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Abstract

We describe a new formulation of the aerosol general dynamic equation (GDE) that incorporates the phase segre-
gation in a binary aerosol. The model assumes that complete phase segregation is the thermodynamically favored
state, that no thermodynamic activation energy exists, and that the segregation process is kinetically controlled.
We develop a GDE formulation that involves the solution of a distribution function Nn,σ (V ), where Nn,σ (V ) is the
number density of aerosols with volume V and n phase domains (which we might think of as enclosures) with an
enclosure size distribution characterized by σ . The model improves our earlier efforts (Struchtrup H., M. Luskin &
M. Zachariah, 2001. J. Aerosol Sci. 15(3)) which did not account for the enclosure size distribution. The description
of the enclosures is based on a moment approach relying on a log-normal distribution (Park S., K. Lee, E. Otto &
H. Fissan, 1999. J. Aerosol Sci. 30, 3–16). As with our earlier model, we obtain an increase of the mean number
of enclosures per droplet in time, in disagreement to experimental results. The reasons for the disagreement are
discussed.

Introduction

The study of aerosol dynamics is often limited
to homogeneous, single-component aerosol particles.
However, it is becoming increasingly apparent that
multi-component aerosol particles are of both indus-
trial importance and an area in need of significant
research activity.

We have been involved in a number of multi-
component aerosol dynamics studies with heteroge-
neous aerosol particles. One of our main goals in this
research is to study the evolution of the internal state
of the aerosol droplets. For example, we have con-
ducted studies on the formation of binary metal oxide
systems with application to removal of heavy metals

(Biswas & Zachariah, 1997; Biswas et al., 1998) as well
as the formation of materials with novel and interesting
properties (Ehrman et al., 1998; 1999a,b).

Our initial success in growing interesting
microstructures (Zachariah et al., 1995) indicated that
further research into the mechanistic aspects of the
growth was warranted. In subsequent studies, we have
employed both in situ interrogation into the forma-
tion process (McMillin et al., 1996), multi-component
aerosol dynamic modeling (Biswas et al., 1997) and
molecular dynamics computation (Zachariah et al.,
1996). One of the primary conclusions was that
at the high temperatures where these materials are
typically grown, nanodroplets are in a liquid like state,
and that phase segregation taking place within the
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Figure 1. Schematic of the temporal evolution of a two-component aerosol.

nanodroplet was probably limited by transport within
the nanodroplet.

In the course of this paper, we shall use the terms
minor phase and enclosure interchangeable to refer to
the component within each aerosol droplet, and droplet,
aerosol when referring to the major phase. The enclo-
sures are considered as an aerosol inside the droplet,
where the coagulation takes place due to Brownian
motion; both phases are in a liquid state. The temporal
evolution of the aerosol phase is schematically depicted
in Figure 1. Due to the surface tension the enclo-
sures form spherical shapes inside the aerosol droplets.
Obviously, it is not possible to describe the individual
enclosures inside individual droplets since the numeri-
cal efforts would be tremendous. Therefore we supple-
ment the usual statistical formulation for the droplets,
i.e. the Smoluchowski equation, with the statistics of
the enclosures.

The parametric model developed in the paper is
applied to a binary system, SiO2/Fe2O3, where SiO2 is
the major phase and Fe2O3 is the minor phase, for which
we have experimental results (Ehrman et al., 1999a,b)
see also Figure 2. In the figure, we can see that at short
residence times the dark Fe2O3 enclosures are larger in
number and smaller in size than those observed at later
residence times. Our previous model in Struchtrup et al.
(2001), however, could not describe this behavior, but
gave an increasing number of enclosures per droplet
with time. Our goal in this paper is to extend our model
(Struchtrup et al., 2001) by incorporating the size dis-
tribution of the enclosures into the model in the hope
to match the experimental results better.

For the model presented below, the main assumption
will be that the enclosures in a droplet are distributed
log-normally, a common assumption for the descrip-
tion of the long-time behavior of coagulating particles
(Pratsinis, 1988; Park et al., 1999). The collision of

Figure 2. Aerosol droplet with enclosures. The droplets on the
left are ‘younger’.

two droplets leads to a new distribution of enclosures,
which is assumed to be log-normal as well, see the
section on ‘Droplet collisions and the distribution of
enclosures’ for a discussion. Furthermore, we assume
that the enclosure volume concentration is the same in
all droplets (Efendiev & Zachariah, 2001b).

