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Regularization of Grad’s 13 moment equations: Derivation
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A new closure for Grad’s 13 moment equations is presented that adds terms of Super-Burnett order
to the balances of pressure deviator and heat flux vector. The additional terms are derived from
equations for higher moments by means of the distribution function for 13 moments. The resulting
system of equations contains the Burnett and Super-Burnett equations when expanded in a series in
the Knudsen number. However, other than the Burnett and Super-Burnett equations, the new set of
equations is linearly stable forall wavelengths and frequencies. Dispersion relation and damping for
the new equations agree better with experimental data than those for the Navier–Stokes–Fourier
equations, or the original 13 moments system. The new equations also allow the description of
Knudsen boundary layers. ©2003 American Institute of Physics.@DOI: 10.1063/1.1597472#
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I. INTRODUCTION

Processes in rarefied gases are well described by
Boltzmann equation.1,2 The numerical solution of the Boltz
mann equation, either directly3 or via the direct simulation
Monte Carlo ~DSMC! method,4 is very time expensive in
certain regimes, particularly at low Mach numbers in t
transition regime.5 Since this regime is important for th
simulation of microscale flows, e.g., in microelectromecha
cal systems, there is a strong desire for accurate mo
which allow the calculation of processes in rarefied gase
lower computational cost.

There are two well-known approaches towards this go
the Chapman–Enskog method1,2,6 and the method of mo
ments of Grad.7–9

In the Chapman–Enskog method, the phase densit
expanded in powers of the Knudsen number Kn, defined
the ratio between the mean free path of the molecules and
relevant macroscopic length scale. To zeroth-order the
pansion yields the Euler equations, the first-order correc
results in the equations of Navier–Stokes and Fourier,
second-order expansion yields the Burnett equations,2,6 and
the third-order expansion yields the so-called Super-Bur
equations.10,11 The equations of Navier–Stokes and Four
cease to be accurate for Knudsen numbers above 0.05
one is led to think that Burnett and Super-Burnett equati
are valid for larger Knudsen numbers. Unfortunately, ho
ever, the higher order equations become linearly unstable
processes involving small wavelengths, or high frequenc
and thus cannot be used in numerical simulations.10,12 In re-
cent years, several authors presented augmented forms o
Burnett equations that contain additional terms of Sup

a!Electronic mail: struchtr@me.uvic.ca
b!Electronic mail: manuel@math.ethz.ch
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Burnett order~but not the actual Super-Burnett terms! to sta-
bilize the equations,13,14 or derived regularizations of hyper
bolic equations that reproduce the Burnett equations w
expanded in Kn.15–17

In the method of moments of Grad,7,8 the Boltzmann
equation is replaced by a set of moment equations—fi
order partial differential equations for the moments of t
distribution function. Which and how many moments a
needed depends on the particular process, but experi
shows that the number of moments must be increased
increasing Knudsen number.9,18–21 For the closure of the
equations, the phase density is approximated by an ex
sion in Hermite polynomials about the equilibrium distrib
tion ~the local Maxwellian!, where the coefficients are re
lated to the moments.

Only few moments have an intuitive physical meanin
i.e., density%, momentum density%v i , energy density%e,
heat flux qi , and pressure tensorpi j . This set of 13
moments22 forms the basis of Grad’s well-known 13 mome
equations7 which are commonly discussed in textbooks23

However, the 13 moment set does not allow the computa
of boundary layers18,24,25and, since the equations are sym
metric hyperbolic, leads to shock structures with discontin
ties ~sub-shocks! for Mach numbers above 1.65.9,26 With in-
creasing number of moments, one can compute Knud
boundary layers18,27 and smooth shock structures up
higher Mach numbers.20,26 As becomes evident from th
cited literature, for some problems, in particular for lar
Mach or Knudsen numbers, one has to face hundreds of
ment equations.

In most of the available literature, both methods
moment method and Chapman–Enskog expansion—
treated as being completely unrelated. However, usin
method akin to the Maxwellian iteration of Truesdell an
Ikenberry,28,29 Reinecke and Kremer could extract the Bu
8 © 2003 American Institute of Physics
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2669Phys. Fluids, Vol. 15, No. 9, September 2003 Regularization of Grad’s 13 moment equations
nett equation from Grad’s 13 moment system.30–32In Ref. 25
it was shown that their iteration method is equivalent to
Chapman–Enskog expansion of the moment equations
the course of the present paper it will become clear that
Super-Burnett equations cannot be extracted from a set o
moment equations, but from a set with 26 moments.

In this paper we shall derive and discuss a set of eq
tions for the 13 moments%, %v i , %e, qi , p^ i j & which is
based on Grad’s theory for 13 moments, and the corresp
ing distribution function, but differs from the establishe
method in the closure relations. Our method adds some te
of Super-Burnett order to the usual 13 equations. The a
tional terms, which are obtained from the moment equati
for higher moments, place the new equations in between
Super-Burnett and Grad’s 13 moment equations in as m
as the new equations keep the desirable features of b
while discarding the unwelcome features. In particular,
new equations:

~i! Contain the Burnett and Super-Burnett equations
can be seen by means of a Chapman–Enskog ex
sion in the Knudsen number;

~ii ! are linearly stable for all wavelengths, and/or freque
cies;

~iii ! show phase speeds and damping coefficients
match experiments better than those for the Navie
Stokes–Fourier equations, or the original 13 mome
system;

~iv! exhibit Knudsen boundary layers;
~v! lead to smooth shock structures for all Mach numbe

In the present paper we shall derive the new equatio
and discuss the first three points above for the lineari
equations in detail. Also, we shall show the existence
boundary layers, but shall not discuss how to obtain pro
jump and slip boundary conditions for the equations. T
problem, and the computation and discussion of the sh
structure will be discussed in future papers.

Hyperbolic partial differential equations imply finit
wave speeds and discontinuities that make them difficul
handle with standard analysis. Regularization is a metho
add some parabolic terms which change the character o
equations so that no discontinuities occur, but a narr
smooth transition zone.33,34 We decided to adopt the notio
of regularization for the new equations since the additio
terms indeed are smoothing out the discontinuities~sub-
shocks! that occur in Grad’s 13 moment system for Ma
numbers above 1.65. It is important to note, though, that
shocks in Grad’s moment equations~at Ma51.65 for 13 mo-
ments, at higher Mach numbers for extended moment s
see Refs. 9 and 26! are artefacts of the method, and th
unphysical. The parameter that controls our regularizatio
the mean time of free flight, which is a physical parameter
other words, the regularization of Grad’s 13 moment syst
removes artificial discontinuities, and replaces them b
shock structure which is based in physics.

