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Abstract. Both, Grad and Burnett, derived sets of equations from the Boltzmann
equation, which improve the classical laws of Navier-Stokes and Fourier for the descrip-
tion of rarefied gases, i.e. gases with Knudsen numbers above 0.01. Using results of
other authors, it is shown that both sets of equations are closer related then is com-
monly thought - indeed, the Burnett equations can be derived from Grad’s equations by
the so-called Maxwellian iteration. This derivation allows to identify the proper form
of the Burnett equations in non-inertial frames. Moreover, Grad’s equations with more
than 13 moments can describe linear boundary layers while these are not among the
phenomena which can be described by Burnett’s equations.

1. Introduction. Processes in rarefied gases are well described by
the Boltzmann equation [5, 6]. The numerical solution of the Boltzmann
equation, either directly [17] or via the Direct Simulation Monte Carlo
(DSMC) method [3], is very time expensive [13], and there is a strong desire
for accurate models which allow the calculation of processes in rarefied gases
at lower computational cost.

There are two well-known approaches towards this goal, the Chapman-
Enskog method [5, 6, 9] and the method of moments of Grad [8, 16]. In the
present paper we shall try to show the strong relations between these two
approaches. Moreover, we will briefly discuss the limits and advantages of
the methods. It will become clear that the Burnett equations, obtained
by the second order Chapman-Enskog expansion, can be obtained from
the Grad equations as well. Mainly our discussion relies on the use of the
Maxwellian iteration of Truesdell and Tkenberry [29, 30], in the interpreta-
tion of Miiller [15] and Reinecke and Kremer [18, 19].

In the Chapman-Enskog method, the phase density is expanded in
powers of the Knudsen number Kn, defined as the ratio between the mean
free path of the molecules and the relevant macroscopic length scale. To
zeroth order the expansion yields the Euler equations, the first order correc-
tion results in the equations of Navier-Stokes and Fourier, and the second
order expansion yields the Burnett equations. The equations of Navier-
Stokes and Fourier cease to be accurate for Knudsen numbers above 0.01,
and it is believed that the Burnett equations are valid for larger Knudsen
numbers.

However, the Burnett equations might not be the appropriate tool for
the description of processes in rarefied gases [9]. It is well known that
the Burnett equations are linearly ill-posed so that waves of small wave
length are not damped but grow at unbounded rate [4, 21]. This corre-
sponds to violations of the second law, which are also observed in the case
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of strong gradients in stationary problems [7, 25]. Despite these problems,
the Burnett equations are still discussed in the literature [31, 32]. In the
last years attempts were made to obtain stable equations by adding terms
of the next order in the expansion (Super-Burnett) [34, 22, 10]. With these
augmented Burnett equations, it is possible to compute shock structures
for any Mach number [2], while the traditional Burnett equations cannot
resolve the whole extend of the shock [31]. The Burnett equations can-
not describe linear boundary layers, but their non-linearities allow for a
boundary layer analysis [13]. For a proper description of the boundaries,
however, the Burnett equations should be supplemented by an appropriate
boundary layer theory [5, 11]. Moreover, questions arise about the form
the Burnett equations should have in non-inertial frames.

In the method of moments of Grad [8], the Boltzmann equation is
replaced by a set of moment equations, - first order partial differential
equations for the moments of the phase density. Which and how many mo-
ments are needed depends on the particular process, but experience shows
that the number of moments must be increased with increasing Knudsen
number [16, 23]. For the closure of the equations, the phase density is ap-
proximated by an expansion in Hermite polynomials about the equilibrium
distribution (the local Maxwellian), where the coefficients are related to
the moments.

Only few moments have an intuitive physical meaning, i.e. density p,
momentum density pv;, energy density ge, heat flux ¢; and pressure tensor
pij- This set of 13 moments' forms the basis of Grad’s famous 13 moment
equations [8] which are commonly discussed in textbooks [12]. However,
the 13 moment set does not allow the computation of boundary layers [24]
and leads to shock structures with discontinuities for Mach numbers above
1.65 [16]. With increasing number of moments, one can compute accurate
boundary layers [20, 28] and smooth shock structures up to higher Mach
numbers [33, 1]. As becomes evident from the cited literature, one has
to face hundreds of moment equations in case of large Mach or Knudsen
numbers.

Basically, Grad’s equations are of symmetric hyperbolic type for a
certain range of values for the moments. The possible loss of hyperbolicity
is discussed in [16] for the 13 field case, but was never considered for systems
with more variables. Thus, it is not sure, whether the increase of the
moment number helps to maintain hyperbolicity. In the papers cited above,
loss of hyperbolicity was not noticed.