Our main result is a generalized Smoluchowski
equation which is solved using a sectional discretiza-
tion. The problem could also be tackled by means
of Monte Carlo (MC) methods (Shah et al., 1977;
Kruis et al., 2000; Efendiev & Zachariah, 2001a,b).
The disadvantage of the MC approach in compari-
son to our model are the large CPU times required
for the simulation of the droplets and the enclo-
sures inside the droplets. The results in the present
paper indicate that one droplet may have several
hundreds of enclosures, so that the number of variables
(= [number of droplets]∗[number of enclosures in
droplet]) is much higher. The advantage of MC is that
other collision mechanisms can be incorporated more
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easily. It must be emphasized that both methods can
only be as good as the underlying models for the colli-
sion probabilities for enclosures and droplets. As will
become clear in the course of the paper, the disagree-
ment between the simulations and experiments can be
traced to the model for enclosure collisions. Indeed, the
MC simulations in Efendiev and Zachariah (2001a,b)
rely on the same collision probabilities as our present
model, and show the same characteristics.

The model will be developed and discussed in the
section on ‘The generalized Smoluchowski equation’.
In the section on ‘Reduced models’, we shall consider
certain limits of our model, which show the relation
to our previous work. A more elaborate but simplified
model is considered in the section on ‘A hybrid model:
Updating standard deviation’, where we also present
some numerical solutions.

The generalized Smoluchowski equation

We consider aerosol droplets which consist of two
immiscible components. Due to surface tension, one
phase forms sphere-like enclosures inside the aerosol
droplets. Due to their Brownian motion, the enclo-
sures collide and coagulate. At the same time, the
droplets collide because of their free molecular motion.
The coagulation of the droplets and the enclosures
are assumed to occur by instantaneous coalescence of
spherical particles. Our goal is to determine the distri-
bution of the droplet volumes and the internal state of
the droplets as a function of time.

In our previous study (Struchtrup et al., 2001), we
considered a model where the internal state of the
droplets is described by the number of the enclosures
alone. In the present work, our goal is to extend the
model by incorporating the size distribution of the
enclosures.

Our basic assumption will be that the distribution
of the enclosures in each droplet remains log-normally
distributed at all times (Friedlander, 2000; Park et al.,
1999).

Log-normal distribution

In the log-normal distribution theory for aerosol coag-
ulation, it is assumed that the volume distribution
of coagulating particles can be described by a log-
normal size distribution at all times. The log-normal

distribution is given by

n(v) = 1

3v

n√
2π ln σ

exp

(
ln2
(v/vg)

18 ln2
σ

)
, (1)

where vg is the geometric mean particle volume and σ
is the geometric standard deviation based on the mean
particle radius (Pratsinis, 1988; Park et al., 1999). For
the enclosures in an aerosol droplet, n(v) dv is the
number of the enclosures with volumes between v and
v + dv, and n is the total number of enclosures in that
droplet. A monodisperse distribution with enclosures
of volume vg is characterized by σ = 1.

The moments of the log-normal distribution are
easily computed as

mk =
∫
vkn(v) dv = nvkg exp

(
9

2
k2Z

)
,

where Z = ln2
σ, k = 0, 1, 2, . . . . (2)

The log-normal distribution is characterized by the
three quantities n, vg, and σ , or, alternatively, by the
first three moments. These are the total number n,
the total volume of the enclosures m1, and the second
moment m2,

m0 = n, m1 = nvg exp
(

9
2
Z

)
,

m2 = nv2
g exp (18Z).

(3)

Our objective is to find the number density of the het-
erogeneous droplets of volumeV whose enclosure size
distribution is log-normal with the given parameters
n, vg, and σ or m0,m1, and m2, respectively.

