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Abstract. The BGK-model with velocity dependent collision frequency is discussed and applied to Couette flow and the
shock structure problem. Thermal conductivity and viscosity are computed from the Chapman-Enskog method and several
velocity-dependent collision frequencies are introduced which all give the proper Prandtl number. The models are tested and
compared to results from the Direct Simulation Monte Carlo method. The simulations rely on a numerical scheme that ensures
positivity of solutions, conservation of moments, and dissipation of entropy. The advantages and disadvantages of the various
BGK models are discussed.

INTRODUCTION

Because of its simplicity compared to the Boltzmann equation the BGK equation is widely used in the kinetic theory
of gases [1]. While the BGK equation gives qualitatively good results, it fails when one is interested in quantitatively
correct results. This fact manifests itself most prominently in the computation of the Prandtl number, i.e. the ratio
of thermal conductivityc and viscosity. While measurements and the theory of the full Boltzmann equation give
Pr ~ % one obtain®r = 1 from the standard BGK model [2].

There are two main approaches to modify the BGK model in order to obtain the proper Prandtl number, the
ellipsoidal statistical model (ES- BGK model)[3][4], and the BGK-model with velocity dependent collision frequency
(v (C)-BGK model)[5][6]. In all three approaches, standard BGK, ES-BGK,w&f@)-BGK, the Boltzmann collision
term is replaced by a relaxation type term of the general form

SBGK: fV(f — fE)

wherev is the collision frequencyf is the actual distribution function of the microscopic velocities of the gas, and

fe is a suitable equilibrium phase density. In standard and ES-BGK model, the collision frequency is a constant to
be fitted to viscosity data, but in the standard BGK mofgels the local Maxwell distributionfy, i.e. an isotropic
Gaussian, while in the ES-BGK mod#{ is a local anisotropic Gaussian. In théC)-BGK modelv is a function of

the microscopic velocitg of the particles andg is a local isotropic Gaussian, albeit not the local Maxwellian.

The BGK model with velocity-dependent collision frequency is briefly discussed in the book of Cercignani [2], and
Bouchut and Perthame discussed it thoroughly from a mathematical viewpoint [5]. To our knowledge, the first attempt
to consider an explicit expression fofC) can be found in [6] where the simplest possible ansatz, nam(@y~ C"
was considered. Here, we present some alternative functions for the collision frequency and solve the corresponding
BGK equation for Couette flow and the shock structure problem. The results will be compared with solutions obtained
from the standard and the ES-BGK models, and with Monte Carlo computations.

The numerical method used for solving the various BGK equations considered here, is the method by Mieussens
[7][8][9]. The great advantage of this method compared to others is that it guarantees the conservation of mass,
momentum, and energy.
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BGK MODELS

The goal of kinetic theory is to find the the phase densjtgiefined such thatdc gives the number density of atoms
with velocity in (¢, ¢ + d¢;) at placeg and timet. The macroscopic quantities densptyvelocityvi, density of internal
energype, pressure tensqy; ;y and heat flux vectog; of the gas are given by moments of the phase density, viz.

- . _ 3 k. my o
P—m/fdc, pv._m/c.fdc, pe_zme_ 2/0 fdc (1)
m
Pij) = m/C<iCj)de7 G = E/CZQfdc

wherem is the mass of one particl&,is Boltzmann’s constant, ar@ = ¢; — v; is the peculiar velocityT is the gas
temperature, defined by Eqn. §1Yhe entropy of the gas is given by

pS— —k/flnfdc.

The phase densit§(x;,t,¢;) is governed by the Boltzmann equation [2]

of of

Because of its complex non-linearity, the Boltzmann collision t&rim difficult to handle. Therefore one is interested
in model equations which should have the same properties as the original equation. In the BGK model, the collision

term is replaced by
Sy=-v(f-1) (3)

wheref, is of the form, see [10][6][11],
f,=aexp(-TC?+yC) . (4)

The coefficientsa, T',y; for the distribution (4) follow from the conservation conditions for mass, momentum and
energy

/vm(f—fy)dc:o, /vmq (f—f,)dc=0, /ngZ(f—fY)dc:O. 5)