Simply put, the regularized equations follow from
Chapman–Enskog like procedure, where the expansio
performed about a nonequilibrium state, which is describ
Downloaded 05 Aug 2003 to 129.132.146.66. Redistribution subject to A
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by the 13 moments. This idea was also presented by Ka
et al.35 for the linearized Boltzmann equation. The main d
ference between our approach and the one of Karlinet al.
lies in the fact that we base the derivation of the equations
the nonlinear moment equations, instead of the lineari
Boltzmann equation, so that we obtain a set of nonlin
equations. Also, the use of moment equations allows fo
much faster derivation of the equations, and yields expl
numerical expressions for coefficients that were not speci
in Ref. 35. Thus, the Karlinet al. equations follow from our
equations by linearization. Karlinet al. do not discuss the
relation between their equations and the Burnett and Su
Burnett equations.

A thorough discussion of the orders of magnitude of m
ments~in the Chapman–Enskog sense! lead Müller et al.36 to
a new view on moment equations. In particular, they cons
ered higher order iterations in the set of all moment eq
tions in order to find the proper variables corresponding t
given orderO(Knn). In their work they suggest a ‘‘possibl
parabolization’’ that is different in spirit, but very similar in
fact to our method of regularization. Since the aim of th
work lies in the discussion of orders of magnitude, the a
thors only considered special cases, i.e., one-dimensi
flows,1 or even a one-dimensional gas, and Bhatnag
Gross–Krook~BGK! production terms, that allowed them t
explicitly expand up to high orders. Due to these simplific
tions, it is not possible to compare their results with ours

Jin and Slemrod presented a set of regularized Bur
equations16,17 which bear some resemblance to our set
equations. Their equations are constructed to guarantee
positivity of the entropy production, and contain several u
known parameters. At present, the relation between th
equations and our new regularized equations is not clear.
advantage of our method is that it shows a rational path h
to obtain regularizations for Grad moment systems with a
number of moments. Additionally we recall that our equ
tions contain no free parameters.

The remainder of the paper is organized as follows.
the next section we discuss moment equations in gene
and derive the new set of equations. Section III deals w
Chapman–Enskog expansions. We show that the expan
of the new equations yields the Burnett and Super-Burn
equations~in the linear case!, and discuss the relation be
tween Chapman–Enskog expansions, Grad’s moment e
tions, and the new equations. In Sec. IV we consider pl
wave solutions to prove the stability of the equations, a
show that phase velocity and damping are in good agreem
with experimental data for a large range of frequencies. T
Knudsen boundary layers as predicted from the regulari
moment equations are discussed in Sec. V. The paper
with our conclusions.

II. MOMENT SYSTEMS

A. Grad’s moment method

We consider monatomic ideal gases. The objective of
kinetic theory of gases is the determination of the phase d
sity f (xi ,t,ci) which gives the number of particles in th
phase space elementdxdc. Here,xi ,t denote space and tim
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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2670 Phys. Fluids, Vol. 15, No. 9, September 2003 H. Struchtrup and M. Torrilhon
variables, respectively, andci is the velocity of a particle of
massm. The phase density is governed by the Boltzma
equation1,2

] f

]t
1ck

] f

]xk
5S~ f !, ~1!

where the collision termS( f ) accounts for the change of th
phase density due to collisions among particles.S depends
on the interaction potential between particles, and in
present paper we shall mainly consider Maxwell molecule2

and a slight modification thereof, see Sec. II D below.
Once the phase density is known, one may calculate

moments, for instance the mass density%, the momentum
density%v i and the thermal energy density%«, given by

%5mE f dc, %v i5mE ci f dc,

~2!

%«5
3

2
%

k

m
T5

m

2 E C2f dc.

In these definitions,k is Boltzmann’s constant,v i denotes the
barycentric velocity of the gas,Ci5ci2v i is the peculiar
velocity, andT denotes the temperature, which is defin
here.

Pressure tensorpi j and heat flux vectorqi are given by

pi j 5pd i j 1p^ i j &5pd i j 1s i j 5mE CiCj f dc,

qi5
m

2 E C2Ci f dc.

By comparison with~2! the pressure is related to temperatu
and density by the ideal gas law,p5% (k/m) T. The pressure
deviator is denoted byp^ i j &5s i j ; here, and in the following,
the angular brackets label the traceless part of a symm
tensor.

In moment methods one assumes that the state of the
is satisfactorily described by a set ofN moments

rA5E CA~Ck! f dc, A51,...,N, ~3!

where CA(Ck) is a vector of polynomials of the peculia
velocity. In Grad’s 13 moment theory one hasCA

5m$1,ci , 1
2C

2,C^ iCj& , 1
2C

2Ci%, i.e., the moments
%,%v i ,%«,p^ i j & ,qi defined above are the variables und
consideration.

Multiplication of the Boltzmann equation~1! by CA and
subsequent integration over velocity space yields the
ment equations

]rA

]t
1

]~rAvk1rAk!

]xk
2E S ]CA

]t
1ck

]CA

]xk
D f dc5PA ,

~4!

with

rAk5E CACkf dc, PA5E CASf dc.

Equations (4)1 do not form a closed system of partial diffe
ential equations for the moments since they contain so
Downloaded 05 Aug 2003 to 129.132.146.66. Redistribution subject to A
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higher order momentsrAk that are not among the variable
~3!, as well as the productionsPA . The integrals of the de-
rivatives of CA can be expressed in terms of the variab
rA . In order to close the system for the variablesrA , a
closure assumption is required that allows to relate the a
tional moments and the productions to the variables.

In Grad’s moment method, the phase density is relate
the moments as

f uN5 f MS 11 (
A51

N

LA~rB!CAD ~5!

with

rA5E CAf uNdc, A51,...,N,

where the coefficientsLA follow from the inversion of the
last equation.7,8 f M denotes the local Maxwellian, given by

f M5
%

m
A m

2pkT
3e2 ~m/2kT! C2

.

Equation~5! will be used to compute the constitutive fun
tions for higher moments and productions as

rAk~xi ,t !5rAk~rB~xi ,t !!, PA~xi ,t !5PA~rB~xi ,t !!.

The constitutive functions are local, i.e., depend only on
local values of the momentsrA , and not on gradients or time
derivatives of the moments.

B. 13 moment equations and their regularization

Now we specify the above formalism for the 13 mome
system. The basic equations for the 13 momentsrA

5$%,%v i ,%«5 3
2% (k/m) T,s i j ,qi% read

]%

]t
1

]%vk

]xk
50,

%
]v i

]t
1%vk

]v i

]xk
1

]p

]xi
1

]s ik

]xk
50, ~6!