Throughout this paper, we shall assume that the
volume fraction c of the enclosures in the droplets is the
same for all droplets initially. Evidently, this means
that the concentration will be a constant at all times.
Thus, the total volume of enclosures in a droplet, the
first moment, is given by

m1 = cV, (4)

so thatm1 is not an independent variable. The assump-
tion of constant volume concentration is backed by
MC simulations of nucleation and coagulation in two-
component aerosols (Efendiev & Zachariah, 2001b):
initially, when nucleation prevails, the concentration
differs between nuclei. But as soon as coagulation pre-
vails, the concentration of the aerosol droplets shows
almost no variance.
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Since σ ≥ 1, and therefore Z ≥ 0, it follows from
Eqs. (3) and (4) that

m2 ≥ m
2
1

m0

= (cV )
2

n
. (5)

Evolution of moments in a single nanodroplet

In this section, we consider the evolution of the
moments in a single droplet. The enclosures move
inside the liquid droplet due to Brownian motion,
and coagulate instantaneously when they collide. The
distribution of number density for the enclosures
ν(t, v) = n(t, v)/V obeys the Smoluchowski equation
(Friedlander, 2000):

dν(t, v)

dt
= 1

2

∫ v

0

σB(u, v − u)ν(t, u)ν(t, v − u) du

− ν(t, v)
∫ ∞

0

σB(v, u)ν(t, u) du, (6)

where the appropriate collision kernel for Brownian
motion is given by (Pratsinis, 1988; Park et al., 1999)

σB(u, v) = K0

(
u1/3 + v1/3

)(
1

u1/3
+ 1

v1/3

)

with K0 = 2kT

3µ
. (7)

Here, k denotes Boltzmann’s constant, T , the
temperature and µ, the viscosity of the surrounding
media. This is the collision kernel for the continuum
regime, where the mean free path of the particles
impinging on the enclosure is assumed to be much
smaller than the enclosure diameter. The mean free
path in the liquid droplet is of the order of the molecule
diameter (if not zero), so that this choice is justified for
all enclosures.

With the choice of this collision kernel, we ignore
the finite size of the droplets. Indeed, the derivation of
σB includes that enclosures are uniformly distributed in
space. The finite droplet size should reduce the collision
probability σB(u, v) to some extent. Moreover, exper-
imental data suggests a tendency of the enclosures to
stay at the edge of the droplets (see Figure 2), implying
a surface diffusion of enclosures, see the discussion in
Struchtrup et al. (2001).

One might also argue, that the description of
the enclosures on statistical terms, i.e. by the
Smoluchowski equation, makes sense only, if the num-
ber of enclosures is sufficiently large. This criticism

can be resolved, however, since the aerosol contains a
large number of similar droplets. While the behavior of
enclosures in a single droplet may not be well described
by a distribution function and the Smoluchowski equa-
tion, the behavior of the enclosures in a large number
of similar droplets (ensemble) can be described statisti-
cally. In this sense, we consider the most likely behavior
of enclosures in a droplet.

From the Smoluchowski equation (6) with collision
kernel (7) one can derive moment equations for the first
moments m0, m1, m2 and close them by means of the
log-normal distribution (1), see (Park et al., 1999) for
a detailed account. In Park et al. (1999), the authors
present an analytical solution for the resulting moment
equations. In the following, we shall employ these
results in order to determine the coagulation probabil-
ity of the enclosures. For Brownian coagulation, i.e. in
the continuum regime, the evolution of n, the number
of the enclosures in a droplet, vg, the mean geometric
volume of the droplet, andZ = ln2

σ , σ , the geometric
standard deviation, in a droplet of volume V , is given
in Park et al. (1999) as

n = n0

1 +K0(1 + exp [Z0])(n0/V )t
, (8a)

vg = vg0

n0

n
exp

[
9

2
(Z0 − Z)

]
, (8b)

Z = 1

9
ln

[
2 + (exp [9Z0] − 2)

n

n0

]
. (8c)

Here, the quantities with subscript zero refer to the
initial values. According to these equations, the num-
ber of enclosures, n, is decreasing as one expects.
Furthermore, Z = ln2

σ is approaching its stationary
value Zstat = 1

9
ln 2, corresponding to a mean standard

deviation of σstat = exp
[√

ln 2/3
] = 1.32.

We shall make use of corresponding equations for the
evolution of the moments in the subsequent sections.
Denoting the initial values of the moments by ki and
their actual values by mi , we obtain from (8a) to (8c)

m0 = k0

1 +K0[1 + (k2k0/k
2
1)

1/9](k0/V )t
, (9a)

m1 = k1, (9b)

m2 = k2 + 2k2
1

k0 −m0

m0k0

. (9c)

It should be kept in mind that, by Eq. (4), we have
m1 = k1 = cV . Since the zeroth moment m0 = n is
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decreasing in time, and the first momentm1 is constant,
it follows that the second moment is strictly increasing.

Also, it must be noted that m0 is an integer (the
number of enclosures), which cannot be less than 1.
It follows that Eqs. (9a)–(9c) are only valid for finite
times, i.e. as long as m0 � 1.