Note, thatfy is only a Maxwellian ifv does not dependent on the peculiar veloCity
We proceed to discuss the properties of the BGK model which are the same ones as those of the original Boltzmann
equation:

i.) Conservation of mass, momentum and energy is ensured by the proper chajfeypaccording to Egns. (5)
ii.) Since, with (5),
k/ln £,S,dc :k/ (Ina—T'c?+y6) S,dc =0

we obtain the positivity of the entropy production (H-theorem)
—k/ln £S,dc = —k/ln fSch—s—k/In f,S,dc = |</v|nfi (f—1f,)dc>0.
Y

ii.) In thermodynamic equilibrium (characterized by the subsdgpthe BGK collision term vanishes
S\E =0= —v (f\E — f"{|E) =0,

i.e. in equilibrium both phase densities are eqdg!,= f,e. This implies that both functions have the same
moments. Since the first five moments bfdefine density, velocity and temperature, we conclude that both
functions are Maxwellians

3 2
ey = P (M2 | T
fle=fe="w=1 <2nkT) eXp{ ZKT}

iv.) The extension of the ordinary BGK model to the case wheisa function ofC offers an additional degree of

freedom which may be used to adjust both, viscosity and thermal conductivity, to their measured values so that
the proper Prandtl number results. The details will be discussed below.
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In summary, we conclude that the BGK model with a velocity-dependent collision frequency may be formulated so
as to have the same properties i.)-iv.) as the Boltzmann equation.

The BGK equation follows from (2) after replacement Sfby S,. We proceed by approximating the phase
density f by means of the Chapman-Enskog method [2] in order to compute viscosity and heat conductivity. The
first order Chapman-Enskog expansion relies on the assumption that the phase density is close to a Maxwellian,
i.e. f ~ fy (1+¢), where¢p < 1. Then, the equilibrium distributiofi, will be close to equilibrium as well, so that
fy = fm (1+¢y) with ¢, < 1. In fact, we can write

3
_p /. m _a (M N2l ~ CALTC2 e
f,= \ T (1 a)exp[ <2kT F)C —i—y.Q] ~ fy [1—a+TC°+ 7G|

where the coefficients, %, I measure the deviation from the Maxwellian and are assumed to be small. We insert the
Maxwell phase density on the right hand side of the BGK equation and eliminate all time derivatives by means of the
Euler equations for monatomic gases, to find the phase density as

1 m8V<i 10T m ., 5

This approximate solution fulfills the conservation conditions (Spfor distribution f, so that the coefficients, ¥;, r
cannot be determined from these conditions. However, the phase density (6) must reproduce the first mamgnts (1)
and it follows tha=T =0 and

8 13T [n*(m?-23
Y=gz *a*/ 2 e "dn

3Vn T X v(n)
wheren = |/ 55C. Now it is an easy task to calculate the pressure deviatgrand the heat flux vectaj. Of course,

we find the laws of Navier-Stokes and Fourier with explicit expressions for viscpsityd thermal conductivity,
viz.

2
32 k n® 2. 0V 8 K n*m2-3)° 2 T

iy = — —T [ ——eWdn-— -:———T/—2 " dn — 7
Pt =" 15/x m /v(n)e Mo, 0 T T ayRP e vim o Mox ")

2u K

As expected, the Prandtl number depends on the collision frequency
2

_5kp_ [ m® e M -3)" e

Pr=gme S vme O / vy e an ®

There is an infinite number of possible function&) that give the proper Prandtl number. Since the true collision
frequency is an increasing functioniy we consider only increasing functions for which we introduce the notation

Pt . n

6
v =ERls ) witn o [

Four simple dimensionless collision frequencies that all §ive- 2/3 are

eVdn=1. )

V1 (n) = 0.431587n 1791288 V2(n) = 0.0268351(1+ 14.27247?) ,

G3(n) = 0.0365643(1+ 10112'081754) . 9a(n) =0.1503991(1+ 0.9289%"%) .