3

2
%

]
k

m
T

]t
1

3

2
%vk

]
k

m
T

]xk
1

]qk

]xk
1p

]vk

]xk
1s i j

]v i

]xj
50,

]s i j

]t
1

]s i j vk

]xk
1

4

5

]q^ i

]xj &
1

]r^ i jk &

]xk
12p

]v ^ i

]xj &
12sk^ i

]v j &

]xk

52
s i j

t
, ~7!

]qi

]t
1

]qivk

]xk
1

1

2

]r rr ^ ik&

]xk
1

1

6

]r rrss

]xi
2

5

2

p

%

]p

]xi
2

5

2

p

%

]s ik

]xk

2
s ik

%

]p

]xk
2

s i j

%

]s jk

]xk
1

7

5
qk

]v i

]xk
1

2

5
qk

]vk

]xi
1

2

5
qi

]vk

]xk

1r^ i jk &

]v j

]xk
52

2

3

qi

t
. ~8!

The first five equations, i.e., the set (6)1,2,3, are the conser-
vation laws for mass, momentum and energy, while Eqs.~7!
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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and ~8! are the respective balance laws for the pressure
viator and the heat flux vector. For the computation of
production terms on the right-hand sides, we have assu
Maxwell molecules. In particular,t is the collision time,
which for Maxwell molecules is given byt51/(%a) where
a is a constant. We shall discuss the relation betweent and
viscosity below, in Sec. II D, where we shall present a mo
fication that allows the extension of the model to other typ
of interaction.

Equations~6!, ~7!, and ~8! do not form a closed set o
equations, since they contain the additional quantitiesr^ i jk & ,
r rr ^ i j & , andr rrss , which must be related to the variables v
the distribution function. For the variables at hand, the G
distribution ~5! reads

f u135 f MS 11
m2

2%k2T2 s jkC^ jCk&

2
m2

%k2T2 qkCkS 12
1

5

m

kT
C2D D , ~9!

and from this function one computes

r^ i jk &u1350, r rr ^ i j &u1357
k

m
T s i j , r rrssu13515

p2

%
.

~10!

Insertion of these relations into~7! and ~8! yields Grad’s
well-known system for 13 moments.7 This system is sym-
metric hyperbolic for a wide range of values of th
variables,9 and develops discontinuous shocks for Ma
numbers above 1.65.

In order to regularize this system, we define the dev
tions of r^ i jk & , r rr ^ i j & , andr rrss from their values obtained
with the Grad closure~10! as

mi jk5r^ i jk &2r^ i jk &u135r^ i jk & ,

Ri j 5r rr ^ i j &2r rr ^ i j &u135r rr ^ i j &27
k

m
T s i j , ~11!

D5r rrss2r rrssu135r rrss215
p2

%
.

For the Grad closure we thus havemi jk5Riḱ5D50. We
proceed by computing nonzero approximations for th
quantities that follow from the moment equations forr^ i jk & ,
r rr ^ ik& , andr rrss , which are given in Appendix A. In thes
equations, the quantitiesmi jk , Rik , and D are introduced
according to Eqs.~11! and all time derivatives of the 13
variables $%,%v i ,%«5 3

2% (k/m) T,s i j ,qi% are eliminated
by means of their corresponding balance laws~6!, ~7!, and
~8!. After some algebra, one obtains equations that can
written in short as

]mi jk

]t
1$¯space derivatives of moments̄%52

3

2

mi jk

t
,

]Ri j

]t
1$¯space derivatives of moments̄%52

7

6

Ri j

t
,

]D

]t
1$¯space derivatives of moments̄%52

2

3

D

t
, ~12!
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where—again—the production terms on the right are co
puted for Maxwell molecules.

For the sake of the argument, we assume that the n
equilibrium moments of the 13 field case, i.e.,s i j and qi ,
change on the time scale defined byt, while all other non-
equilibrium moments change on a faster time scale«t where
« is ‘‘small.’’ Indeed, we consider« as a formal smallness
parameter that will be set equal to one at the end of
calculations. In this case, Eqs.~12! are slightly changed on
the right hand side which now contains the parameter«

]mi jk

]t
1$¯space derivatives of moments̄%

52
1

«

3

2

mi jk

t
,

]Ri j

]t
1$¯space derivatives of moments̄%

52
1

«

7

6

Ri j

t
,

]D

]t
1$¯space derivatives of moments̄%

52
1

«

2

3

D

t
. ~13!

Similar equations can be written for all higher momen
These equations are now expanded in terms of the param
« as

mi jk5mi jk
(0)1«mi jk

(1)1¯ , Ri j 5Ri j
(0)1«Ri j

(1)1¯ ,
~14!

D5D (0)1«D (1)1¯ ,

where we only account for terms up to orderO~«!. This
procedure is a Chapman–Enskog like expansion with« as
smallness parameter.

The constitutive laws formi jk , Rik , andD result from
inserting the ansatz~14! into Eqs.~13!, and balancing terms
of the same order in«. It is straightforward to see that th
zeroth-order approximation~balancing terms with the facto
1/«! just gives Grad’s 13 moment case, corresponding to

mi jk
(0)5Ri j

(0)5D (0)50.

The first-order corrections result from balancing terms of
der «0 and can be written as

F]mi jk

]t
1$¯space derivatives of moments̄%G

u f 13

52
3

2

mi jk
(1)

t
,

F]Ri j

]t
1$¯space derivatives of moments̄%G

u f 13

52
7

6

Ri j
(1)

t
,

IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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F]D

]t
1$¯space derivatives of moments̄%G

u f 13

52
2

3

D (1)

t
,

where the notation@•# u f 13
indicates thatall moments inall

terms inside the square brackets must be evaluated with
phase densityf u13 as given in Eq.~9!, that is by

r^ i jk &u135r^ i jkl &u135r rr ^ i jk &u1350, r rr ^ i j &u1357
k

m
Ts i j ,

r rrssu13515
p2

r
, and mi jk u135Ri j u135D u1350.

The result can be summarized as follows.
The corrections to Grad’s 13 moment equations read~af-

ter setting«51)

mi jk5mi jk
(1)522tF k

m
T

]s^ i j

]xk&
2

k

m
Ts^ i j

] ln %

]xk&

1
4

5
q^ i

]v j

]xk&
2

s^ i j

%

]sk& l

]xl
G ,

Ri j 5Ri j
(1)52

24

5
tF k

m
T

]q^ i

]xj &
1

k

m
q^ i

]T

]xj &

2
k

m
Tq^ i

] ln %

]xj &
2

1

r
q^ i

]s j &k

]xk
1

5

7

k

m
TS sk^ i

]v j &

]xk

1sk^ i

]vk

]xj
2

2

3
s i j

]vk

]xk
D2

5

6

s i j

%

]qk

]xk

2
5

6

s i j

%
skl

]vk

]xl
G , ~15!