Droplet collisions and the distribution of
enclosures

Next, we consider the coagulation of two droplets with
volumes V ′ and V ′′, and enclosure distributions n′(v)
and n′′(v), respectively. The volume of the resulting
droplet is V = V ′ + V ′′, the resulting enclosure distri-
bution is n(v) = n′(v)+n′′(v) and the moments of n(v)
are obviously given by m0 = m′

0 +m′′
0,m1 = m′

1 +m′′
1

(or cV = cV ′ + cV ′′), m2 = m′
2 +m′′

2.
For our model, we shall assume that the moments

m0,m1,m2 of the new droplet will evolve accord-
ing to Eqs. (9a)–(9c). Since these solutions of the
moment equations rely on the closure by means of
the log-normal distribution (1), this assumption is tan-
tamount with the statement that the enclosures are
distributed log-normally in the new droplet. In gen-
eral, however, the resulting distribution n(v) – the
sum of two log-normal distributions with different
parameters – will not be log-normal. Therefore, the
use of the solutions (9a)–(9c) for the evolution of the
moments in newly combined droplets must be seen as
an approximation.

It is difficult to estimate the error which is introduced
by this assumption into the model. As the discussion
of our model will show, the disagreement with experi-
mental data can be traced back to inaccurate models for
the enclosure collision probability. The choice of a log-
normal distribution certainly has some influence, but it
seems that the neglect of finite size effects seems to be
more important, see the section on ‘Relaxation times’.

Smoluchowski equation for droplets and
enclosures

Under the assumption of log-normal distributions of
the enclosures, the aerosol population can be described
by the distribution functionNm0,m2

(V )which is defined
such that Nm0,m2

(V ) dV dm2 gives the number density
of droplets with volumes in (V, V + dV ) and a log-
normal enclosure distribution with momentsm0, m1 =
cV , and m2 in (m2,m2 + dm2).

The volume distribution of droplets with volume V
and an arbitrary internal state is given by the number
density

N(t, V ) =
∞∑
m0=1

∫ ∞

(cV )2/m0

Nm0,m2
(t, V ) dm2. (10)

The number density N(t, V ) evolves according to
the Smoluchowski equation (6) as well, where now the
appropriate collision probability for the droplets must
be inserted. We consider droplets in the free-molecular
regime where the collision probability for droplets with
volumes V and U is given by Friedlander (2000):

σF(U, V ) =
(

3

4π

)1/6(6kT

�

)1/2( 1

U
+ 1

V

)1/2

× (
U 1/3 + V 1/3

)2
, (11)

where � is the mass density of droplets.
The evolution of the distributionNm0,m2

(t, V ) is due
to the coagulation of both, droplets and enclosures. The
generalized Smoluchowski equation for the evolution
of Nm0,m2

(t, V ) can be written as

dNm0,m2
(t, V )

dt

= 1

2

∫ V

0

σ(U, V − U)

×
m0−1∑
k0=1

∫ m2−((m1−k1)2/(m0−k0))

k21/K0

Nk0,k2(t, U)

×Nm0−k0,m2−k2(t, V − U) dk2 dU

×
[
m2 ≥ k

2
1

k0

+ (m1 − k1)
2

m0 − k0

]

−Nm0,m2
(t, V )

∫ ∞

0

σ(U, V )

×
∞∑
k0=1

∫ ∞

(cU)2/k0

Nk0,k2(t, U) dk2 dU

+
∞∑

k0=m0+1

∫ m2

(cV )2/k0

γki→mi (V )Nk0,k2(t, V ) dk2

−
m0−1∑
k0=1

∫ ∞

m2

γmi→ki (V )Nm0,m2
(t, V ) dk2.

(12)

In this equation, the first term accounts for the gain
of droplets with volumeV and enclosure moments,m0,
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m2 due to collisions of droplets with volumes U and
V −U and moments k0, k2 andm0 −k0,m2 −k2, respec-
tively. The limits of integration for k2 follow from the
minimum values for the second moments as given
in (5). In particular we have k2 ≥ k2

1/k0 = (cU)2/k0

and (m2 −k2) ≥ (m1 −k1)
2/(m0 −k0) = (c(V −U))2/

(m0 − k0). Since the moments of the colliding
droplets are added, this term contributes only
for values of the second moment m2 larger than
k2

1/k0 + (m1 − k1)
2/(m0 − k0).