In the case of hard sphere molecules, one fiids(0) = 0.557608 for molecules at rest anghs(n>>1) =
0.4941673) for fast particles [12]. Thus, in comparison to hard sphere molecules, our models underestimate the
collision frequency for slower particles and overestimate that of faster particles.
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NUMERICAL METHOD

For the sake of simplicity, our numerical method is presented in one spatial dimension, but three dimensions in velocity,
see [9, 8] for a complete description. The equation to be approximated is

o o0
ot Xox
The space variabbeis discretized on a uniform grid defined by nodes- iAx with Xo = 0 andx; = L. The velocitycy
is discretized by nodeé(jl) = Cyxmin + j1ACx, With CQ = Cxmin andcf(1 = Cxmax; Cy andc; are discretized accordingly.
For brevity, we writec; = (c&jl),cy”,c(zjs)) wherej = (j1, j2, j3). Finally, time is discretized &g = nAt.
Eqn. (10) is then classically approximated by a finite volume scheme,

—v(f—1f), 0<x<L. (10)

At
= A= Ry = Ry ) — AVl (6 — ), 1)

where the above quantities are defined as follows:

- f{i is an approximation of (x;, tn, ¢j);
. numencal fluxes are defined by

1 . .
Ry =5 (6 () — e Aty —ely ),
with the notationAfi’]rl = fiiy; — . and the flux limiter functlonl)” aIIows to obtain a second order
3, ,
schemegl)i"+1 | = 0 for first order, ancﬂ)i” 0= mlnmodAfn 1, ’Af|n+1 J,Af” ) for second order;
2 +3, 2

- the collision frequency is defined by

n

nanA ) - - - k
oy = Bmen), il = o e @) @2 [y 2
I

« macroscopic quantities are defined as in Egn. (1) where now continuous integrals are replaced by discrete sums
on the velocity grid

K () (i) (i) (i2) (ja)
(o, PV, ZoMETY =m Y (1, &, (@ -2 ()24 ()P) ) 11 Acagac,
i=(0.0.0)

- the approximation of,(x;,t,, cj) is defined by

YI =4 exp[ (( RSEY V)24 ((35112))2+ (093))2) +Yin(c>(<11) 7V:n)} ’
where the three coefficienss, I,y are solutions of the discrete version of Eqn. (5) that are solved by a Newton
algorithm.

Owing to this last approximation, our scheme is perfectly conservative for density, momentum, and total energy.
Moreover, the positivity of the phase density is preserved, if at each iteration the time step follows the condition

‘C)((Jl)|
A n 1 12
t ITII?XV| i +mjax Ax <1, (12)

also the total entropy is increasing.
For the computation of steady states, condition (12) is very restrictive for dense or rapid regimeawbamall
and the convergence is very slow. A classical way to overcome this difficulty is to use a linearized implicit scheme,

At

fir:lrl—‘r AX

(R =R+ Al (R = ) = .

323



Slncef;‘,ﬂl is a non-linear function ofn+l it is linearized as

fn+1 ~ fn

Yi,j "{Ij+[D (fimrl_fin)}i7

whereD[" is the Jacobian of the mappimg— f,[g] evaluated af". For the second order scheme, the flux limiters
(non differentiable) are kept explicit. The followirdggmatrix-form of the scheme is more adapted to computations

(A|t+T+R“> 8" = RHS", (13)

wheredf" = f*1_ 1 | is the unit matrix,T is a matrix such thatT f"); j = (Fli e FMy ]_) with only the first
-1,
order fluxesR" is such thatR"f"); j = v{';( fi’} — D), and

RHQJ TAX &%7 _Firl%_j)_vin‘j(f f}r)l ]) (14)
which contains the limiters for the second order scheme.

The scheme now reads as a linear system to be solved at each iteration. This can be done efficiently, and this method
has been proved to be very fast for computing steady flows. This scheme theoretically preserves conservation of mass,
momentum and total energy, but it should be noted that the linear system (14) is never solved directly. Instead, an
iterative method is used. It is known in CFD that convergence of such an iterative method is not required for the
global convergence towards the steady state. However, the iterative solver must be carefully chosen so as to preserve
conservation properties.

NUMERICAL RESULTS

In the continuum regime, i.e. for Knudsen numbers below 0.01, the flow is expected to be well described by the
Navier-Stokes-Fourier equations. Since both mode€) —BGK and ES-BGK, are constructed such that they have
proper viscosity and heat conductivity in the continuum regime, numerical simulations for small Knudsen numbers
show only small differences between the different corrected BGK models, and the results match well with solutions of
the Navier Stokes equations [11].

In the transition regime, i.e. for Knudsen numbers between 1 and 0.01, Knudsen number effects are expected to be
visible. These include, but are not limited to, jumps in temperature and velocity slip at the walls.