D5D (1)5212tF k

m
T

]qk

]xk
1

5

2

k

m
qk

]T

]xk
2

k

m
Tqk

] ln %

]xk

2
1

%
qj

]s jk

]xk
1

k

m
Ts i j

]v i

]xj
G .

These must be inserted into the equations for pressure d
tor and heat flux vector which read

]s i j

]t
1

]s i j vk

]xk
1

4

5

]q^ i

]xj &
12p

]v ^ i

]xj &
12sk^ i

]v j

]xk
1

]mi jk

]xk

52
s i j

t
, ~16!

]qi

]t
1

]qivk

]xk
1

5

2
p

]
k

m
T

]xi
1

5

2
s ik

]
k

m
T

]xk
1

k

m
T

]s ik

]xk

2s ik

k

m
T

] ln %

]xk
2

s i j

%

]s jk

]xk
1

7

5
qk

]v i

]xk
1

2

5
qk

]vk

]xi

1
2

5
qi

]vk

]xk
1

1

2

]Rik

]xk
1

1

6

]D

]xi
1mi jk

]v j

]xk
52

2

3

qi

t
. ~17!
Downloaded 05 Aug 2003 to 129.132.146.66. Redistribution subject to A
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With these equations, we have derived the complete se
regularized equations for the 13 variables%,T,v i ,s i j ,qi that
consists of Eqs.~6!, ~16!, ~17!, and~15!. In the next section,
we shall discuss some of the background of the derivatio

In the following, we shall refer to these equations as
R13 equations, where ‘‘R’’ stands for ‘‘regularized,’’ and 1
denotes the number of variables. In Sec. II D, we shall sh
that the Navier–Stokes–Fourier equations might be deno
as the R5 equations.

C. A closer look on the derivation of Grad’s
equations and the R13 equations

It is well known that the relaxation times for momen
grow only slowly,39 so that the relaxation times of the first 2
moments are of the same magnitudet. This becomes obvious
by a glance at the right hand sides of Eqs.~12! where the
factors $3/2 1/t ,7/6 1/t ,2/3 1/t % define the respective time
scales for the moments. Accordingly, the parameter« is not
small, but of order unity. Thus, the basic assumption in o
derivation—the smallness of«—is not well justified. Never-
theless, the argument shows that the assumption behind
R13 equations, which require« as ‘‘small,’’ is less restrictive
than the the assumption behind Grad’s 13 moment sys
which requires«50.

The great advantage of our method is that it is based
a Chapman–Enskog expansion of onlyfirst order to obtain a
set of equations which agrees with the Boltzmann equa
to a higher order, as we shall show in Sec. III. It is well
known that the first order Chapman–Enskog expans
yields stable equations, while expansions to higher or
yield unstable equations, see Refs. 10 and 40 and Sec. I

Nevertheless, a full Chapman–Enskog expansion in
of the infinite moment system reveals more informati
about the order of magnitude of the moments. In Ref. 3
high order expansion~again, termed as Maxwell iteration!
showed indeed that higher moments~that is moments of
higher powers in velocity! are of higher order in the Knudse
number in the Chapman–Enskog sense. For one-dimens
geometries, and for BGK production terms, the authors
that study were able to state which set of moments is ap
priate for a given order of accuracyO(Kna).

Thus, a high order of accuracy requires more mome
Since equations obtained from the Chapman–Enskog ex
sion are unstable if orders higher than one are accounted
the expansion can only give hints which moments to use,
not which equations. Grad’s sets of moment equations a
better choice, since they are linearly stable, and well-pos
However, their hyperbolicity implies finite speeds leading
unphysical sub-shocks for larger Mach numbers, and
must conclude that they are restricted in validity as well. T
R13 equations seem to be the best choice, as they com
the desirable features of both approaches.

In the same paper, Ref. 36, a possible regularization
moment equations is presented. While the spirit of that w
seems quite different from the present approach, the ide
regularization is very similar. The results are not easy
compare, since in Ref. 36 the authors do not consider
ments, but Hermite polynomials, have BGK producti
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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terms instead of those for Maxwell molecules, and do
relate their systems of equations to sets of moment eq
tions, nor higher order Chapman–Enskog expansions.

D. Euler and Navier–Stokes equations

In this section, we use the same method of regulariza
in order to derive the equations of Navier–Stokes and F
rier which can be considered as the regularization of
Euler equations. This section is intended to show the rea
that the very same idea that resulted in the R13 equations
be used to derive a familiar result. Besides, the Navi
Stokes equations allow us to relate the microscopic par
etera51/(%t) to viscosity data.

Indeed, the first member of the meaningful sets of G
type moment equations is the 5 moments case, better kn

as Euler equations, whereCA5m$1,ci , 1
2C

2%, corresponding
to the five variablesrA5$%,%v i ,%«5 3

2% (k/m) T% or
$%,v i ,T%. Accordingly, the relevant moment equations a
the conservation laws for mass, momentum and energy~6!.
Of course, these five equations are not a closed set for
five variables$%,v i ,T% since they contain the pressure d
viator s i j and the heat flux vectorqi . Straightforward appli-
cation of the Grad closure~5! reveals that the correspondin
distribution function for the closure is the Maxwellian,f u5
5 f M , which yields

s i j u550 and qi u550. ~18!

The resulting equations are the well-known Euler equati
for an ideal gas. In particular, the Euler equations are
hyperbolic nature and exhibit discontinuous shocks in sup
sonic flow problems.

For the regularization we introduce the smallness par
eter« in the right-hand sides of the balances fors i j andqi ,
Eqs.~7! and ~18!, which then read

]s i j

]t
1$¯space derivatives of moments̄%52

1

«

s i j

t
,

]qi

]t
1$¯space derivatives of moments̄%52

1

«

2

3

qi

t
.

Next, we make the ansatz

s i j 5s i j
(0)1«s i j

(1) , qi5qi
(0)1«qi

(1) ,

and equate terms of equal powers in«. As can be expected
we find

s i j
(0)5qi

(0)50,

so that the zeroth-order expansion results in the Euler e
tions. The first-order expansion yields

F]s i j

]t
1$¯space derivatives of moments̄%G

u f 5

52
1

«

s i j
(1)

t
,
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F]qi

]t
1$¯space derivatives of moments̄%G

u f 5

52
1

«

2

3

qi
(1)

t
,

where all moments in the square brackets must be repla
by their values computed with the Maxwellianf u55 f M , that
is from the Grad function for the case under considerati
These values are easily computed as

s i j u55qi u55r^ i jk &u55r rr ^ i j &u550 and r rrssu5515
p2

%
,

and it follows that the two equations simply reduce to t
Navier–Stokes law for the stress tensor, and the Fourier
for the heat flux

s i j 5s i j
(1)522m

]v ^ i

]xj &
, qi5qi

(1)52k
]T

]xi
. ~19!

