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Abstract

The semiclassical Boltzmann equation for electrons in semiconductors is considered
together with the parabolic band approximation and interaction terms for elastic scat-
tering with acoustic phonons and inelastic scattering with optical phonons.
Taking only scalar and vectorial moments into account, two sets of equations are de-
rived from the Boltzmann equation: spherical harmonics equations and equations for
full moments.
The equations are solved for two simple processes in an infinite semiconductor in a
homogeneous electric field. The results show that both moment systems agree, if the
number of full moments exceeds the usual choice of hydrodynamical models. .
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1 Introduction

Moment equations derived from the electron Boltzmann equation are an important tool
in semiconductor physics, owing to the fact that the computing times for their numerical
solution are much smaller than for the Boltzmann equation.

The best known example for the moment method is the hydrodynamic model [1][2][3]. The
moment equations contain transport coefficients and relaxation times which are typically
fitted to Monte Carlo simulations of some simple processes [4].

This paper deals with two moment systems which have been presented and analyzed recently
by Liotta and Majorana [5] and Struchtrup [6] and we compare their results for simple
homogeneous processes.
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The energy-kinetic equations of [5] correspond to a spherical harmonics expansion with two
moments [7][8][9] [10] - a scalar and a vector integral of the electron phase density with
respect to the electrons directions which are functions of space-time and the electron energy.

The energy-kinetic equations are confronted with a set of equations for an arbitrary number
of full moments, where only scalar and vectorial functions are considered. The full moments
are integrals of the phase density with respect to the electron momentum, i.e. functions of
space-time only.

In the system of full moments all relaxation times and transport coefficients are computed
directly from the collision term of the Boltzmann equation. Thus, in opposition to usual hy-
drodynamic models [1][2][4], there are no free parameters for the fitting to Monte Carlo data.
Moreover, the full collision operator is considered and not a relaxation time approach[1][4].
As will be seen, all moment equations are coupled through explicit matrices of mean colli-
sion frequencies. Due to this coupling the results for all moments depend on the number of
moments chosen; in particular the results for electron density, energy and drift velocity will
change with the number of moments.

Therefore the most important question in the use of moment systems is, how many moments
are needed to describe the physics of a problem accurately, in the sense that the moment
equations give a result close to a solution of the Boltzmann equation. In the present paper
we accept the choice of only two spherical harmonics moments without asking whether this
is a good approximation for the Boltzmann equation. In fact, we consider the results of the
spherical harmonics as a benchmark for the full moments and ask how many full moments -
scalar and vectorial - are needed to reproduce the results of the spherical harmonics equations.

As test problems we consider an infinite semiconductor in a homogeneous electric field, both
in the transient and the stationary case where we compare the results for the drift velocity.
Both moment systems give the same results, if the number of full moments exceeds the usual
choice of hydrodynamic models.

Our examination is based on a simplified physical picture of the semiconductor, i.e. the
parabolic band approximation with interaction terms for collisions of electrons with acousti-
cal and optical phonons [11] [12]. This simplified description, although inaccurate for high
electric fields, describes all interesting features of electron transport in semiconductors, e.g.
velocity saturation and overshoot.

In the present paper we want to test whether a full moment method is capable of giving
results in accordance to those of the spherical harmonics method. Thus, the emphasis of
the paper lies on the influence of the moment number on the results and not on the physics.
We think that it is appropriate to start with the simplified picture in this first study of
multi-moment methods for electrons.

This present paper is a shortened version of [13].
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2 Boltzmann equation for parabolic bands

The basic quantity in the kinetic theory of electron transport is the phase density f , defined
such that fdxdc gives the number of electrons in the space element dx with velocities in the
element dc at time t. The phase density is governed by the Boltzmann equation which reads
[14][6]
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where e is the elementary charge, Ek denotes the electric field and m denotes the effec-
tive mass which differs from the electron mass me; for silicon we have m = 0.32me =
2.915 10−31kg. Here and in the following summation is understood for two equal Cartesian
indices in a term.

The collision terms Qac, Qop describe the collisions with acoustical and optical phonons
respectively. We have [11][6]
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El = 9 eV is a deformation potential, % = 2330kg/m3 is the crystal density and Ul =
9040m/s is the longitudinal sound speed. Moreover, DtK = 11.4 1010 eV

m
is another de-

formation potential, ~ω = 0.063eV is the energy of optical phonons and θ = ~ω/kB is an
equivalent temperature. All values are for silicon [12]. T0 denotes the temperature of the
lattice which is assumed to be constant in the context of this paper. For the examples we
chose T0 = 300K. Finally kB and ~ are Boltzmann’s and Planck’s constants, respectively,
and dΩ denotes the element of solid angle.

In equilibrium - where the production terms vanish - the phase density is a Maxwellian,

f|E = n
r

m
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3

e
− m
2kbT0
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n =
R
fdc denotes the number density of electrons.
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3 Spherical harmonics

Spherical harmonics moments are moments of the phase density with respect to the direction
vector ni = ci/c = {sinϑ sinϕ, sinϑ cosϕ, cosϑ} defined as

uhi1i2···ini =
Z
nhi1ni2 · · ·ninifdΩ (3)

where the brackets denote a symmetric trace-free tensor, see [6] for details. With the mo-
ments (3) we can write the phase density as an infinite series

f =
∞X
n=0

(2n+ 1)!!