The second term accounts for the loss of droplets
with volume V and moments m0 and m2 due to colli-
sions of these with droplets of arbitrary internal state
and arbitrary volumes.

The third term represents the gain of droplets with
volume V and internal statem0,m2 due to coagulation
of the enclosures in a droplet with volume V and initial
moments k0, k2. Similarly, the fourth term represent the
loss of droplets with volumeV and internal statem0,m2

due to the coagulation of the enclosures with any final
state k0, k2. The quantity γki→mi (V ) dk2 dt denotes the
probability that in a droplet of volume V the moments
of the distribution of enclosures changes from ki to
mi (i = 0, 2) during the time dt . The limits of sum-
mation for k0 take into account that coagulation will
decrease the number of enclosures while the limits for
the k2-integration follow from the fact that the second
moment will be increasing as coagulation proceeds.

Collision probability of enclosures

We shall now determine the probability
γki→mi (V ) dk2 dt for the change of the enclosures with
moments from {k0, k2} to {m0,m2} during dt from
Eqs. (9a)–(9c). The reasoning is similar to the argu-
ments given in Struchtrup et al. (2001). The probability
can be written as the product of the probabilities for a
change from k0 to m0 and for a change from k2 to m2,
that is

γki→mi (V ) dt dk2 = γk0→m0
(V ) dtγk2→m2

(V ) dk2.

The first quantity is the inverse mean time for the
change of enclosure number from k0 to m0. This time
can be found by solving (9a) for time, so that

γk0→m0
(V ) dt = dt

tk0→m0

= K0

V

[
1 +

(
k2k0

k2
1

)1/9]

× k0m0

k0 −m0

dt.

For given initial values k0, k2 and final number m0

the moment m2 must assume the value given by (9c)

and therefore

γk2→m2
(V ) dk2 = δ

(
m2 − k2 − 2k2

1

k0 −m0

m0k0

)
dk2,

where δ(x) is the Dirac delta function. Thus, the
enclosure collision probability reads

γki→mi (V ) = K0

V

[
1 +

(
k2k0

k2
1

)1/9]
k0m0

k0 −m0

× δ
(
m2 − k2 − 2k2

1

k0 −m0

m0k0

)
.

(13)

The evolution equation for Nm0,m2
(t, V )

The substitution of γki→mi (V ) into (12) yields

dNm0,m2
(t, V )

dt

= 1

2

∫ V

0

σ(U, V − U)

×
m0−1∑
k0=1

∫ m2−(c(V−U))2/(m0−k0)

(cU)2/k0

Nk0,k2(t, U)

×Nm0−k0,m2−k2(t, V − U) dk2 dU

×
[
m2 ≥ (cU)

2

k0

+ (c(V − U))2
m0 − k0

]

−Nm0,m2
(t, V )

∫ ∞

0

σ(U, V )

×
∞∑
k0=1

∫ ∞

(cU)2/k0

Nk0,k2(t, U) dk2 dU

+ K0

V

∞∑
k0=m0+1

[
1 +

(
k2k0

(cV )2

)1/9]

× k0m0

k0 −m0

Nk0,k2(t, V )

− K0

V

[
1 +

(
m2m0

(cV )2

)1/9]

×
m0−1∑
k0=1

k0m0

m0 − k0

Nm0,m2
(t, V ). (14)

Here, we have introduced k1 = m1 = cV . Moreover,
k2 in the third term stands as an abbreviation for

k2 = m2 − 2(cV )2
k0 −m0

m0k0

.
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The coagulation equation (14) has two conserva-
tion properties. First, the coagulation of the enclosures
does not change the dynamics of the droplet coagula-
tion. That is, the droplet distributionN(t, V ), Eq. (10),
evolves according to the Smoluchowski equation (6).
Indeed, it can be readily shown that after summation
over m0 the last two terms in (14) cancel, since the
sequence of summation can be inverted as

∞∑
m0=1

m0=1∑
k0=1

=
∞∑
k0=1

∞∑
m0=k0+1

.

The second conservation property of the coagulation
equation (14) is the conservation of the total volume
density of droplets, given by

Vtotal =
∞∑
m0=1

∫ ∞

0

∫ ∞

(cV )2/m0

VNm0,m2
(t, V ) dV dm2

=
∫ ∞

0

VN(t, V ) dV = const.

