measurement. Altogether, the R13 equations
give a remarkably good agreement with the measuremeniith
for values ofw<<1. Sx— 1L Sx— 1
Equations from expansions in the Knudsen number can qz(x):ASin}—( \ﬁ_z +B cos)’( \ﬁ 2), 27
be expected to be good only for Krl. As we said above, 9 Kn 9 Kn
the proper definition for the Knudsen number for an oscillayherey,, o,,, A, B are constants of integration.
tion with dimensionless frequenay is the frequency itself, The solution of the heat transfer problem reads
Kng= w. We conclude that the R13 equations allow a proper
description of processes quite close to the natural limit of (X)=To— iqli_ Eo'll(x)
their validity of Kn,=1. It is not surprising that all theories 15°°Kn 5
show discrepancies to the experiments for larger frequencie%ith
The reasonable agreement between the NSF phase speed and
experiments must be seen as coincidence. _ \Fx— 3 \Fx— 3
o11(X)=Csin 5 Kn +D cos 5K |
V. KNUDSEN BOUNDARY LAYERS (28)
In this section we briefly study boundary value problemswhere-ro, ., C, D are constants of integration.
for the linearized R13 equations. The goal is to show that the ThUS, in order to obtain the fields of temperature and
R13 equations lead to Knudsen boundary layers. velocity between the plates, we need eight boundary condi-
To this end we consider a simple steady state Couettgons. The velocities and temperatures of the two plates give
flow problem: Two infinite, parallel plates move in the only four boundary conditions, and thus additional boundary
{x2.,X3}-plane with different speeds i, direction. The plate  conditions are required. As of now, the problem how to pre-
distance id. =1 in dimensionless units, and the plates havescribe meaningful boundary conditions for the R13 equations
different temperatures. In this Setting, we expect that all Vari'is unso|ved, and we hope to be able to present proper bound-
ables will depend only on the coordinatg=X. Since matter  ary conditions(that, of course, allow for temperature jumps
cannot pass the plates, we will havg=0. Moreover, for  and velocity slipsin the future.

symmetry reasons, there will be no fluxes in tedirection, Nevertheless, it is worthwhile to study the general solu-
so that tions (27) and (29): In the linear Navier—Stokes—Fourier
vi={0p(x),0} and gs=013=0»=0. case both, temperature and velocity, are straight lines accord-

ing to
Under these assumptions, the linearized equat{@as can J

be split into the flow problem with the equations 4 X

X
UNSF(X):UO_O'Hﬁ and TNSF(X):TO_E%ﬁa

Jv 2 (9q2 012 9 2 (92q2
x5 ox - Kp o const qx=gKn—-7, that is for the NSF case one finds(x) = o13(x) =0.
. ) With the R13 equations, on the other hand, these func-
and the heat transfer problem, with the equations tions are nonzero as given {@7) and (28). From that, we
50T doy 20y 6 oy identify — 2q,(x) and — 204(X) as the Knudsen boundary
Ea_x+ v §ﬁ:const, 011=§Kn VR layers for velocity and temperature according to the R13

o . equations. Indeed, these functions have the typical shape of a
Two more nontrivial equations serve to compgieandoy,,  boundary layer, their largest values are found at the walls,

VIZ. and the curves decrease to zero within several mean free
2 Poy 4 Poy] d0 IT  doy paths away from the walls.
Kn®lz ——— ——> —+ —+ ——=0. The curves are governed by the Knudsen number, so that
T22 3 9x%2 15 9x% ' ax  ax X 0 9 y

for small Knudsen numberg,(x) and o11(X) are equal to
The linear equations are easy to integrate, and we obtain theero almost everywhere between the plates. The boundary
solution of the flow problem as layers are confined to a small region adjacent to the wall, and
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contribute to temperature jump and velocity $ffpln this  inequality. The study of their papers might show the road
case, the Navier—Stokes—Fourier theory can be used wittowards an entropy inequality for our equations.
proper jump and slip boundary conditions. Despite these open questions, the R13 equations present
As Kn grows, the width of the boundary layers is grow- themselves as an interesting alternative to higher order
ing as well. For Knudsen numbers abové).05 one can- Chapman—Enskog expansio(Burnett, Super-Burnettand
not speak of boundary layers anymore, since the function&rad’s moment equations, since they combine the benefits of
g,(x),011(X) as given in (27) and (28) are nonzero both methods, while avoiding their drawbacks.
anywhere in the region between the plates. In this case
boundary effects have an important influence on the flow
pattern. o , . ACKNOWLEDGMENT
Since, at this point, we have no recipe for prescribing all
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with those of the Boltzmann equation. A recent study of heat
transfer with Grad’s moment equatidhindicates that more
m.oments than 26 might bg needed for an accurate agreeme&gPENDlx A: EQUATIONS FOR THE DERIVATION
with the Boltzmann equation. Nevertheless, results from they- = 5 = A5p A
26 moment case give a marked improvement when com= /K’ K
pared with the Navier—Stokes—Fourier theory, and the same  The general moment equations fpf;jx,, pr(iky. and
can be expected from the R13 equations, which were deriveg, . read
from the 26 moment case.