4πn!
uhi1i2···ininhi1ni2 · · ·nini . (4)

In practice, one considers not an infinite series, but only the first terms of (4) and in the
present paper we shall consider only the first two terms and set all higher terms equal to
zero. This choice is appropriate when the elastic scattering dominates, so that the phase
density is almost isotropic [7][6][10].

The spherical harmonics are functions of space xi, time t and the absolute electron speed c.
The spherical harmonics moments of the Maxwellian (2) are
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The equations for the spherical harmonics follow by multiplication of the Boltzmann equation
with nhi1ni2 · · ·nini and subsequent integration over all directions. For the first two moments
we find the equations
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These are the spherical harmonics equations for the model of Section 2, see [5] and — for the
stationary case — [7][8][9].

4 Full Moments

Next, we consider full moments of the phase density, and also here we restrict ourselves to
scalar and vectorial moments. Thus, the full moments under consideration are [6]

%r = m

Z
c2rfdc = m

Z
c2r+2udc , %ri = m

Z
c2rcifdc = m

Z
c2r+3uidc , (7)

4



r = 0, 1, . . . , R, with an arbitrary number R. Our interest in the remainder of the paper lies
in the question, which number R one has to chose in order to retain the physical contents of
the energy-kinetic equations (6).

Among the set (7), we have the number density n, the electron temperature T , the drift-
velocity vi and the energy flux qi by

n =
%0

m
,
3

2
%0
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2
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0
i , qi =

1

2
%1i .

Note, that the second equation defines the electron temperature. The usual choice of vari-
ables for hydrodynamic models consists in these 8 moments plus the deviator of the pressure
tensor %hiji = m

R
chicjifdc =m

R
c4uhijifdc [1][4][15]. The latter is not considered here due

to the neglect of the higher spherical harmonics [6]. Thus, for R = 1, our equations below
correspond to hydrodynamic models. We emphasize again that we shall consider the full
collision term so that there are no fitting parameters in our model.

The equations for the full moments follow by multiplication of the Boltzmann equation with
mc2r and mc2rci, respectively, and subsequent integration. These equations do not form a
closed set for the variables (7), but contain additional quantities. In order to express these
through the variables, we need a closure assumption, i.e. an expression for the phase density
as a function of the variables. Here, we choose a Grad type function [16][17]

f = f|T

"
1−

RX
s=0

λsc2s −
RX
s=0

λsic
2sci

#
with f|T = n

r
m

2πkBT

3

exp

·
− m

2kBT
c2
¸
, (8)

see [6] for a discussion.

Note that the closure problem for the full moments is more involved than for the spherical
harmonics where the closure consists simply in setting all higher spherical harmonics equal
to zero.

The expansion coefficients λ,λi in (8) follow from (7) by inversion as functions of the mo-
ments,
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(10)
ur|T are the moments of f|T with u

0
|T = u

0 and u1|T = u
1; Γ (r) denotes the gamma function.

It is an easy task to compute the spherical harmonics moments of the phase density (8) as
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With the phase density (8) we obtain from the Boltzmann equation a closed set of equations
for the moments (7),
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for r = 0, 1, . . . , R. The production vector Πr and the matrices of mean collision frequencies
Θrs, Θ̂rs are given by
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The integrals Jr,s may be expressed through the modified Bessel functions of the second kind,
see [6] for details.

The moment uR+1 in the system (12) is related to the variables (7) by a constitutive equation
which follows from (8) as

%R+1 = %R+1|T +
RX
s=0

RX
t=2
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µ
R+ s+

5

2

¶
%t − %t|T¡
2kBT
m
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In equilibrium, the right hand sides of (12) must vanish, and we have γ = 0 or T = T0;
moreover, the moments assume their equilibrium values %r = %r|T0 = %

r
|E and %

r
i|E = 0.

5 Homogeneous processes

We compare the results of the two set of equations for two simple one-dimensional homo-
geneous processes. Figure 1 shows the drift velocity of the electrons - i.e. %0i /%

0 - for a
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Figure 1: Stationary homogeneous process: drift velocity as a function of the electric field
calculated with spherical harmonics (dots) and full moments with R = 1, 6 (lines).
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Figure 2: Transient homogeneous process: drift velocity as a function of time with E =
10kV/cm,50kV/cm calculated with spherical harmonics (dots) and full moments with R =
1, 6 (lines).

stationary electric field E as a function of its strength. The dots are the results obtained
from the spherical harmonics equations (6) while the curves are obtained with the full mo-
ment equations with moment numbers R = 1, 6. All curves show the well-known saturation
effect for high fields [11] [12]. However, it needs a moment number of R = 6 to obtain the
curve of the spherical harmonics; with a number R = 1 of full moments the results differ in
particular at high fields.

Also in the transient case, where the crystal is suddenly subjected to a constant homogeneous
field, it needs a number of about R = 6 of full moments to obtain the same result as with
the spherical harmonics equations, see Figure 2.

The two figures, for different values of the electric field, show the overshoot of velocity, which
is also reported from Monte-Carlo solution of the Boltzmann equation [11][12]. These do
not exhibit the minimum after the peak but give a monotony decreasing velocity after the
peak. However, there is a lot of noise in the Monte Carlo results, and therefore it is not
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clear whether the minimum is an artefact of our choice of only two spherical harmonics or
whether it has a physical meaning. Calculations with more spherical harmonics which will
allow to answer this interesting question are in preparation.
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