Reduced models

Constant standard deviation

In our previous paper, we characterized the internal
morphology of the aerosol only by the number of
enclosures. The extended model of this paper can be
compared to the previous results if we assume a con-
stant value for the standard deviation for all droplets.
By Eqs. (3), the second moment is related to enclosure
number n, droplet volume V and standard deviation
σ = exp

√
Z as

m2 = (cV )
2

n
exp (9Z).

Under the assumption that all droplets have the same
constant value for the standard deviation, m2 is not an
independent variable anymore and we can write

Nm0,m2
(t, V ) = Nm0

(t, V )δ

(
m2 − (cV )

2

m0

exp (9Z)

)
.

Then, after integration with respect to m2, the gen-
eralized Smoluchowski equation (14) reduces to

dNm0
(t, V )

dt

= 1

2

∫ V

0

σ(U, V − U)
m0−1∑
k0=1

Nk0(t, U)

×Nm0−k0(t, V − U) dU

−Nm0
(t, V )

∫ ∞

0

σ(U, V )

∞∑
k0=1

Nk0(t, U) dU

+ K̃0

V

∞∑
k0=m0+1

k0m0

k0 −m0

Nk0(t, V )

− K̃0

V

m0−1∑
k0=1

k0m0

m0 − k0

Nm0
(t, V ). (15)

Here, we have abbreviated

K̃0 = [1 + expZ]K0 = [1 + expZ]
2

3

kT

µ
. (16)

Equation (15) is – in slightly different notation –
the generalized Smoluchowski equation of Struchtrup
et al. (2001) which was derived by accounting only
for the enclosure number, but not for higher moments,
i.e. under the assumption of monodisperse enclosures
of volume cV/m0 and standard deviation σmd = 1,
i.e. Zmd = 0. Indeed, if we set Z = 0 in Eq. (16),
we obtain K̃0

4
3
(kT /µ) which is the value we found in

Struchtrup et al. (2001) for monodisperse enclosures.
For larger values of Z, we find larger values of K̃0.
We conclude, that a polydisperse size distribution of
enclosures – i.e. σ > 1, Z > 0 – increases the value
of K0 and therefore gives a higher enclosure collision
rate. For the stationary value of Z, according to (8c)
given by Zstat = 1

9
ln 2, we obtain

K̃0 = [
1 + 21/9

]
K0 = 4.16

3

kT

µ
,

a value which is only slightly larger. We conclude that
the variance of the enclosure size plays only a minor
role for the enclosure coagulation rate.

Decoupled model

Here, we assume thatZ is stationary,Zstat = 1
9

ln 2, and
that the mean volumes of the enclosures are the same
in all droplets, so that

vg = cV√
2n

= const.

The latter condition means that all droplets have the
same number density of enclosures, which we shall
denote by ν = n/V . Also, the number of enclosures
ceases to be an independent variable, so that we can
write for the number density

Nm0
(t, V ) = N(t, V )δ(m0 − νV ).
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Equation (15) reduces after summation with respect
tom0 to the standard Smoluchowski equation (6) for the
droplet number density N(t, V ), where the collision
probability is given by Eq. (11). The enclosure number
density for all droplets changes according to (8a) as,

ν = ν0

1 +K0(1 + 21/9)ν0t
,

where ν0 is the initial value of the enclosure num-
ber density. Thus, under these extremely simplified
conditions, the coagulation processes of droplets and
enclosures are independent of each other.

At the end of this section, we wish to stress that
the reduced models of the section follow from our
model under severe restrictions which will not be met
in nature. They can only serve to give an basic idea of
the coagulation processes in binary aerosols, but will
not give a quantitatively correct picture.

A hybrid model: Updating standard deviation

For an accurate description of the process one needs to
consider the second moment as an additional variable,
i.e. one needs to solve Eq. (14). The solution of the
complete equation requires extreme numerical efforts,
a task which we defer to the future.

In the present paper, we consider a hybrid model,
which improves our previous model by accounting for
the first-order effects of an enclosure size distribution.
For this we shall assume that all droplets have the
same standard deviation for the enclosure distribution,
however it is free to change in time. Then, we can use
Eq. (15) – derived for the case of constant standard
deviation – and replenish it with the equation for the
time-evolution of Z, i.e. Eq. (8c).