PGk | IPGVI L IPGiK) 3 purgij Ea<i_ P
ot 6’X| O')X| 7 an> Y ](9Xk>
VI. CONCLUSIONS
. . 50’k|> &vk> 12 0701
We presented a new set of equations for gas flows inthe — —oy; Ix +3p<|<ij>W + gq“ o
transition regime, termed as the regularized 13 moment ! ! )
equations, or R13 equations. In the present paper we have 3 piijk)
proven that the equations contain the Navier—Stokes— =757
Fourier, Burnett and Super-Burnett equations when expanded
in the appropriate order in the Knudsen number, are linearlyprrijy = 9Prr(ijVk N IPre(ijk) n E IPrrssi
stable for disturbances in all wavelengths or frequencies, gt Xy Xy 5 dxj
give wave speeds and damping in good agreement with ex-
perimental data, and exhibit Knudsen boundary layers. A 2 Pn 28 _‘9|°i>kJr - duk
follow-up paper will show that the R13 equations give con- o PN x5 M ax, TPk
tinuous shock structures for all Mach numbers, where shock K
thickness and asymmetry match well with experiments. precipy— — Tj
However, before the R13 equations can be considered as .ﬂ: _ Z m
a useful tool for the computation of transitional flows, the Prektiox, 6 T '
problem of boundary values must be solved. It must be(? 3 9 8 . P
noted, though, thaiSuper) Burnett equations and Grad type “Prrss , ZPrrssVk | “Prrssk - 0Pk Orrki il
equations with more than 13 moments face the same prob-9t Xk Ixe e X " ox

lem. Some progress on solutions of boundary value problems 2 —15p2/
. . Prrss p/p
for moment equations was reported only recently in Refs. 18, B S —

24, 43, and 44, where the boundary conditions for the distri- T

bution function were instrumentalized in order to provide theThe production terms on the right are computed for Maxwell
boundary conditions for moments. We are hopeful that theseolecules.

studies will be helpful in understanding how a solution of the

problem of boundary values for the R13 equations can be

found. . . _ APPENDIX B: EQUATIONS FOR THE DERIVATION

Another, less important, open question is how to definegr THE SUPER-BURNETT EQUATIONS
the entropy for the R13 equations. It is well known that for
the Burnett equations the H-theorem can be viof&téskee Here, we list the time derivatives of the expansion terms
Ref. 46 for a discussiona fact that probably is related to the o", o7, g, g{*) that are used in the computation of the
observed instabilities of the Burnett equations. Since the R1Burnett and Super-Burnett equations of Sec. lll. The expres-
system is unconditionally stable, it might well be that asions follow straight forward from eliminating time deriva-
proper entropy, that is with strictly non-negative entropy pro-tives of p,T, v; by means of their balance laws, which con-
duction, can be found. For this problem, it might be useful totain pressure deviator and heat flux. Since we do not go
compare our equations with those of Jin and Slenfdd, beyond the Super-Burnett order, we need only the contribu-

which are constructed in order to guarantee a proper entropjons up to©@(Kn?) which are obtained as
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< gof ok e ) #*T
"ot T N axgax;, X9
2 2
D T L SO L
3 5X<i5X]‘> Xy IXIXK 6’Xj>
+O(Kn%), (B1)
< aqi(l)_sK o 15, T oK
N = 2K oxax 8 K axaxan T KM
(2) 2
Joi 4 J Jv
2970 2 K 3
=-Kn?———+
K0 = 3K axax,, ax,, T O
o (B2)
aq\t 7 & *T
Kn2—— = —Kn? P +O(Knd).

+
ot 4 (?Xi (9Xk(9Xk &Xi an&Xk
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