Here,m andk denote viscosity and heat conductivity, respe
tively, and are given as

m5tp5
p

%a
5

k

m

T

a
, k5

15

4
tp

k

m
5

15

4

k

m
m.

While the viscosity is linear inT for Maxwell molecules, one
finds for more realistic interaction potentials a relation of t
form

m5m0S T

T0
D s

,

where m0 is a reference value measured atT0 and s is a
constant in the interval@0.5,1#. In particular, one findss51
for Maxwell molecules, ands50.5 for hard spheres. Se
Ref. 4 for more details and tables for the appropriate val
of m0 ands for various gases. While we use the producti
terms for Maxwell molecules throughout this paper, we ge
eralize the approach by setting

a5
k

m

T

m0
S T0

T D s

,

in order to have a more accurate description of the gas.
Maxwell molecules one hass51, hencea5const, while for
argons.0.8 gives good agreement with experimental da

As is well known, the Navier–Stokes–Fourier~NSF!
equations are not hyperbolic, and do not allow discontinu
shocks. Thus, the NSF equations can be considered as
regularization of the Euler equations.

E. Linearized equations

In the remainder of this paper, we shall discuss the R
equations only for small deviations from an equilibrium sta
given by%0 ,T0 ,v i ,050. Dimensionless variables%̂, T̂, v̂ i ,
ŝ i j , q̂ are introduced as
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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%5%0~11%̂ !, T5T0~11T̂!,

p5%0

k

m
T0~11%̂1T̂!, v i5Ak

m
T0v̂ i ,

s i j 5%0

k

m
T0ŝ i j , qi5%0SAk

m
T0 D 3

q̂i .

Moreover, we identify a relevant length scaleL of the pro-
cess, and use it to nondimensionalize the space and
variables according to

xi5Lx̂i , t5
L

Ak

m
T0

t̂.

The corresponding dimensionless collision time is then gi
by the Knudsen number, which we define here as

Kn5

tAk

m
T0

L
5

m0Ak

m
T0

p0L
. ~20!

It must be mentioned that the definition of the Knudsen nu
ber varies in the literature; definitions frequently used
Kn85A(p/2)Kn1 and Kn95 8

5A(2/p)Kn,4 our definition~20!
was chosen for notational convenience.

Linearization in the deviations from equilibrium%̂, T̂,
v̂ i , ŝ i j , q̂ yields the dimensionless linearized system
three dimensions as

]%̂

] t̂
1

] v̂k

] x̂k

50,

] v̂ i

] t̂
1

]%̂

] x̂i

1
]T̂

] x̂i

1
]ŝ ik

] x̂k

50,

3

2

]T̂

] t̂
1

]q̂k

] x̂k

1
] v̂k

] x̂k

50,

]ŝ i j

] t̂
1

4

5

]q̂^ i

] x̂ j &

12
] v̂ ^ i

] x̂ j &

22 Kn
]

] x̂k

]ŝ^ i j

] x̂k&

52
ŝ i j

Kn
,

]q̂i

] t̂
1

5

2

]T̂

] x̂i

1
]ŝ ik

] x̂k

2
12

5
Kn

]

] x̂k

]q̂^ i

] x̂k&

22 Kn
]

] x̂i

]q̂k

] x̂k

52
2

3

q̂i

Kn
. ~21!

This set of equations is equivalent to the equations propo
by Karlin et al.,35 who—however—did not give explicit nu
merical expressions for the factors that multiply the seco
derivatives ofŝ i j and q̂i , but presented them as integra
over the linearized collision operator which are not furth
evaluated.

The hats will be omitted in the sequel.
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III. CHAPMAN–ENSKOG EXPANSIONS

A. Burnett and Super-Burnett limits

We proceed by showing that the Chapman–Enskog
pansion of the linearized system~21! gives the linear Burnett
and Super-Burnett equations. In Refs. 25 and 31 it w
shown that the expansion of the full nonlinear 13 mom
equations yields the nonlinear Burnett equations. The a
tional quantitiesmi jk , Rik , andD correspond to third-orde
corrections tos i j andqi , and therefore are of Super-Burne
order. Accordingly, the full R13 equations contain the no
linear Burnett equations as well. The complete Super-Bur
equations are almost never used, and hard to find in
literature.10,11Their derivation is quite cumbersome, and th
is the reason why we restrict ourselves to the linear case

The idea of the Chapman–Enskog expansion is to
pand the distribution function in a series in the Knuds
number as

f 5 f (0)1Knf (1)1Kn2f (2)1Kn3f (3)1¯ ,

where thef (a) are obtained from the Boltzmann equation.2,37

In our case, we operate on the level of moments and mom
equations, and thus we expand pressure deviator and
flux in a series as

s i j 5s i j
(0)1Kns i j

(1)1Kn2s i j
(2)1Kn3s i j

(3)1¯ ,

qi5qi
(0)1Knqi

(1)1Kn2qi
(2)1Kn3qi

(3)1¯ .

Note that in the Chapman–Enskog expansion, opposed to
Hilbert expansion, the equilibrium variables%,v i ,T are not
expanded.2,37 The above expressions are inserted into
balance equations (21)4,5 and terms with equal powers in K
are equated to find thes i j

(a) , qi
(a) .

Here, it is customary, to express the time derivatives
s i j

(a) , qi
(a) by time derivatives of the hydrodynamic variable

%,T,v i , this must be done successively as described be
Considering the terms of orderO(Kn21), we find

s i j
(0)5qi

(0)50. ~22!

This is the zeroth-order solution that corresponds to the E
equations, see Eq.~18!.

Equating the terms of orderO(Kn0), we find

s i j
(1)522

]v ^ i

]xj &
and qi

(1)52
15

4

]T

]xi
, ~23!

i.e., the laws of Navier–Stokes and Fourier, Eq.~19!, which
therefore, form the first-order correction to the Euler equ
tions.

Before the next step, the time derivatives ofs i j
(1) , qi

(1)

must be replaced by means of the balances of momen
and energy. With the result given in Appendix B, Eqs.~B1!,
we can then equate terms of orderO(Kn1) to obtain the
linear Burnett~i.e., the second order! corrections as

s i j
(2)522

]2r

]x^ i]xj &
1

]2T

]x^ i]xj &

and
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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qi
(2)52

13

4

]2vk

]xk]xi
1

3

2

]2v i

]xk]xk
. ~24!

Again, the time derivatives of these expressions must
eliminated, see Eqs.~B2! in Appendix B, and then we find
from the O(Kn2) terms the linear Super-Burnett~i.e., the
third order! contributions as

s i j
(3)5

5

3

]2

]x^ i]xj &

]vk

]xk
2

4

3

]2

]xk]xk

]v ^ i

]xj &

and

qi
(3)52

157

16

]3T

]xi]xk]xk
2

5

8

]3r

]xi]xk]xk
. ~25!