The idea is as follows: For the j th time-step
of the numerical solution of (15), Z is updated
according to

Zj = 1

9
ln

[
2 + (exp [9Zj−1] − 2)

n̄j

n̄j−1

]
,

where n̄ denotes the total number density of enclosures
per unit volume of aerosol,1

n̄ =
∑
n

∫
nNn(V ) dV.

1We have to mention that here the mean number of enclosures
per droplet, given by

=
n =(∑

n

∫
nNn(V ) dV )/(

∑
n

∫
Nn(V ) dV ),

also seems to be a reasonable choice. This number, however,
increases, and might therefore yield negative values of Z which
are unphysical.

We use the same sectional model for the solution of
(15) as in Struchtrup et al. (2001). In the following,
we give a very short description of the procedure, for
details, we refer the reader to Struchtrup et al. (2001).

Droplets with adjacent numbers of enclosures are
subsumed into classes which are indicated by Greek
indices, α = 1, 2, . . ., αmax, and the number of mem-
bers in class α is given by µα. The boundaries of the
classes are

Mα =
α∑
β=1

µβ for α = 1, 2, . . ., αmax

withM0 = 0,

where

µα = 2α−2 for α = 2, . . ., αmax,

so thatMα = 2α−1 for α = 1, . . ., αmax. (17)(18)

Similarly, the continuous volumes of the droplets are
subsumed into sections, which are indicated by capital
indices, A = 1, 2, . . ., Amax, and the volumes of the
sections are #A. Moreover, we define the boundaries
of the sections by

VA =
A∑
B=1

#B for A = 1, 2, . . ., Amax

with V0 = 0.

where

#A = 2A−2V̄ for A = 2, . . ., Amax,

so that VA = 2A−1V̄ for A = 1, . . ., Amax.

(19)(20)

Here, V̄ defines the smallest droplet volume of inter-
est and must be chosen according to the process under
consideration.

With these definitions, we have for the number den-
sities of droplets with number of enclosures in class α
and volume in section A

νA
α

=
Mα∑

n=Mα−1+1

∫ VA

VA−1

Nn(V ) dV,

for α = 1, 2, . . ., αmax; A = 1, 2, . . ., Amax .

(21)

The evolution equation for νA
α

follows by summation
and integration of (15) (Struchtrup et al., 2001). With
the same dimensionless quantities as there, we have the
dimensionless coefficient

K̂0 = [1 + expZ]
K0

σ0

,
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where

K0 = 2

3

kT

µ
and σ0 =

(
3

4π

)1/6(6kT

�V̄

)1/2

V̄ 2/3,

the volume V̄ denotes the smallest possible droplet
volume. Its value is determined by the initial
conditions. The dimensionless time is defined as

t̃ = σ0

V̄
t.

We consider a case where initially all droplets have
the same volume V̄ = 4

3
πr̄3 with a radius r̄ =

5 × 10−9 m; the initial number density of droplets is
N0(V̄ ) = 1018 m−3, and all enclosures are assumed to
be of the same size, Z = 0. Density � and viscosity µ
of silica are given by

� � 2400
kg

m3
, µ = 10−8.6625(1−3556.03K/T ) kg

m s
.

Thus, we have for the dimensionless values ofK0/σ0

at T = 2300 K
K0

σ0

(2300 K) = 6.248 × 10−10.

Figure 3. Temporal evolution of νA
α

for T = 2300 K. Vertical axis: number of classes α (corresponds to number of enclosures), horizontal
axis: number of sectionsA (corresponds to droplet volume). The gray levels refer only to the relative values inside one plot. t is the actual
time in seconds. See Eqs. (17)–(19) for the definition of α,A, νA

α
.

As we have shown in Struchtrup et al. (2001), the
result at larger times become independent of the initial
number of enclosures per droplet. We chose the initial
conditions

νA
α
(t = 0) = u0δA,1δα,6,

u0 = V̄N0(V̄ ) � 5 × 10−7, Z0 = 0.

The contour plots in Figure 3 show, for T = 2300 K,
the temporal development of the aerosol through νA

α

(A: x-axis, α: y-axis, accounting for 15 sections and
12 classes). The gray levels refer only to the relative val-
ues inside one plot, where the darkest area corresponds
to the highest values of νA

α
. Recall that A is a measure

of the droplet size, α is a measure of the number of
enclosures and νA

α
is the number density of droplets in

class α, section A. We observe the development of a
structure which moves in the (A, α)-plane almost with-
out changing its shape in concordance with our previ-
ous results.

