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Positivity of Entropy Production
and Phase Density in the
Chapman-Enskog Expansion
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Nomenclature
peculiar velocity, ¢ — vg, m/s
upper bound for peculiar velocity, m/s
microscopic velocity, m/s
phase density, s*/m®
Maxwell distribution, s*/m®
Knudsen number, n/Lp/(k/m)T
Boltzmann's constant, 1.3804 x 1072 J/K
typical length scale, m
particle mass, kg
pressure, N/m?
collision term, s*/m®
temperature, K
time, s
center of mass velocity, m/s
space variable, m
symmetric and trace free part of the velocity
gradient, 1/s
viscosity, kg/ms
dimensionless velocity
mass density, kg/m’
entropy production, J/K
nonequilibrium part of phase density
expansion coefficients of ®
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Introduction

N a recent paper Comeaux et al.' showed that the entropy pro-
duction according to the Burnett equations may become nega-
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tive. This result stands in contradiction to Boltzmann’s H-theorem.
which states that the entropy production is positive for any distribu-
tion function f. In this Note we show that the negative production
of entropy results from the use of approximative solutions of the
Boltzmann equation outside their proper range and improper math-
ematics, that is, a series expansion that does not converge outside
that range.

The behavior of rarefied gases is well described by the Boltzmann
equation®?

af af

at ¥ e aX,g. -
where f is defined such that f de dx gives the number of particles
with velocities in (¢;, ¢; +dc¢;) in the space element (x;, x; + dx;)
at time ¢. The collision term S(f, f) describes the change of f as
a result of collisions among the particles; the particular form of S
can be found in the literature.>?

Being a nonlinear integro-differential equation, the Boltzmann
equation cannot be solved analytically and must either be treated
numerically or with approximations. The latter is usually done by
the Chapman—Enskog method® or by Grad’s moment method.**

The Chapman-Enskog method uses a series expansion into pow-
ers of the Knudsen number Kn, with the Euler equations as solution
of order zero, the Navier-Stokes equation as first-order correction,
and the so-called Burnett equations for the second-order approxima-
tion. Thus, from the derivation it is clear that the equations—Euler,
Navier-Stokes, or Burnett—have only a finite range of applicability
(defined by the Knudsen number) and cannot serve for the descrip-
tion of any processes in a gas. Besides, the Burnett equations become
unstable for steep gradients.®

Boltzmann’s celebrated H-theorem?? states that the entropy
production

s (1)

o-:—kf&'fufdc (2)

is positive for all phase densities f. The proof relies on the particular
form of the collision term S and can be found in the cited literature.

Thus, the findings in Ref. 1, a negative entropy production, are in
contradiction to the H-theorem. This discrepancy will be discussed
in the following.

Positivity of Phase Density and Entropy Production
The Chapman-Enskog method is an expansion in terms of the
Knudsen number Kn, which gives the ratio between the mean free
path of a gas particle and a typical macroscopic length scale. The
method yields the phase density>?
® = Kngp" + Kn’¢? + -
3)

fu= (p,.fm)‘/mﬂrrk?'scxp[—-(mkaT)Czl )

f=full+P) where

The ¢ are products between polynomials in the peculiar velocity
and derivatives in space and time of temperature and velocity.? The
simplest example is given by the first Chapman—Enskog expansion
for Maxwell molecules where™'
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The phase densities for higher-order expansions (Burnett, Super-
Burnett) can be found in the literature.

Because of its definition as a number density in phase space, the
phase density ought to be positive, and, moreover, the definition
in Eq. (2) only makes sense for positive f. The Chapman—Enskog
expression, Eq. (3), however, will become negative because ® will
fall below (—1) for large C.

In the proper range of applicability, the gradients of temperature
and velocity are rather small, and @® falls below (—1) only for very
large C. However, @ is always multiplied by the Maxwellian ().



J. THERMOPHYSICS, VOL. 15, NO. 3: TECHNICAL NOTES 373

which suppresses the negative contributions for the large velocities
in question.

To fix our arguments, we introduce a velocity bound Cy,,, defined
such that f =0 for C > C,, and demand that

¢ = —1 for Gns Ciniax (6)

Because of the polynomial structure of &, this requirement is tan-
tamount to

[P <1 for GEEE (7

With this in mind, we turn the attention to the entropy production
Eq. (2). Because of conservation of mass, momentum, and energy,
f S b for de =0 (Ref. 7), and we find the entropy production as

—k f S (1 + @) de (8)

This equation makes sense under the assumption that C,, is a suit-
able bound for the collision term & as well so that § is negligible
above C\y.y, where the argument of the logarithm becomes negative.

The condition of Eq. (7) is the prerequisite for expanding the
logarithm into a Taylor series, namely,

(I)Z
—k[S(q)——i——f—---)dc
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(9)

We emphasize that the series does not converge if |®| = 1. In other
words, the series expansion is wrong if the requirement of Eq. (7)
is violated.

Thus, if Eq. (7) holds, everything turns out well. In particular,
we are allowed to compute the entropy production by means of the
expansion in Eq. (9). On the other hand, if Eq. (7) is not fulfilled, the
expansion is not allowed and will, if used, give incorrect results, for
example, a negative value for the entropy production. This, indeed,
is the explanation for the results of Ref. 1, where the preceding
expansion is used, but the finite radius of convergence is left out of
consideration.

Clearly, the condition of Eq. (7) is not easy to evaluate, in partic-
ular because one has to provide the bound C,, first. As an exam-
ple, we consider the first Chapman—Enskog expansion for Maxwell
molecules of Eq. (5). In this case the condition of Eq. (7) can be

written as
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(10)
where &, is a suitable dimensionless velocity with absolute value of
the order of Cp./+/[(k/m)T]. The first of these conditions resem-
bles the conditions of Ref. 1 for positive entropy production in the
Burnett case, and we can consider our preceding arguments as the
explanation of these conditions.

For the first-order expansion, however, only the first term in the
series (9) is required for the entropy production

cr:—kfé'(l)dc (1)

which turns out to be positive for all gradients of temperature and
velocity. Because the expansion is not allowed if the conditions
of Egs. (7) or (10) are violated, this result must be seen as a mere
coincidence. See also Ref. 8, where the authors show that the realiz-
ability of some moments of the first-order Chapman—Enskog phase
density is not ensured if the gradients become to steep.

Finally, we would like to point out that the computation of the
entropy production from Grad’s moment method faces similar prob-
lems.

Conclusions

‘We summarize our results as follows:

1) The Chapman-Enskog method does not ensure the positivity
of the phase density in general. This poses no problem if the method
is applied in the permitted range of processes.

2) A negative entropy production may occur as a result of a
negative phase density and improper mathematics (nonconverging
series).

3) Therefore, a negative entropy production shows that the ap-
proximation is overstressed and as such serves as an indicator for
the applicability of the model.!
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Nomenclature

Powell’s flux-vector Jacobian
homogeneity variable

magnetic field vector

unsplit flux

left eigenvector matrix

right eigenvector matrix
constant-volume specific heat
x-direction flux vector

pressure

gas constant

nose radius

transformation Jacobian from conservative
to primitive variables

cell-face surface area

transformation Jacobian from primitive
to conservative variables

T = temperature

U = conservative variables vector
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