These are the same equations that Shavaliyev found from
Boltzmann equation for Maxwell molecules.11 The corre-
sponding result for the one-dimensional case was also g
by Bobylev.10

B. Discussion

From the previous paragraph follows that the R13 eq
tions contain the Navier–Stokes–Fourier, Burnett, a
Super-Burnett equations when expanded in the approp
order in Kn.

The discussion of the preceding section also confir
that the newly added terms are of Super-Burnett order. S
these are based on the moment equations forr^ i jk & , r rr ^ i j &
andr rrss , we conclude that 26 moment equations are nee
to produce the Super-Burnett equations.

We therefore see that the regularization improves
Chapman–Enskog order of accuracy: The regularization
the Euler equations which areO(Kn0) adds terms of orde
O~Kn! to yield the Navier–Stokes–Fourier equations. T
regularization of the 13 moment equations which are ac
rate up to Burnett orderO(Kn2) adds third-order terms
O(Kn3).

The expansion procedure can be continued ad infinit
with s i j

(a)Þ0, qi
(a)Þ0 for all a. Of course, thes i j

(a) , qi
(a) for

a>4 do not yield the correct expressions of the Chapma
Enskog expansion to ordera, since terms from other~higher!
moment equations will enter the proper expressions. Ne
theless, there are contributions of all ordersO(Kna), a
51,... ,̀ , present in the R13 equations. It is in these hig
order contributions that the R13 equations differ from t
Burnett and Super-Burnett equations.

The regularization of the moment equations is a straig
forward procedure that can be performed similarly on m
ment systems with more than 13 moments. A natural cho
for the next system to consider would be to add the mome
r^ i jk & , r rr ^ i j & , andr rrss to the list of variables, and than fin
the regularized closure conditions from even higher mom
equations. This procedure would yield the R26 equatio
and would need 45 moment equations to be derived. Pres
ably, the Chapman–Enskog expansion of the R26 equat
will be accurate up toO(Kn4), corresponding to the
Super2-Burnett equations.

At this point it is worthwhile to mention that the com
putation of high-order Chapman–Enskog expansions of
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Boltzmann equation is forbiddingly complicated. The deriv
tion of moment equations is much easier, and can be
formed with help of computer algebra systems, see Ref.
Thus, it is imaginable, indeed, to compute and solve R26
R45 moment equations, while it seems almost impossible
compute their Chapman–Enskog counterparts. Moreove
the discussion in the next section will show, the R13 eq
tions are superior to the higher-order Chapman–Enskog
pansion, since they are stable.

IV. LINEAR ANALYSIS

A. Plane harmonic waves

In this section we consider the stability of the lineariz
R13 equations, for the case of one-dimensional proce
where all variables depend only onx15x, and wherev i

5$v(x,t),0,0%. With s5s11 and q5q1 , the equations re-
duce to

]%

]t
1

]v
]x

50,

]v
]t

1
]%

]x
1

]T

]x
1

]s

]x
50,

3

2

]T

]t
1

]q

]x
1

]v
]x

50, ~26!

]s

]t
1

8

15

]q

]x
1

4

3

]v
]x

2
6

5
Kn

]2s

]x2 52
s

Kn
,

]q

]t
1

5

2

]T

]x
1

]s

]x
2

18

5
Kn

]2q

]x2 52
2

3

q

Kn
.

For comparison, we shall also consider the Chapma
Enskog expansion to various orders, in which case we h
to replace the last two equations with the relevant terms

sCE52Kn
4

3

]v
]x

2Kn2F4

3

]2%

]x2 2
2

3

]2T

]x2G
1Kn3

2

9

]3v
]x3 1¯ ,

qCE52Kn
15

4

]T

]x
2Kn2

7

4

]2v
]x2

2Kn3F157

16

]3T

]x3 1
5

8

]3%

]x3 G1¯ .

We assume plane wave solutions of the form

f5f̃ exp$ i ~vt2kx!%,

where f̃ is the complex amplitude of the wave,v is its
frequency, andk is its wave number. The equations can
written as

AAB~v,k!ũB50 with ũB5$%̃,T̃,ṽ,s̃,q̃%,

and nontrivial solutions require

det@AAB~v,k!#50,
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 1. The solutionsk(v) of the dispersion relation in
the complex plane withv as parameter for Navier–
Stokes–Fourier, Grad’s 13 moments, Burnett, Sup
Burnett, and regularized 13 moment equations. T
dots denote the points wherev50.
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the resulting relation betweenv andk is the dispersion rela
tion.

If a disturbance in space is considered, the wave num
k is real, and the frequency is complex,v5v r(k)
1 iv i(k). Phase velocityvph and dampinga of the corre-
sponding waves are given by

vph5
v r~k!

k
and a5v i~k!.

Stability requires damping, and thusv i(k)>0. It is well
known that the Navier–Stokes–Fourier equations are sta
while the Burnett and Super-Burnett equations are unst
for large values ofk, that is for small wavelengths.10,12

If a disturbance in time at a given location is consider
the frequencyv is real, while the wave number is comple
k5kr(v)1 ik i(v). Phase velocityvph and dampinga of the
corresponding waves are given by

vph5
v

kr~v!
and a52ki~v!.

For a wave traveling in positivex direction (kr.0), the
damping must be negative (ki,0), while for a wave travel-
ing in negativex direction (kr,0), the damping must be
positive (ki.0).

In this section, we chose the mean free path as the
erence length, and the reference time is the mean free t
Accordingly, in Eqs.~26! we have to set Kn51. It follows
that the wave number is measured in units of the inve
mean free path, and the wave frequency in terms of the
lision frequency 1/t. Thus, the proper definition for th
Knudsen number for an oscillation with frequencyV is
KnV5Vt, that is KnV5v with the dimensionless measu
Downloaded 05 Aug 2003 to 129.132.146.66. Redistribution subject to A
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used in this section. Alternatively, for a given wave numb
k, we can define the proper Knudsen number as Knk5k.

B. Linear stability

We test the stability against local disturbances of f
quencyv. As we have seen, stability requires different sig
of real and imaginary part ofk(v). Thus, if k(v) is plotted
in the complex plane withv as parameter, the curves shou
not touch the upper right nor the lower left quadrant.

Figure 1 shows the solutions for the different sets
equations considered in this paper, the dots mark the po
where v50. Grad’s 13 moment equations~Grad13!, and
Navier–Stokes–Fourier equations~NSF! give two different
modes each, and none of the solutions violates the cond
of stability ~upper left in Fig. 1!. This is different for the
Burnett ~three modes, upper right! and Super-Burnett~four
modes, lower left! equations: The Burnett equations ha
one unstable mode, and the Super-Burnett have two unst
modes. The R13 equations, shown in the lower right, h
three modes, all of them are stable.