Figure 4 shows the temporal evolution of Z.
Evidently, Z approaches its stationary value rapidly,
so that the evolution follows Eq. (15) with
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Figure 4. Z = ln2
σ as a function of time (T = 2300 K). The

straight line on the top is the stationary value Zstat = 1
9

ln 2.

K̃0 = [1 + 21/9]K0 = (4.16/3)(kT /µ). The result is
very close to the calculation with constant Z, as in our
first model. This holds also for other values of tempera-
ture, so that rather than present more further results we
refer the reader to Struchtrup et al. (2001) instead. We
note, however, that Z approaches its asymptotic value
faster as temperature is increased due to the higher
mobility and therefore higher growth rate of enclosures.

Relaxation times

Figure 5 indicates that there is an increase in the mean
number of enclosures per droplet. This increase can be
traced in a simple manner to the volume dependence of
the collision frequencies for droplets and enclosures.
In order to simplify the argument, let us consider
monodisperse droplets of volume V which include
monodisperse enclosures. Then, for the droplets, the
Smoluchowski equation reduces to

dN

dt
= −1

2
σF(V , V )N

2,

and we identify the collision frequency for the
droplets as

ωD = σ(V, V )
2

N.

Since the total droplet volume is a constant, we have
N = V̄N0/V and with Eq. (11), we can write the
collision frequency as

ωD = 1

2
σF(V , V )N

= 4V̄N0

(
3

4π

)1/6(12kT

�

)1/2 1

V 5/6
. (22)

Figure 5. Mean number of enclosures for T = 2300 K as func-
tion of time.

For monodisperse enclosures, the Smoluchowski
equation (6) reduces to

dν

dt
= −1

2
σB(v, v)ν

2,

and we identify the collision frequency for the
enclosures as

ωE = 1

2
σB(v, v)ν = 8kT

3µ
ν = 8kT

3µ
n

1

V
. (23)

From (20) and (21), we see that both collision
frequencies are decreasing with growing droplet
volumeV . However, the droplet collision frequencyωD

is growing faster than the enclosure collision frequency
ωE, and this is the reason for the increase of the mean
enclosure number in our model. Also MC simula-
tions show the same behavior of the evolution of the
mean number of enclosures (Efendiev & Zachariah,
2001b).

The collision probabilities σF and σB are well
established in infinite domains. The deviation from
experimental observations is most likely due to finite
size effects in the droplets, i.e. changes in the
enclosure collision probability due to finite droplet
size and migration of the enclosures to the droplet
surface. Enclosures at the surface will also migrate
in Brownian motion and collide, but the correspond-
ing Smoluchowski equation will contain a different
collision probability.

Moreover, the impact during the collision of droplets
might enhance the enclosure collision rate – more so
when the enclosures are at the droplet surface – and
this effect is not accounted for in our model.
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Conclusion

In this paper, we developed a model for the coagu-
lation of binary aerosols which accounts for a dis-
tribution of the enclosure (i.e. the minority phase of
the aerosol droplets) sizes. As in our first and simpler
model (Struchtrup et al., 2001), where we considered
monodisperse enclosures, we observe that the system
evolves very quickly to a distribution that is indepen-
dent of initial conditions and one in which there is a
slow increase in the mean number of enclosures per
droplet (see Figure 5) in contradiction to experimental
evidence.

The size distribution of enclosures reaches its
stationary value quite early in the aerosol coagula-
tion process and remains constant from there on. The
only difference to our previous model is a rather small
change in the closure collision rate K̃0, see Eq. (16).
Altogether, we have to conclude that accounting for
the variance of the enclosure size has no marked effect
on the evolution of the binary aerosol. Thus, our ini-
tial hope – namely that the new model can describe
the experimentally confirmed decreasing number of
enclosures per droplet – is not fulfilled. From the
comparison with experiments, we see that our models
underestimate the enclosure collision rate for larger
droplets.

From the above it follows that more work is needed
in order to describe the enclosure processes accurately.
Possible reasons for the apparent failure are the neglect
of the confinement of the enclosures to the finite droplet
volume, the neglect of surface effects – enclosures
prefer regions at the droplet surface in order to mini-
mize interfaces, and the influence of droplets collision
on enclosure coagulation. Successful modeling, either
with macroscopic models as in this paper, or with MC
simulations will rely on a proper understanding of the
enclosure collision probability.
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