The sets with increasing number of moments allow for an easy check
of their quality: if in the simulation of a given process the result remains
almost unchanged for an increased number of moments, than the previous
set of equations was suitable for that particular process. If, however, the

IThe pressure tensor is symmetric, and its trace is related to the thermal energy by
the ideal gas law.
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result changes considerably, one has to increase the number of moments
further, until the results cease to change.

A similar test is not possible for the Burnett equations, since the higher
order Chapman-Enskog expansions are quite involved and were never per-
formed above the Super-Burnett level. Thus, one cannot test the Burnett
equations against the higher order expansions, and has to compare their
predictions either with solutions of the moment equations or direct solu-
tions of the Boltzmann equation. Lacking a test of their accuracy within
the framework of the Chapman-Enskog expansion itself, it might happen
that the Burnett equations will be applied outside their proper range.

While the derivation of both sets of equations seems to be quite inde-
pendent, they are closer related than one may think. Indeed, the Burnett
equations can be derived via a Maxwellian iteration from certain sets of
moment equations via the Maxwellian iteration of Ikenberry and Truesdell
[29, 30]. In this method, one needs not to perform Grad’s closure procedure
for the moment equations, but starts with an infinite set of unclosed equa-
tions - called transfer equations. Expressions for heat flux and pressure
tensor follow from an iteration procedure on this infinite set.

The zeroth order iteration simply gives the Euler equations, the first
order iteration involves 13 transfer equations? and yields the laws of Navier
Stokes and Fourier. The next step relies on 26 equations, and yields ba-
sically the Burnett equations plus some third order terms, which should
appear in the Super-Burnett case of the Chapman-Enskog expansion. If
the corresponding sets of Grad’s moment equations (e.g. with 13 or 26
moments) are considered instead of the transfer equations, the iteration
should lead to the same constitutive equations.

Thus, in the Maxwell iteration, higher orders of the constitutive equa-
tions need the input of more and more transfer (or moment) equations and
one might think that higher order Chapman-Enskog expansions are some-
how equivalent to Grad’s equations with more and more moments. This,
however, is not so: the Burnett equations can be obtained already from a
second iteration of Grad’s set of 13 moment equations, and higher moment
or transfer equations are not needed for their derivation. This fact was
recognized by Reinecke and Kremer [19] who could also derive the Burnett
equations for general classes of molecular interactions from extended sets
of moments. Neither Reinecke and Kremer nor we in this short comment
can answer the question why the two sets - Burnett equations and Grad’s
13 moment equations - are so closely related.

The close relation between Burnett and Grad’s 13 moment equations
suggests that both sets have the same range of applicability. This means in
particular that those processes which are known to be best described by a
large number of moments probably cannot be described accurately by the
Burnett equations.

2The numbers of equations given here refer to the special case of Maxwellian
molecules.
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The second iteration of the 13 moment system can already be found in
Miiller’s book [15] where it was used as a shortcut for an argument on the
frame dependence of heat flux and stress tensor that he gave before on basis
of the original Maxwell iteration [14]. As it seems, he did not recognize
that his equations are basically equal to the Burnett equations. Since he
gave his equations in non-inertial frames, they can be used in order to
formulate the Burnett equations in non-inertial frames. This will be done
in the next section of this paper. The third section will briefly show that
the Burnett equations as well as Grad’s 13 moment case do not exhibit
linear boundary layers in the simulation of stationary heat transfer, while
Grad’s 26 moment case does. Numerical results for even higher moment
numbers are given.

2. 13 moment equations and Burnett equations. We do not
consider any details of the derivation of the 13 moment equations, see
[8, 15] for reference. The moments under consideration are the density
p, the momentum density pv;, the energy density pe, heat flux ¢; and
traceless part of the pressure tensor p;;,. The energy density is related to
the temperature by pe = %p%T + %1;2 where k is Boltzmann’s constant
and m denotes the mass of a gas particle. The trace of the pressure tensor
gives the pressure by pgr = 3p = Sp%T. The moment equations for the 13
moments read in a non-inertial frame
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Here, f; are the body forces (e.g. gravity), i; stands for the inertial forces
acting on the gas in a non-inertial frame, and W is the (antisymmetric)
matrix of the angular velocities of the non-inertial frame. Indices in round
brackets indicate the symmetric part of a tensor and indices in angular
brackets denote the trace-free symmetric part of a tensor; moreover, %
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p is the viscosity which is linear in the temperature for Maxwell

molecules, g—gf = £. The first step of the iteration will show that p is

the viscosity indeed. The first iterates p% )>, qz( Jare obtained by inserting

the equilibrium values - computed from a local Maxwellian - of heat flux
and pressure tensor into the left hand sides of (1)4,5 and solving for the

first iterates which stand on the right. The equilibrium values are p(z 5y =
(0)

and g; ' = 0 and we obtain the first iterates as
1 _ § a _ 156k 0T o 6’1)(2-
(2) p(z]) QHS’UJ 4 = _Zauaxz where S'l] - 81,]) :

These are just the laws of Navier-Stokes and Fourier with the viscosity u
and the heat conductivity A = 3£, Note that these constitutive laws
are linear in the viscosity u.