In Fig. 2 we consider the stability against a disturban
of given wave length, or wave numberk. Since it is well
known that Burnett and Super-Burnett equations
unstable,10 we only show curves for the R13 equations. T
figure shows the damping coefficienta and dimensionless
phase velocitycph5vph/c0 where c05A(5/3)(k/m) T0, or
c05A5/3 in dimensionless units. There are three solutio
v(k) for the dispersion relation, the ‘‘0’’ mode has a pha
velocity of zero ~not drawn!. The damping coefficient is
positive for all k and it follows that the R13 equations a
stable.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 2. Phase velocity and damping i
time for the R13 equations as func
tions of the wave numberk.
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The instability of the Burnett and Super-Burnett equ
tions is one of the major drawbacks of these theories, sin
makes accurate numerical computations impossible. The
equations are stable for all frequencies, as well as they
stable for disturbances of any wave length. Since the m
difference between R13 and~Super-! Burnett lies in the oc-
currence of higher order terms of ordera.3, we conclude
that these higher order terms play an important role in st
lizing the equations.

C. Dispersion and damping

We proceed by discussing the phase speeds as func
of frequency for the various methods, as depicted in Fig
which shows only the positive modes. The figure shows
ratio between the phase speed and the speed of souncph

5vph/c0 .
All theories have one mode, denoted asc1 with c151

for small frequencies, this mode describes the propagatio
sound. The modec2 is zero at small frequencies, and corr
sponds to diffusive transport of heat@there is no shear diffu-
sion in the one-dimensional~1D! setting#. The modesc3 , c4

in the Burnett, Super-Burnett, and R13 equations have
obvious intuitive interpretations.

At large v ~note thatv5KnV51 is already large in the
present dimensionless description!, all curves behave quite
different. Most notably, the phase speeds for Grad’s 13 m
Downloaded 05 Aug 2003 to 129.132.146.66. Redistribution subject to A
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ment equations approach constant values of 1.65 and 0
this reflects the hyperbolicity of the equations. The fact t
the Grad 13 equations imply finite wave speeds is relate
the occurrence of sub-shocks, which occur if the inflow v
locity lies above the maximum wave speed.

In all theories obtained with the Chapman–Enskog
pansion, the phase speeds grow monotonously with the
quency, so that signals of infinite frequency travel at infin
speeds. The corresponding damping~not shown, but see Fig
1! is infinite as well.

The R13 equations show a mixed behavior, with tw
modes giving monotonous increasing phase speeds, and
mode~the sound mode! remaining finite. The R13 equation
include infinite wave speeds and this is related to the fact
they give smooth shock structures for all Mach numbers
will be shown in a future paper.

Next we ask for comparison of phase speed and damp
with experiments performed by Meyer and Sessler.41 Figure
4 shows the inverse phase speed and the damping~asa/v! as
functions of the dimensionless inverse frequency 1/v, com-
puted with NSF, Grad 13, and R13 equations, and exp
mental data from Ref. 41. As can be seen, the R13 equat
reproduce the measured values of the damping coefficiea
for all dimensionless frequencies less than unity, while
NSF and Grad13 equations fail already atv51/4 and v
51/2, respectively. The agreement of the R13 prediction
y

FIG. 3. Phase speedcph for the vari-
ous methods as function of frequenc
v.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 4. Inverse phase velocity an
damping, theoretical results from
Navier–Stokes–Fourier, Grad’s 1
moments, and regularized 13 momen
and measurements by Meyer an
Sessler~Ref. 41! ~dots!.
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lls,
free

that

dary
and
the phase velocity is less striking, but also the other theo
do not match well. One reason for this might be insufficie
accuracy of the measurement. Altogether, the R13 equat
give a remarkably good agreement with the measurem
for values ofv,1.

Equations from expansions in the Knudsen number
be expected to be good only for Kn,1. As we said above
the proper definition for the Knudsen number for an osci
tion with dimensionless frequencyv is the frequency itself,
KnV5v. We conclude that the R13 equations allow a pro
description of processes quite close to the natural limit
their validity of KnV51. It is not surprising that all theorie
show discrepancies to the experiments for larger frequenc
The reasonable agreement between the NSF phase spee
experiments must be seen as coincidence.

V. KNUDSEN BOUNDARY LAYERS

In this section we briefly study boundary value proble
for the linearized R13 equations. The goal is to show that
R13 equations lead to Knudsen boundary layers.

To this end we consider a simple steady state Cou
flow problem: Two infinite, parallel plates move in th
$x2 ,x3%-plane with different speeds inx2 direction. The plate
distance isL51 in dimensionless units, and the plates ha
different temperatures. In this setting, we expect that all v
ables will depend only on the coordinatex15x. Since matter
cannot pass the plates, we will havev150. Moreover, for
symmetry reasons, there will be no fluxes in thex3 direction,
so that

v i5$0,v~x!,0% and q35s135s2350.

Under these assumptions, the linearized equations~21! can
be split into the flow problem with the equations

]v
]x

1
2

5

]q2

]x
52

s12

Kn
5const, q25

9

5
Kn2

]2q2

]x2 ,

and the heat transfer problem, with the equations

5

2

]T

]x
1

]s11

]x
52

2

3

q1

Kn
5const, s115

6

5
Kn2

]2s11

]x2 .

Two more nontrivial equations serve to compute%, ands22,
viz.

s225Kn2F2

3

]2s22

]x2 2
4

15

]2s11

]x2 G , ]%

]x
1

]T

]x
1

]s11

]x
50.

The linear equations are easy to integrate, and we obtain
solution of the flow problem as
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v~x!5v02s12

x

Kn
2

2

5
q2~x!

with

q2~x!5A sinhSA5

9

x2 1
2

Kn
D 1B coshSA5

9

x2 1
2

Kn
D , ~27!

wherev0 , s12, A, B are constants of integration.
The solution of the heat transfer problem reads

T~x!5T02
4

15
q1

x

Kn
2

2

5
s11~x!

with

s11~x!5C sinhSA5

6

x2 1
2

Kn
D 1D coshSA5

6

x2 1
2

Kn
D ,

~28!

whereT0 , q1 , C, D are constants of integration.
Thus, in order to obtain the fields of temperature a

velocity between the plates, we need eight boundary co
tions. The velocities and temperatures of the two plates g
only four boundary conditions, and thus additional bound
conditions are required. As of now, the problem how to p
scribe meaningful boundary conditions for the R13 equati
is unsolved, and we hope to be able to present proper bo
ary conditions~that, of course, allow for temperature jump
and velocity slips! in the future.