As a test case we consider one-dimensional plane Couette flow of argon in the transition regime, similar to a testcase
of Bird [13]: the gas is confined between two plates maintainely, at To = 273 K, the distance between the plates
beingL = 1m. One plate is at rest while the other is movingyidirection with velocityu, = 300 m/s. Initially,
the gas is aflp, and its density i = 9.28 x 107 kg/m?®, corresponding to a pressupg = po mTo = 0.0528Pa.

The viscosity of the gas is given hy(T) = o (T /To)® with po = 2.117x 1(T5r'§—% ando = 0.81, corresponding to

Kn=1,/34 —0.1199.

For the numerical calculations, we use a grid of 200 cells diirection and 13« 17 x 13 discrete velocities with
bounds|—913 913 x [-1253 1253 x [-913 913 (in m/s), for further details on the numerics see [11].

Figure 1 shows profiles for density, temperature, velocity, heat flux and stress tensor for standard BGK model,
ES-BGK model, and the (C)-BGK modelsvi (1),V2(n),Vs(n). The collision frequency,(n) is not considered,
since its maximum value is so large that by Eqn. (12) the corresponding time step becomes forbiddingly small. For
comparison, we use results from the DSMC method with variable hard sphere model [13].

For density, curves obtained with théC) —BGK models are close to the DSMC curves in the interio (@ x <
0.8), and results obtained with standard BGK and ES models are close together and differ considerably from DSMC in
the interval 4 < x < 0.6. For temperature, however, the ES model is closest to DSMC, and the temperature jumps at
the boundaries of standard BGK and ES mod&Ts(= 9K) are closer to those of the DSMA&Ty = 8.4K) than those
of thev (C) — BGK model ATy = 9.5K). Similar behavior is observed for velocity slip. For shear stress, however, the
v (C) —BGK models withvy, v lie closest to DSMC, surprisingly all models agree on the heat flux.

As a second test case we consider the shock structure for a one-dimensional steady shock with an upstream Mach
number of 8 in argon, one of the reference problems in [13]. The details of the shock structure depend strongly on the
details of the microscopic interaction, which are reflected in the velocity dependence of the collision frequency.
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FIGURE 1. Couette flow, profiles for wall velocitywy = 300 m/s and Knudsen number 0.1199.
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FIGURE 2. Density and temperature profiles for a stationary shock at Mach 8.

Figure 2 shows the profiles of density and temperature of the shock for our models. Clearly, the standard BGK
and the ES-BGK model give density curves close to the DSMC, while {3-BGK models give a flatter profile.
However, the temperature profiles in Figure 2 are too steep for (@&BGK models, and too flat for standard BGK,
and ES-BGK. Only the ES-BGK model gives a overshoot in the temperature curve similar to that seen in the DSMC
result.

CONCLUSIONS

From our results for Couette flow and shock structure, we draw the following conclusions:

i.) In the continuum regime(n < 0.01) all BGK models with correct viscosity and heat conductivity, that(i8)-
BGK and ES-BGK, give identical results in agreement with the Navier-Stokes-Fourier equations. He(€,)the
BGK model is in disadvantage to the ES-BGK model, since it requires a smaller time step. This can be seen from
Eqn. (12) which relates the time step to the maximum value of the collision frequency. The maximum value
v (Cmax) of thev (C)-BGK models are larger than the constant collision frequency of the ES-BGK model, so that
the latter allows larger time steps, and therefore faster numerical calculations.

ii.) When microscale effects become important, i.e. at Knudsen numbers above 0.01 or in shocks, all BGK-type
models considered here lead to different results. The ES-BGK model is numerically cheapest, and we can say
that it gives the best overall performance of the models considered. However, also the ES-BGK model is not
capable of making accurate predictions for the transition regime, as becomes most apparent in the density curves
of Figure 1 and the temperature profile of Figure 2.

All together, our results show that improved BGK models are accurate in the continuum regime, and can give
qualitatively good results in the transition regime. However, they are not capable of an accurate description of
microscale effects such as slip, temperature jump and shock structure in agreement with the Boltzmann equation.

Nevertheless, our results indicate that considering the non-isotropic Gaussian in the ES-BGK model, as well as
considering velocity dependent collision frequencies intf®-BGK models lead to considerable improvement over
the standard BGK model. We expect that the combination of an anisotropic Gaussian with a velocity dependent
collision frequency in av (C)-ES-BGK model might give the best results. In such a model, one could use the true
collison frequency. The (C)-ES-BGK model will be considered in a future paper.
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