Now we turn our attention to the second step of the iteration. We
insert the first iterates (2) into the left hand sides of (1)4,5 and solve for
the second iterates on the right hand side to obtain
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where a = 14—5% The second iteration adds quadratic and cubic terms in

the viscosity, which plays here the role of a small parameter3. Higher order
iterations will be obtained in the same manner, i.e. insertion of the last
iterate on the left hand side, and solving for the new iterate on the right.
Obviously, the higher iterates will contain terms with higher powers in p.
The third iterates, for instance, will recover the same second order terms
as in the second iterates (3, 4), but will have additional third and higher
order terms. Thus, the second iterates given above are only accurate within
terms of second order, and we may drop the third order term in (4).

In order to show the strong similarity between Maxwell iteration and
the Chapman-Enskog method, we have a look on the iterative procedure

3Indeed, in a dimensionless formulation, ; would be replaced by the Knudsen number
Kn.
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from another viewpoint. For this, we write pressure tensor and heat flux
as a series in powers of the viscosity, just as one writes a similar series for
the phase density in the Chapman-Enskog method [6],

(5)  posy = Py +uPpy 0P+ s @i = Q) +uQf) +1°Q +..

This ansatz is plugged in the moment equations for the two quantities,
and P and Qg") are determined by equating all members with the same
powers of u. If one considers the series up to the n-th power of p, the result
will agree with the n-th Maxwell iteration in all members up to the order
#". In the result from the Maxwell iteration one will have additional terms
with higher powers, which are subject to change in the next step, and will
be ignored.

For the following discussion it will be important that the right hand
sides of (3, 4) form frame dependent objective tensors. See the book [15]
by Miiller for details, where transformations in non-inertial frames and
transformation properties of tensors are carefully discussed.

Using the linear dependence of y on the temperature one can rewrite
the second iterates without the third order term as
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By means of the energy balance (1)3 we see that the underlined terms in (6,
7) are of third order in y as well so that they can also be neglected. These
terms are an objective tensor and an objective vector, respectively, so that
the remaining terms on the right hand side of (6, 7) still form objective
tensors.

Here, apart from the terms which contain W;, we have recovered the
Burnett equations for Maxwellian molecules [6, 9]. The additional frame
dependent terms ensure the proper transformation of the equations in non-
inertial frames. Since these terms introduce an explicit frame dependence,
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the principle of material frame indifference is not valid here: see Miillers
discussion of these terms in [15, 14], where he shows that the frame de-
pendence of the heat flux is due to the Coriolis force which acts on the
particles during their free flight between collisions.

Summarizing we state that one can derive the Burnett equations in-
cluding their corrections for non-inertial frames from the 13 moment equa-
tions of Grad.

3. Stationary heat transfer. In order to show the influence of
higher moments on the quality of simulations, we study briefly the one-
dimensional stationary heat transfer problem with 13 and 26 moments.
We consider a gas at rest between two rigid walls of distance L with the
wall temperatures Tg, T,

We start with the stationary state of the 13 moment case, where the
moment equations for energy, pressure tensor and heat flux read in dimen-
sionless form, see [24] or [28] for details,

dq
%—0
800__1(-0)0
150z  Kn T
0 B 4 (1-o0)q
VET

Here, ¢ = q1, 0 = p1y and Kn = p(To) 72— is the Knudsen number.
The first two equations show that the anisotropic stress vanishes, o = 0,

and the equations reduce simply to the law of Fourier

(8) q= —Z—sKnTg—i = const.

In the case under consideration, the Burnett equations reduce to the Fourier
law (8) with ¢ = 0, so that both, Burnett’s and Grad’s equations lead
to the same problem. Notice, that the (dimensionless) heat conductivity
L KnT depends on the temperature. We prescribe T (z =0) = 9o and
T (x = 1) =9 to obtain

15
(9)  T=\/03+@ -0, q=—Kn (9 - %) .