Nevertheless, it is worthwhile to study the general so
tions ~27! and ~28!: In the linear Navier–Stokes–Fourie
case both, temperature and velocity, are straight lines acc
ing to

vNSF~x!5v02s12

x

Kn
and TNSF~x!5T02

4

15
q1

x

Kn
,

that is for the NSF case one findsq2(x)5s11(x)50.
With the R13 equations, on the other hand, these fu

tions are nonzero as given in~27! and ~28!. From that, we
identify 2 2

5q2(x) and 2 2
5s11(x) as the Knudsen boundar

layers for velocity and temperature according to the R
equations. Indeed, these functions have the typical shape
boundary layer, their largest values are found at the wa
and the curves decrease to zero within several mean
paths away from the walls.

The curves are governed by the Knudsen number, so
for small Knudsen numbersq2(x) and s11(x) are equal to
zero almost everywhere between the plates. The boun
layers are confined to a small region adjacent to the wall,
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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contribute to temperature jump and velocity slip.42 In this
case, the Navier–Stokes–Fourier theory can be used
proper jump and slip boundary conditions.

As Kn grows, the width of the boundary layers is grow
ing as well. For Knudsen numbers above;0.05 one can-
not speak of boundary layers anymore, since the functi
q2(x),s11(x) as given in ~27! and ~28! are nonzero
anywhere in the region between the plates. In this c
boundary effects have an important influence on the fl
pattern.

Since, at this point, we have no recipe for prescribing
boundary values required, we cannot say whether the bo
ary layers obtained from the R13 equations coincide w
with those of the Boltzmann equation. A recent study of h
transfer with Grad’s moment equations43 indicates that more
moments than 26 might be needed for an accurate agree
with the Boltzmann equation. Nevertheless, results from
26 moment case give a marked improvement when c
pared with the Navier–Stokes–Fourier theory, and the sa
can be expected from the R13 equations, which were der
from the 26 moment case.

VI. CONCLUSIONS

We presented a new set of equations for gas flows in
transition regime, termed as the regularized 13 mom
equations, or R13 equations. In the present paper we h
proven that the equations contain the Navier–Stok
Fourier, Burnett and Super-Burnett equations when expan
in the appropriate order in the Knudsen number, are line
stable for disturbances in all wavelengths or frequenc
give wave speeds and damping in good agreement with
perimental data, and exhibit Knudsen boundary layers
follow-up paper will show that the R13 equations give co
tinuous shock structures for all Mach numbers, where sh
thickness and asymmetry match well with experiments.

However, before the R13 equations can be considere
a useful tool for the computation of transitional flows, t
problem of boundary values must be solved. It must
noted, though, that~Super-! Burnett equations and Grad typ
equations with more than 13 moments face the same p
lem. Some progress on solutions of boundary value probl
for moment equations was reported only recently in Refs.
24, 43, and 44, where the boundary conditions for the dis
bution function were instrumentalized in order to provide t
boundary conditions for moments. We are hopeful that th
studies will be helpful in understanding how a solution of t
problem of boundary values for the R13 equations can
found.

Another, less important, open question is how to defi
the entropy for the R13 equations. It is well known that f
the Burnett equations the H-theorem can be violated45 ~see
Ref. 46 for a discussion!, a fact that probably is related to th
observed instabilities of the Burnett equations. Since the R
system is unconditionally stable, it might well be that
proper entropy, that is with strictly non-negative entropy p
duction, can be found. For this problem, it might be usefu
compare our equations with those of Jin and Slemrod,16,17

which are constructed in order to guarantee a proper ent
Downloaded 05 Aug 2003 to 129.132.146.66. Redistribution subject to A
ith

s

e

ll
d-
ll
t

ent
e
-
e

ed

e
nt
ve
–
ed
ly
s,
x-
A
-
k

as

e

b-
s

8,
i-

e

e

e
r

3

-
o

py

inequality. The study of their papers might show the ro
towards an entropy inequality for our equations.

Despite these open questions, the R13 equations pre
themselves as an interesting alternative to higher or
Chapman–Enskog expansions~Burnett, Super-Burnett! and
Grad’s moment equations, since they combine the benefit
both methods, while avoiding their drawbacks.
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APPENDIX A: EQUATIONS FOR THE DERIVATION
OF m ijk , Rik , AND D

The general moment equations forr^ i jk & , r rr ^ ik& , and
r rrss read

]r^ i jk &

]t
1

]r^ i jk &v l

]xl
1

]r^ i jkl &

]xl
1

3

7

]r rr ^ i j

]xk&
2

3

%
s^ i j

]p

]xk&

2
3

%
s^ i j

]skl&

]xl
13r^ l ^ i j &

]vk&

]xl
1

12

5
q^ i

]v j

]xk&

52
3

2

r^ i jk &

t
,

]r rr ^ i j &

]t
1

]r rr ^ i j &vk

]xk
1

]r rr ^ i jk &

]xk
1

2

5

]r rrss^ i

]xj &

2
2

%
r^ i j r &

]prk

]xk
2

28

5%
q^ i

]pj &k

]xk
12r^ i j &kl

]vk

]xl

12r rrk ^ i

]v j &

]xk
52

7

6

r rr ^ i j &2
k

m
Ts i j

t
,

]r rrss

]t
1

]r rrssvk

]xk
1

]r rrssk

]xk
2

8

%
qj

]pjk

]xk
14r rrk j

]v j

]xk

52
2

3

r rrss215p2/r

t
.

The production terms on the right are computed for Maxw
molecules.

APPENDIX B: EQUATIONS FOR THE DERIVATION
OF THE SUPER-BURNETT EQUATIONS

Here, we list the time derivatives of the expansion ter
s i j

(1) , s i j
(2) , qi

(1) , qi
(2) that are used in the computation of th

Burnett and Super-Burnett equations of Sec. III. The expr
sions follow straight forward from eliminating time deriva
tives of r,T, v i by means of their balance laws, which co
tain pressure deviator and heat flux. Since we do not
beyond the Super-Burnett order, we need only the contri
tions up toO(Kn2) which are obtained as
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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Kn
]s i j

(1)

]t
52Kn

]2r

]x^ i]xj &
12Kn

]2T

]x^ i]xj &

2
2

3
Kn2

]2

]x^ i]xj &

]vk

]xk
22Kn2

]2

]xk]xk

]v ^ i

]xj &

1O~Kn3!, ~B1!

Kn
]qi

(1)

]t
5

5

2
Kn

]2vk

]xk]xi
2

75

8
Kn2

]3T

]xi]xk]xk
1O~Kn3!,

Kn2
]s i j

(2)

]t
5

4

3
Kn2

]2

]x^ i]xj &

]vk

]xk
1O~Kn3!,

~B2!

Kn2
]qi
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