The temperatures Yo, are not the temperatures of the walls, but the
temperatures of the gas directly at the walls and differ from the wall tem-
peratures Top = 1,Tr. Indeed, in the case of large Knudsen numbers one
has to consider the jump of the temperature at a wall which follows from
the boundary conditions for the phase density [6, 27]. We consider diffusive
boundary conditions for the gas at a boundary at rest, where the particles
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X

F1G. 1. Temperature according to Fourier’s law with temperature jumps for Knud-
sen numbers Kn = 0.01,0.05,0.1,0.2,0.5, 1; wall temperatures To = 1,77, = 1.5.

leave the walls in Maxwellian distributions determined by the tempera-
tures of the walls. Written in dimensionless form the temperature jumps
at x = 0,z =1 are given by [24, 28]

].—’190_]. T q TL_19L_ 1 m™ q

90 2V 20, 9, 2V 2oL

¥ and I follow from (10) with (9)s. Fig. 1 shows the temperature for
various Knudsen numbers (wall temperatures Top = 1,7, = 1.5). The
jumps increase with increasing Knudsen number.

Although there are jumps, no boundary layers are present in the 13
moment case. Indeed, by (9) the temperature curve is independent of
the Knudsen number. This is not so when more moments are taken into
account, as will be seen when we study a case with 26 moments. The
equations follow from the procedures described in [28] as

(10)

Oq

5y =0
9 (8 N _ 1 (1-9)0
oz \15317%) T "Kn T
0

(11)
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Here, we have introduced the abbreviations ¢, x, % for some components of
higher order moments. Below we shall present some numerical results for
the full non-linear problem. For now, however, we are interested only in
very small deviations of a global equilibrium, where T = 1,05 = 0,qg =
0,0 = 0,xg = 15,9 = 0. Considering only first order terms in devia-
tions from this equilibrium state, we find

= const 6—¢ = —ia
= o dr  Kn ’
0 (1 4 o (9 3
o (§X+¢> = 3R o (W) BT
2 Op 7
=—-——(x—-15(T- L= (Y-
0= (x-15(T—0)) , 2 = (-0)
x and ¥ can easily be computed as
1
x=15(T~0),  4=10
and the remaining equations reduce to
dp _ L 9 (n ®\__ 41 36600 _ 1
oz Kn'@ 0a 35°) T T15Kn?’ 2450z EKn”~

Since the heat flux is constant, we can integrate the second equation to
(12) T=K—-—=——-—0

while the two other equations give for the stress

/245 — 0.5 . /2452 — 0.5
(13) g = A COSh % Kn + B Slnh % Kn .

A,B,K and q are the four constants of integration and four boundary
conditions are required for their determination. Thus, the two boundary
conditions for the wall temperatures - or the temperature jumps, respec-
tively, - are not sufficient for a complete solution of the problem. In [28]
we give a detailed discussion how the boundary conditions for the phase
density can be implemented in a numerical scheme, the so-called kinetic
schemes. Also, see [26, 27, 20] for another method of finding additional
boundary conditions.

The boundary conditions are not necessary for a general discussion of
the result: The first two terms in (12) give the solution of the linearized
Fourier law, i.e. a straight temperature curve. The third term, —%a,
gives the deviation from the Fourier law, due to the influence of the higher
moments. Our numerical results in [28] suggest that the leading term in the
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F1G. 2. The function & for various Knudsen numbers Kn (arbitrary units).
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Fic. 3. Temperature curve for Knudsen numbers Kn = 0.01,0.05,0.1,0.2,0.5,1,
wall temperatures To = 1,17 = 1.5.

stress is given by 6 = —Bsinh /2232203 and Fig. 2 shows this function

for various Knudsen numbers (arbitrary units, normalized). It can be seen
that this deviation has the form of a boundary layer indeed. Evidently, the
thickness of the boundary layer increases with the Knudsen number.

We emphasize again that in the case of one-dimensional stationary
heat transfer the Burnett equations for Maxwell molecules (6, 7) reduce to
the Fourier law (8) and therefore cannot describe a linear boundary layer.

Fig. 3 shows the temperature for a variety of Knudsen numbers be-
tween Kn = 0.01 and Kn = 1, again for the wall temperatures To = 1,7, =
1.5, computed numerically in [28]. All curves were calculated with suffi-
ciently large moment numbers, so that the results did not change when
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F1G. 4. Anisotropic stresses for various Kn.

more moments were added. The figure must be compared with Fig. 1,
which shows the results for the Fourier case. Evidently, the moment solu-
tion gives smaller jumps, and adds marked boundary layers.

The growth of the boundary layer with increasing Kn can best be seen
from the curves of the anisotropic stresses in Fig. 4. With Kn = 0.01 the
stress indeed differs from zero only in a small layer at the walls. With
increasing Kn the boundary layer expands more and more into the gas.
Already at Kn = 0.1 both boundary layers meet, and the rarefied gas
effects dominate the anisotropic stresses o.
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